Citations, presentations, and panels

Below are a number of events, presentations, panels, and interviews I have participated in over the past three months.

Academic citation:

Quoted:

Presentations:

Interviewed:

Panels:

Cited:

Send to Kindle

Non-technical Corda whitepaper released

Earlier today our architecture team released its first public whitepaper on Corda.

The WSJ covered it here and here.

Consequently I am somewhat puzzled by news stories that still refer to a “blockchain” as “Bitcoin technology.”  After all, we don’t refer to combustion engines in cars as “horse-powered technology” or an airplane turbine engine as “bird-powered technology.”

A more accurate phrase would be to say something like, “a blockchain is a type of data structure popularized by cryptocurrencies such as Bitcoin and Ethereum.”  After all, chronologically someone prior to Satoshi could have assembled the pieces of a blockchain into a blockchain and used it for different purposes than censorship-resistant e-cash.  In fact, both Guardtime and Z/Yen Group claim to have done so pre-2008, and neither involves ‘proof-of-work.’

Fun fact: Corda is not a blockchain, but is instead a distributed ledger.

Send to Kindle

Code is not law

This past Sunday I gave a new presentation at the Palo Alto Ethereum meetup — it was largely based on my previous two blog posts.

Note: all of the references and citations can be found within the notes section of the slides.  Also, I first used the term “anarchic chain” back in April 2015 based on a series of conversations with Robert Sams.  See p. 27.

Special thanks to Ian Grigg for his constructive feedback.

Slides:

Video:

Send to Kindle

Ethereum Core and Ethereum Classic for Dummies

[Note: I neither own nor have any trading position on any cryptocurrency.  The views expressed below are solely my own and do not necessarily represent the views of my employer or any organization I advise.]

If you’re bored of catching Pokemon and happen to have a lot of butter stored up, now is the time to break out the premium organic popcorn kernels and enjoy Fork Wars: Summer 2016 Edition.

As mentioned in the previous post: last week many miners, exchanges, and developers coordinated a hardfork of Ethereum.  At the time there were lots of celebrations for having done something that flew in contrast to the views prominently held by the Bitcoin Core development community: namely that a fast hardfork can’t be done safely on a public blockchain.

Well, it has been done, but there were also some consequences.  Some intended and others unintended.  The biggest consequence — which was touched on in my last post too — was that there were now parallel universes: Ethereum Core (ETH) and Ethereum Classic (ETC).

What does this mean?

If you owned a coin on pre-hardfork Ethereum, you now own not just the ETH facsimile but also the Classic coin (ETC) too.  Two for the price of one!1

This also opens up the very real possibility of replay attacks which was also a possibility when Ethereum moved from Olympic to Frontier.

A replay attack predates cryptocurrencies such as Bitcoin and Ethereum:

[I]s a form of network attack in which a valid data transmission is maliciously or fraudulently repeated or delayed. This is carried out either by the originator or by an adversary who intercepts the data and re-transmits it, possibly as part of a masquerade attack by IP packet substitution.

In this case, it is the retransmission of a transaction (not IP packet).  Or in the Ethereum world, a replay attack would be to take a transaction from one Ethereum fork and maliciously or fraudulently repeating it on another Ethereum fork.

A little confused?  Check out: Sirer, Rapp, and Vessenes.

At first most of the Ethereum community assumed that Classic would effectively become deprecated and fade away into history much like Olympic.  After all, so went the argument, who would want to use or support a network in which at least one participant owned/controlled roughly ~10% in now “hot” ether?

Sidebar: recall that the main motivating force behind the hardfork was spurred on by the successful attack on The DAO, an investment fund created by Slock.it who did not adequately test the smart contract for security vulnerabilities (among other issues).

Well, it seems that Classic will not go silent into the night, at least not yet.

From a technical integration standpoint, while all of the large exchanges initially supported ETH, one altcoin exchange based in Montana — Poloniex — began supporting both forks.2

Traders — seeing a potential arbitrage opportunity — began doing what they do best: speculating and driving up demand for ETC via posts on social media.  As a consequence of their marketing efforts, the price of ETC dramatically rose over 380% in one 24-hour period alone.  In return, some of the miners that had abandoned the original Ethereum chain (ETC) to mine on the ETH hardfork have now begun mining on both which means that the original ETC network actually has once again begun seeing an increase in its hashrate (recall that it had dramatically dropped a week ago).

This is an interesting twist because less than 3 days ago, Chandler Guo an executive at BW.com — a large mining pool — announced he would undertake a 51% attack on the ETC blockchain because of the decision by Poloniex to support it.  Chandler later announced he would not carry it out.

Incidentally, it is likely that the noise that was created from this threat actually drew more attention to the Poloniex arbitrage opportunity, creating a type of Streisand Effect.3

Visual

What does this situation look like?

ethereum classic

Source: slacknation

Above is a line graph that is auto-generated and reflects the past 48 hours of two types of ratios: the Ethereum Classic (ETC) to Ethereum Core (ETH) price; and the ETC to ETH hashrate.  Price is derived from the two largest exchanges in terms of ether liquidity (Bitfinex and Poloneix).

This is actually not surprising behavior, we empirically observe the same type of trend with other cryptocurrencies: when price increases more hashrate comes on-board and vice-versa.45

Precedence

Over the past several days there has been much guessing as to which chain will live or die, but rarely do people suggest that both will live on in the long-run.

And I think that is short-sighted.  While not a fully direct comparison, even though they’re effectively based on the same code, we have seen how Litecoin and Dogecoin have permanently conjoined at the hip via merged mining: they co-exist via the Scrypt Alliance.  In addition, we have seen for years the continued existence of multiple multipools, which automatically direct GPU-miners to the most profitable cryptocurrency usually with a payout in bitcoin.

I cannot predict who which chain outlasts the other.  Perhaps now that ethcore has said it will also support Ethereum Classic, the two (or more!) chains will both continue to exist and grow.  Either way, we do know that the maximalist thesis, that there is a “coming demise of altcoins,” continues to be empirically incorrect and I suspect that it will remain incorrect for as long as there is continued speculative demand for cryptocurrencies in general.  This includes both ETH and ETC.

Other winners and losers

Who else gains from this phenomenon?  In the short run, anyone interested in trading will probably be able to find some kind of arbitrage — assuming demand grows or at least stays at the same level.

Anyone else?

Other cryptocurrency communities that see Ethereum as a competitor could believe they now have an incentive to support multiple forks too, as it draws hashrate and potential mindshare away one chain at the expense of the other.  And the more that the Ethereum community is painted as being “chaotic” the less of a threat it is seen to other public blockchains.  But maybe this is shortsighted too and will simply enlarge the Ethereum community because they now end up as ETC holders and want it to appreciate in value.

Either way, it sounds like the makings of some kind of TV miniseries staring Jean-Luc Bilodeau as Vitalik Buterin (they’re both Canadian).

Want to read more on the topic?

Conclusions

Ignoring the above quasi-illustration of the many-worlds interpretation, surprisingly not much has been discussed regarding the analog world of when fiat currencies are created or even removed at certain exchange rates and the unintended consequences therein.

For instance, in the comedy Good Bye, Lenin! we see the repercussions for those who were unable to convert East German marks for West German marks after the fall of the Berlin Wall.

More recently we have seen multiple Iraqi dinar scams, in which individuals were deceived and conned into acquiring pre-war dinar (a deprecated fiat currency) with the fraudulent pitch that at some point in the future, the previous pre-war exchange rate would somehow be reached.

However, one of the biggest differences with the Ethereum-based chains above is that cryptocurrencies are anarchic — without terms of service or ties to the legal system. Therefore it is difficult (impossible even?) to say which chain is the de jure legitimate chain.  Consequently it is unclear if anyone has a legal claim to prevent or create additional forks in the future and because of this, it is hard to see who has liability for past, present or future forks on these chains.

Whether that is a risk organizations and regulated institutions are willing to take is a topic for another post.  Perhaps if or when this is done, there will be even more chances to consume warm buttery popcorn as we watch and learn from the trials and tribulations of anarchic blockchains.

Endnotes

  1. It is closer to a spinoff than a stock-split.  Similar to the Ebay/Paypal spinoff, where a company that once had single market capitalization (EBAY) now trades under two different symbols (EBAY/PYPL) that trade and move independently. []
  2. Note: by this I mean that the existing exchanges that had already on-boarded ether, not that all large cryptocurrency exchanges had on-boarded ether. []
  3. Guo wanted to remove something (a chain in this case) but by advertising his intention to do so, only drew more interest and activity back into the very chain he intended to remove. []
  4. See Appendix B []
  5. See also Ethereum chain state []
Send to Kindle

Archy and Anarchic Chains

[Note: the views expressed below are solely my own and do not necessarily represent the views of my employer or any organization I advise.]

Yesterday, at block height 1920000, many elements of the Ethereum community coordinated a purposeful hardfork.

After several weeks of debate and just over a couple weeks of preparation, key stakeholders in the community — namely miners and exchanges — attempted to create a smooth transition from Ethereum Prime (sometimes referred to as Ethereum Classic) into Ethereum Core (Ethereum One).1

Users of exchange services such as Kraken were notified of the fork and are now being allowed to withdraw ETH to Ethereum Core, which many miners and exchanges now claim as “mainnet.”

Was the hardfork a success?  To answer that question depends on which parallel universe (or chain) you resided on.  And it also depends on the list of criteria for what “failure” or “success” are measured by.

For instance, if you ended up with ETH on the “unsupported” fork (Classic), who was financially responsible for this and who could attempt to file a lawsuit to rectify any loses?

Maybe no one.  Why?  Because public blockchains intentionally lack terms of service, EULA, and service level agreements, therefore it is difficult to say who is legally liable for mistakes or loses.

For instance, if financial instruments from a bank were sent to miners during the transition phase and are no longer accessible because the instruments were sent to the “unsupported” chain, who is to blame and bears responsibility?  Which party is supposed to provide compensation and restitution?

De facto versus de jure

This whole hardfork exercise visualizes a number of issues that this blog has articulated in the past.

Perhaps the most controversial is that simply: there is no such thing as a de jure mainnet whilst using a public blockchain.  The best a cryptocurrency community could inherently achieve is a de facto mainnet.2

What does that mean?

Public blockchains such as Bitcoin and Ethereum, intentionally lack any ties into the traditional legal infrastructure.  The original designers made it a point to try and make public blockchains extraterritorial and sovereign to the physical world in which we live in.  In other words, public blockchains are anarchic.

As a consequence, lacking ties into legal infrastructure, there is no recognized external authority that can legitimately claim which fork of Bitcoin or Ethereum is the ‘One True Chain.’  Rather it is through the proof-of-work process (or perhaps proof-of-stake in the future) that attempts to attest to which chain is supposed to be the de facto chain.3

However, even in this world there is a debate as to whether or not it is the longest chain or the chain with the most work done, that is determines which chain is the legitimate chain and which are the apostates.4 5

And this is where, fundamentally, it becomes difficult for regulated institutions to use a public blockchain for transferring regulated data and regulated financial instruments.

For instance, in March 2013 an accidental, unintended fork occurred on what many participants claimed as the Bitcoin mainnet.

To rectify this situation, over roughly four hours, operators of large mining pools, developers, and several exchanges met on IRC to coordinate and choose which chain they would support and which would be discarded.  This was effectively, at the time, the largest fork-by-social-consensus attempted (e.g., proof-of-nym-on-IRC).

There were winners and losers.  The losers included: OKPay, a payment processor, lost several thousand dollars and BTC Guild, a large mining pool who had expended real capital, mined some of the now discarded blocks.

In the Bitcoin world, this type of coordination event is slowly happening again with the never ending block size debate.

One team, Bitcoin Classic, is a small group of developers that supports a hardfork to relatively, quickly increase the block size from 1 MB to 2 MB and higher.  Another group, dubbed Bitcoin Core, prefers a slower role out of code over a period of years that includes changes that would eventually increase the block size (e.g., segwit). 6

Yet as it lacks a formal governance structure, neither side has de jure legitimacy but instead relies on the court of public opinion to make their case.  This is typically done by lobbying well-known figureheads on social media as well as mining pools directly.  Thus, it is a bit ironic that a system purposefully designed for pseudonymous interactions in which participants were assumed to be Byzantine and unknown, instead now relies on known, gated, and trusted individuals and companies to operate.

Note: if the developers and miners did have de jure legitimacy, it could open up a new can of worms around FinCEN administrative requirements. 7  Furthermore, the miners are always the most important stakeholders in a proof-of-work system, if they were not, no one would host events just for them.

arthur twitter pow

Source: Twitter

Ledgers

With this backstory it is increasingly clear that, in the legal sense, public blockchains are not actual distributed ledgers.  Distributed, yes; ledgers, no.

As Robert Sams articulates:8

I think the confusion comes from thinking of cryptocurrency chains as ledgers at all. A cryptocurrency blockchain is (an attempt at) a decentralised solution to the double spending problem for a digital, extra-legal bearer asset. That’s not a ledger, that’s a log.

That was the point I was trying to make all along when I introduced the permissioned/permissionless terminology!9 Notice, I never used the phrase “permissionless ledger” — Permissionless’ness is a property of the consensus mechanism.

With a bearer asset, possession of some instrument (a private key in the cryptocurrency world) means ownership of the asset. With a registered asset, ownership is determined by valid entry in a registry mapping an off-chain identity to the asset. The bitcoin blockchain is a public log of proofs of instrument possession by anonymous parties. Calling this a ledger is the same as calling it “bearer asset ledger”, which is an oxymoron, like calling someone a “married bachelor”, because bearer assets by definition do not record their owners in a registry!

This taxonomy that includes the cryptocurrency stuff in our space (“a public blockchain is a permissionless distributed ledger of cryptocurrency”) causes so much pointless discussion.

I should also mention that the DLT space should really should be using the phrase “registry” instead of “ledger”. The latter is about accounts, and it is one ambition too far at the moment to speak of unifying everyone’s accounts on a distributed ledger.

As I have discussed previously, public blockchains intentionally lack hooks into off-chain legal identification systems.

Why?  Because as Sams noted above: a KYC’ed public blockchain is effectively an oxymoron.  Arguably it is self-defeating to link and tie all of the participants of the validation (mining) process and asset transfer process (users) to legal identities and gate them from using (or not using) the network services.  All you have created is a massively expensive permissioned-on-permissionless platform.

But that irony probably won’t stop projects and organizations from creating a Kimberely Process for cryptocurrencies.

I cannot speak on behalf of the plethora of “private chain” or “private ledger” projects (most of which are just ill-conceived forks of cryptocurrencies), but we know from public comments that some regulators and market structures might only recognize blockchains and distributed ledgers that comply with laws (such as domestic KYC / AML regulations) by tying into the traditional legal infrastructure.10 This means tying together off-chain legal identities with on-chain addresses and activity.

Why?

There are multiple reasons, but partly due to the need to reduce settlement risks: to create definitive legal settlement finality and identifying the participants involved in that process.11

Finality

As illustrated with the purposeful Ethereum One hardfork and the accidental Bitcoin fork in 2013, public blockchains by design, can only provide probabilistic settlement finality.

Sure, the data inside the blocks itself is immutable, but the ordering and who does the ordering of the blocks is not.

What does this mean?  Recall that for both Ethereum and Bitcoin, information (usually just private keys) are hashed multiple times by a SHA algorithm making the information effectively immutable.12 It is unlikely given the length of time our star is expected to live, that this hash function can be reversed by a non-quantum computer.

However, blocks can and will be reorganized, they are not immutable.  Public blockchains are secured by social and economic consensus, not by math.

As a consequence, there are some fundamental problems with any fork on public blockchains: they may actually increase risks to the traditional settlement process.  And coupled with the lack of hooks for off-chain identity means that public blockchains — anarchic blockchains — are not well-suited or fit-for-purpose for regulated financial institutions.

After all, who is financially, contractually, and legally responsible for the consequences of a softfork or hardfork on a public blockchain?

  • If it is no one, then it might not be used by regulated organizations because they need to work with participants who can be held legally accountable for actions (or inactions).
  • If it is someone specifically (e.g., a doxxed individual) then you have removed the means of pseudonymous consensus to create censorship resistance.

In other words, public blockchains, contrary to the claims of social media, are not “law” because they do not actually tie into the legal infrastructure which they were purposefully designed to skirt.  By attempting to integrate the two worlds — by creating a KYC’ed public blockchain — you end up creating a strange hydra that lacks the utility of pseudonymity (and censorship resistance) yet maintains the expensive and redundant proof-of-work process.

These types of forks also open up the door for future forks: what is the criteria for forking or not in the future?  Who is allowed and responsible to make those decisions?  If another instance like the successful attack and counter-attack on The DAO takes place, will the community decide to fork again?  If 2 MB blocks are seen as inadequate, who bears the legal and financial responsibility of a new fork that supports larger (or smaller) blocks?  If any regulated institution lose assets or funds in this forking process, who bears responsibility?  Members of IRC rooms?

If the answers are caveat emptor, then that level of risk may not be desirable to many market participants.

Conclusions

Who are you going to sue when something doesn’t go according to plan?  In the case of The DAO, the attacker allegedly threatened to sue participants acting against his interests because he claimed: code is law.  Does he have legal standing?  At this time it is unclear what court would have accepted his lawsuit.

But irrespective of courts, it is unclear how smart contract code, built and executed on an anarchic platform, can be considered “legal.”  It appears to be a self-contradiction.

As a consequence, the fundamental need to tie contract code with legal prose is one of the key motivations behind how Richard Brown’s team in London approached Corda’s design.  If you cannot tie your code, chain, or ledger into the legal system, then it might be an unauthoritative ledger from the perspective of courts.13

And regulated institutions can’t simply just ignore regulations as they face real quantifiable consequences for doing so.  To paraphrase George Fogg, that’s akin to putting your head in the sand.

We continue to learn from the public blockchain world, such as the consequences of forks, and the industry as a whole should try to incorporate these lessons into their systems — especially if they want anyone of weight to use them.  Anarchic blockchains will continue to co-exist with their distributed ledger cousins but this dovetails into a conversation about “regtech,” which is a topic of another post.

Endnotes

  1. Rejecting Today’s Hard Fork, the Ethereum Classic Project Continues on the Original Chain: Here’s Why from Bitcoin Magazine []
  2. This doesn’t mean that regulators and/or financial institutions won’t use public blockchains for various activities; perhaps some of them will be comfortable after quantifying the potential risks associated with them. []
  3. Ethereum developers plan to transition Ethereum from proof-of-work to proof-of-stake within the next year. []
  4. See Arthur Breitman’s interview on Epicenter Bitcoin and Mike Hearn’s interview on Money & Tech []
  5. Philosophically when Bob connects to “The Bitcoin Network” — how does Bob know he is actually connected to the “real” Bitcoin network?  One method is to look at the block header: it should take a specific amount of time to recreate the hash with that proof-of-work. This proves which network has the most work done.  However, in the meantime, Bob might connect to other ‘pretenders’ claiming to be “The Bitcoin Network.”  At this time, there does not appear to be any legal recognition of a specific anarchic chain. []
  6. The Bitcoin Core fork, which is euphemistically called a softfork, is basically a hardfork spread over a long period of time. []
  7. See Section 3.4 []
  8. Personal correspondence: March 9, 2016 []
  9. See Blockchain Finance by Robert Sams []
  10. This is not to say that regulators, governments, and various market participants will not use public blockchains for other activity. []
  11. See Section 3.1 []
  12. For proof-of-work mining, Ethereum uses ethash instead of SHA256.  For hashing itself, Ethereum uses SHA-3 which is part of the Keccak family (some people use the terms interchangeably but that isn’t technically correct). []
  13. See Section 9 []
Send to Kindle

Looking at public information for quarterly usage

[Note: the views expressed below are solely my own and do not necessarily represent the views of my employer or any organization I advise.]

It’s the beginning of a new quarter so that means its time to look at the last quarter and find out where public blockchain traction and usage is taking place, or not.  After all, we are continually bombarded by cryptocurrency enthusiasts each day telling us that exponential growth is occurring.  Or as GIF party posters like to say, “It’s Happening!” — so in theory it should be easy to find.

For more background, see previous posts from January and April.

Softballs

P2SH Q2

Source: P2SH.info

  • P2SH usage: above are two charts from P2SH.info which illustrates the movement of bitcoins into what most assume are multi-sig wallets of some kind.  There has been a visible increase over the past quarter, with about 200,000 or so more bitcoins moving into P2SH addresses.  Year-on-year, bitcoins held in P2SH addresses has increased from 8% to 13%.
total transactions over time blockstack

Source: Opreturn.org

  • OP_RETURN: above is a line chart from Opreturn.org which illustrates various 3rd party applications that typically use the OP_RETURN field in Bitcoin as a type of datastore (e.g., watermarked tokens).  It is hard to see it on this time scale but the average transactions during Q1 were roughly 1,500-2,500 per day whereas in Q2 it was a bit higher, between 2,500 to 3,500 per day.
percentage of transactions by each protocol opreturn

Source: Opreturn.org

  • Above is another chart looking at the percent of OP_RETURN transactions used by different watermarked token platforms.
  • Compared to Q1, the top 5 have shifted:
    • Blockstack 142,754 transactions (24.9%)
    • Colu 106,489 (18.6%)
    • Open Assets  82,696 (14.4%)
    • Monegraph 54,914 (9.6%)
    • Factom 47,328 (8.3%)
  • While Blockstack (Onename) still rules the roost, Colu has jumped ahead of the other users.  This is slightly interesting because the Colu team has publicly stated it will connect private chains that they are developing, with the Bitcoin network.  The term for this is “anchoring” and there are multiple companies that are doing it, including other Bitcoin/colored coin companies like Colu.  It is probably gimmicky but that’s a topic for a different post.
  • Incidentally the 5 largest OP_RETURN users account in Q2 for 75.8% of all OP_RETURN transactions which is roughly the same as Q1 (76%).
localbitcoins volume

Source: LocalBitcoins.com / Coin Dance

Above is a weekly volume chart denominated in USD beginning from March 2013 for LocalBitcoins.com.  As discussed in previous posts, LocalBitcoins is a site that facilitates the person-to-person transfer of bitcoins to cash and vice versa.

While there is a lot of boasting about how it may be potentially used in developing countries, most of the volume still takes place in developed countries and as shown in other posts, it is commonly used to gain access to illicit channels because there is no KYC, KYCC, or AML involved.  Basically Uber for cash, without any legal identification.

Over the past 6 months, volumes have increased from $10 million and now past $13 million per week. For comparison, most VC-backed exchanges do several multiples more in volume during the same time frame.1

Hardballs

bitcoin volatility 6 months

Source: Btcvol.info

In April, several Bitcoin promoters were crowing about how “stable” Bitcoin was.  Not mentioned: cryptocurrencies can’t simultaneously be stable and also go to the moon.  People that like volatility include: traders, speculators, GIF artisans, pump & dumpers. And people who don’t like volatility: consumers and everyday users.

What articles and reporters should do in the future is actually talk to consumers and everyday users to balance out the hype and euphoria of analysts who do not disclose their holdings (or their firms holdings) of cryptocurrencies.2

As we can see above, volatility measured relative to both USD and EUR hit a five month high this past quarter.  The average user probably would not be very happy about having to hedge that type of volatility, largely because there are few practical ways to do so.  Consumers want boring currencies, not something they have to pay attention to every 10 minutes.

And ether (ETH) was even more volatile during the same time frame: doubling relative to USD during the first half of the quarter then dropping more than 50% from its all-time high by mid-June.

Counterparty all time

Source: Blockscan

Counterparty is a watermarked token platform that, as shown in previous quarters, has hit a plateau and typically just sees a few hundred transactions a day.  Part of this is due to the fact that the core development team has been focused on other commercial opportunities (e.g., building commercial products instead of public goods).3

Another reason is that most of the public interest in “smart contract” prototyping and testing has moved over to Ethereum.

etherscan ethereum transactions

Source: Etherscan

As shown in the chart above, on any given day in Q2 the Ethereum blockchain processed roughly 40,000 transactions.  In Q1 that hovered between 15,000-30,000 transactions.  Note: the large fluctuations in network transactions during the spring may coincide with issues around The DAO (e.g., users were encouraged to actively ‘spam’ the network during one incident).

In addition, according to CoinGecko, Counterparty has lost some popularity — falling to 14th from 10th in its tables from last quarter.  Ethereum remained in 2nd overall.

Another trend observed in the last quarterly review remains constant: Ethereum has significantly more meetups than Counterparty and is 2nd only to Bitcoin in that measure as well.

long chain transactions q2

Source: Organ of Corti — Time period:  January 1, 2014 – June 27, 2016

We’ve discussed “long chain” transactions ad nausem at this point but I have noticed on social media people still talk about the nominal all-time high’s in daily transactions as if it is prima facie evidence that mega super traction is occurring, that everyday users are swarming the Bitcoin network with commercial activity.  Very few (anyone?) digs into what those transactions are.  Perhaps there is genuine growth, but what is the break down?

As we can see from the chart above, while non-long chain transactions have indeed grown over the past quarter, they are still far outpaced by long chain transactions which as discussed in multiple articles, can be comprised of unspendable faucet rewards (dust), gambling bets and a laundry list of other non-commercial activity.

Furthermore, and not to wade into the massive black hole that is the block size debate: even with segwit, there will be an upperbound limit on-chain transactions under the current Core implementation.  As a consequence some have asked if fee pressure would incentivize moving activity off-chain and onto other services and even onto other blockchains.

This may be worth looking into as the block size reaches its max limit in the future.  As far as we can tell right now, it doesn’t appear users are moving over to Litecoin, perhaps they are moving to Ethereum instead?  Or maybe they just pack up and leave the space entirely?

Wallets

We have looked at wallets here multiple times.  They’re a virtually meaningless metric because of how easy it is to inflate the number.  What researchers want to know is Monthly Active Users (MAU).  To my knowledge no one is willing to publicly discuss their monthly or daily user number.

For instance, two weeks ago Coinbase reached 4 million “users.”  But it is almost certain that they do not actually have 4 million daily or monthly active users.  This number is likely tied to the amount of email-based registrations they have had over the past four years (circa May 12, 2012).

Similarly, Blockchain.info has seen its “users” grow to just over 7.8 million at the time of this writing.  But this is a measure of wallets that have been created on the site, not actual users.

Any other way to gauge usage or traction?

Let’s look in the Google Play Store and Apple App Store.

abra downloads

Source: GoAbra / Google Play

Last October Abra launched its GoAbra app and initially rolled it out in The Philippines.  This past May, when CoinDesk ran a story about the company, I looked in the Google Play Store and it says the app had been downloaded 5,000 times.  Last week, Abra announced it was officially launching its app into the US.  As of this writing, it was still at 5,000 downloads.

“Wait,” you might be thinking to yourself, “Filipinos may prefer the iOS app instead.”

Perhaps that is the case, but according to data as of October 2015, Android has a ~81.4% market share in The Philippines.  Furthermore, the iOS version for some reason doesn’t appear on App Annie.  So it is unlikely that Abra has seen traction that isn’t reflected in these download numbers yet, perhaps it will in the future.

Anything else happening in the stores?

As of this writing, the top 5 Bitcoin wallets in the Google Play Store in order of appearance are:

  • Andreas Schildbach’s Bitcoin Wallet (1 million downloads)
  • Mycelium Bitcoin Wallet (100,000 downloads)
  • Coinbase (500,000 downloads)
  • Blockchain.info (100,000 downloads)
  • Airbitz (10,000 downloads)

The Apple App Store does not publicly state how many times an application has been downloaded.  It does rank apps based on a combination of user ratings and downloads. The top 6 on the iPhone in order of appearance:

  • Coinbase
  • Blockchain.info
  • Sollico (bitWallet)
  • breadwallet
  • Xapo
  • Airbitz

Interestingly however, the order is slightly different in the App Store on an iPad.  The top 6 are:

  • Coinbase
  • Blockchain.info
  • Sollico (bitWallet)
  • breadwallet
  • Airbitz
  • BitPay (Copay)

It may be worth revisiting these again next quarter.  If you want to burn some time, readers may be interested in looking at specific rank and activity via App Annie.

Incubators

Most new cohorts and batches at startup accelerators and incubators usually only stay 3-4 months.  A typical intake may see 10-15 companies each get a little bit of seed funding in exchange for a percentage of the equity.  During the incubation period the startup is usually provided mentorship, legal advice, office space, access to social networks and so forth.  It is common place to hear people of all stripes in Silicon Valley state that 9 out of 10 of these startups will burn out within a couple years — that the incubator relies on one of them having a big exit in order to fund the other duds.4

500 Startups, Boost.VC, Plug and Play, YCombinator and other incubators have added and removed startups from their websites and marketing material based on the traction startups have had.  And cryptocurrency startups are not too different from this circle of life. 5

For instance, at YCombinator, Bitcoin-specific mentions on applications has declined by 61% over the past year.

Based on pubic information, as of this writing, it appears that out of the roughly 100 Bitcoin-related startups that have collectively come and gone through the incubators listed above, just a handful have gone on to raise additional funding and/or purportedly have active users and customers.  Unfortunately, no one has consistently published user numbers, so it is unclear what the connection between funding and growth is as this time.

In fact, in an odd twist, instead of measuring success by monthly active users, customers, or revenue, many Silicon Valley-based companies are measuring success based on how much money they raised.  That’s probably only a good idea if the business model itself is to always be raising.

For example, 21inc regularly boasts at being the “best funded company in Bitcoin” — but has not stated what traction four separate rounds of funding have created.  How many bitcoins did it mine prior to its pivot into consumer hardware?  How many 21 computers were sold?  How many users have installed 21?  And what are its key differences relative to what Jeremy Rubin created in 2014 (Tidbit)?

Again, this is not to single out 21inc, but rather to point out if companies in the public blockchain space were seeing the traction that they generally claim to on social media and conferences — then as discussed in previous posts, they would probably advertise those wins and successes.

Hiring

With funding comes hiring.  Since it is very difficult to find public numbers, there is another way to gauge how fast companies are growing: who and how many people they are publicly hiring.

The last Bitcoin Job Fair was last held in April 2015.  Of its 20 sponsors, 6 are now dead and ~7 are either zombies and/or have have done major pivots.  It is unclear how many people that were hired during that event still work for the companies they worked for.

Where else can we look?

Launched in 2014, Coinality is a job matching website that connects employers with prospective employees with the idea that they’d be compensated in cryptocurrencies such as bitcoin and dogecoin.  Fun fact: Coinality is one of the few companies I interviewed for Great Chain of Numbers that is still alive today and hasn’t pivoted (not that pivoting in and of itself is a bad thing).

It currently lists 116 jobs, 105 of which were posted in the past 2 months.

A number of VC-backed companies and large enterprises (or head hunters recruiting on their behalf) have listed openings in the past month.  For example: WellsFargo, Blockchain.info, Circle, Fidelity, IBM, KeepKey, itBit, BNYMellon and SAP logos pop up on the first couple pages of listings.

Among the 67 job listed in June, twenty-six of the positions were freelance positions cross-listed on Upwork (formerly known as Elance / oDesk).

Notable startups that are missing altogether: many cryptocurrency-centered companies whose executives are very vocal and active on social media.  Perhaps they use LinkedIn instead?

Other stats

  • According to CoinATMRadar there are now 690 Bitcoin ATMs installed globally.  That is an increase of 78 ATMs since Q1.  That comes to around 0.86 ATM installations per day in Q2 which is a tick higher than Q1 (0.84).
  • Bitwage launched in July 2014 starting out with zero signups and zero payroll.
    • Fast-forward to January 2016: Bitwage had 3,389 cumulative user signups and cumulative payroll volumes of $2,456,916
    • Through June 2016 it has now reached 5,617 cumulative signups and cumulative payroll volumes of $5,130,971
    • While growing a little faster than ATM installations, this is linear not exponential growth.
  • Open Bazaar is a peer-to-peer marketplace that officially launched on April 4, 2016.  It had been in beta throughout the past year.  The VC-backed team operates a companion website called BazaarBay which has a stats page.
    • It may be worth looking at the “New Nodes” and “New Listings” sections over the coming quarters as they are both currently declining.6

Conclusion

It is unclear what the root cause(s) of the volatility were above.  According to social media it can be one of two dozen things ranging from Brexit to the upcoming “halvening.”  Because we have no optics into exchanges and their customer behavior, speculation surrounding the waxing and waning will remain for the foreseeable future.

Based on process of elimination and the stats in this post, the likely answer does not appear to be consumer usage (e.g., average Joe purchasing alpaca socks with bitcoins).  After all, both BitPay and Coinbase have stopped posting consumer-related stats and they are purportedly the largest merchant processors in the ecosystem.

Most importantly, just because market prices increase (or decreases), it cannot be inferred that “mass adoption” is happening or not.  Extraordinary claims requires extraordinary evidence: there should be ample evidence of mass adoption somewhere if it were genuinely happening.

For instance, the price of ether (ETH) has increased 10x over the past 6 months but there is virtually no economy surrounding its young ecosystem.  Mass consumer adoption is not happening as GIF artisans might says.  Rather it is likely all speculation based — which is probably the same for all other cryptocurrencies, including Bitcoin.

About a year ago we began seeing a big noticeable pivot away from cryptocurrencies to non-cryptocurrency-based distributed ledgers.  That was largely fueled by a lack of commercial traction in the space and it doesn’t appear as if any new incentive has arisen to coax those same businesses to come back.  After all, why continue building products that are not monetizable or profitable for a market that remains diminutive?

Let’s look again next quarter to see if that trend changes.

Endnotes

  1. For more granularity see also BNC’s Liquid index. []
  2. Speaking of interest and hype, CB Insights has some new charts based on keyword searches over time. []
  3. Several members of the development team also co-founded Symbiont. []
  4. Many of these incubators are too young to have a track record that proves or disproves this “conventional” wisdom.  See also Venture Capitalists Get Paid Well to Lose Money from HBR. []
  5. For instance, Mirror closed its Series A round 18 months ago, but was removed from Boost’s website because it no longer is involved in Bitcoin-related activities.  Boost currently lists the following companies out of the 50+ Bitcoin-companies it has previously incubated: BlockCypher, BitPagos, Abra, Stampery, Fluent, SnapCard, Verse.  500 Startups has removed a number of startups as well and currently lists the following on its website: HelloBit, Melotic, Coinalytics, BTCJam, Bonafide, CoinPip. []
  6. Since it has only been “launched” for a quarter, it is probably a little unfair to pass judgement at this time.  But that hasn’t stopped me before.  OpenBazaar has a lot of growing pains that its developers are well aware of including UX/UI issues.  But beyond that, it is unclear that the average consumer is actually interested in using peer-to-peer marketplaces + cryptocurrencies versus existing incumbents like Alibaba, Amazon and eBay — all of whom have customer service, EULAs, insurance policies and accept traditional currencies. I had a chance to speak with one of their investors at Consensus in May and do not think their assumptions about network operating costs were remotely accurate.  Furthermore, where is the market research to support their thesis that consumers will leave incumbents for a platform that lacks insurance policies and live customer service?  Note: OB1 developers and investors insist that their reputation management and arbitration system will increase consumer confidence and customer protection. []
Send to Kindle

A Kimberley Process for Cryptocurrencies

[Note: the views expressed below are solely my own and do not necessarily represent the views of my employer or any organization I advise.]

I have spent the past few weeks in East Asia, primarily in China visiting friends and relatives. Because the connection to the outside world was limited, the upside was that the cacophonous noise of perma cryptocurrency pumpers was relatively muted. I have had a chance to reflect on a number of ideas that are currently being discussed at conferences and on social media.

The first idea is not new or even unique to this blog as other companies, organizations and individuals have proposed a type of digital signature analytics + KYC tracking process for cryptocurrencies. A type of Kimberley Process but for cryptocurrencies.1

For instance, the short lived startup CoinValidation comes to mind as having the first-to-market product but was notably skewered in the media.  Yet its modus operandi continues on in about 10 other companies.2

A Formal Kimberley Process

For those unfamiliar with the actual Kimberley Process, it is a scheme enacted in 2003 to certify where diamonds originated from in order to help prevent conflict diamonds from entering into the broader mainstream diamond market.

The general idea behind proving the provenance of diamonds is that by removing “blood diamonds” from the market, it can cut off a source of funding of insurgencies and warlord activity.3

What does this have to do with cryptocurrencies? Isn’t their core competency allowing non-KYC’ed, pseudonymous participants to send bearer assets to one another without having to provide documentation or proof of where those assets came from? Why would anyone be interested in enabling this?

Some may not like it, but a de facto Kimberley Process is already in place.

For instance, in many countries, most of the on-ramps and off-ramps of venture-backed cryptocurrency exchanges are actively monitored by law enforcement, compliance teams and data analytic providers who in turn look at the provenance of these assets as they move across the globe.4

On the fiat side, while many jurisdictions in North America and Western Europe currently require domiciled cryptocurrency exchanges and wallets to enforce KYC and AML compliance requirements, several areas of Asia are less strict because the local governments have not defined or decided what buckets cryptocurrencies fall into.5

There are some other noticeable gaps in this system involving crypto-to-crypto exchanges.  Irrespective of regions: implementing harmonized KYC/AML standards on the non-fiat side of exchanges appears to be missing altogether.  That is to say that very few, if any, exchange does any kind of KYC/AML on crypto-to-crypto.6

What are some examples of why a Kimberley Process would be helpful to both consumers and compliance teams?

Below are three examples:

(1) During my multi-country travel I learned that there are several regional companies that sell debit cards with pre-loaded amounts of cryptocurrency on them. Allegedly two of of the popular use-cases for these cards is: bribery and money laundering. The example I was provided was that it is logistically easier to move $1 million via a thin stack of debit cards than it is to carry and disperse bags of cash with.7

Attaching uniform KYC and legal identities to each asset would aid compliance teams in monitoring where the flow of funds originated and terminated with cryptocurrencies.  And it would help consumers shy away from assets that could be encumbered or were proceeds of crime.

(2) Affinity fraud, specifically housewives (家庭主妇), are common targets of predators. This has been the case for long before the existence of computers let alone cryptocurrencies, but it came up several times in conversations with friends. According to my sources, their acquaintances are repeatedly approached and some actually took part in Ponzi schemes that were presented as wealth management products.

The new twist and fuel to these schemes was that there is some kind of altcoin or even Bitcoin itself were used as payout and/or as rails between parties. We have already seen this with MMM Global — which is still an active user of East Asia’s virtual currency exchanges — but two questionable projects that I was specifically shown were OctaCoin and ShellCoin.8

Note: in January 2016 multiple Chinese governmental bodies issued warnings about MMM Global and other Ponzi schemes.

[Video of MMM Global operations in The Philippines. Is that really Manny Pacqiauo?]

Victims who were not tech savvy and lied to, have no recourse because there is no universal KYC / KYCC / AML process to identify the culprits in these regions.  Similarly, when these illicit virtual assets are re-sold to exchanges, customers of those exchanges such as Alice and Bob, may receive potentially encumbered assets that are then resold to others who are unaware of the assets lineage (much like a stolen motorcycle being resold multiple times).  This creates a massive lien problem.

But property theft is not a new or unknown problem, why is it worth highlighting for cryptocurrencies?

Many of the original victims in East Asia are not affluent, so these scams have a material impact on their well being. The average working adult in many provinces is still less than $500 per month. Thus not only do they lack a cushion from scams but any price volatility — such as the kind we continue to see in cryptocurrencies as a whole, can wipe out their savings.

(3) Due to continual usage of botnets and stolen electricity — which is still a problem in places like China — the lack of identification from coin generation onward results in a environment in which ‘virgin coins’ sell at a premium because many exchanges don’t investigate where machines are located, who owns them, who paid for the opex and capex of those operations (e.g., documentation of electric bills).9

Unfortunately, the solutions proposed by many cryptocurrency enthusiasts isn’t to create more transparency and identification standards enabling better optics on coin provenance but rather to make it even harder to track assets via proposals like Confidential Transactions.10

Heists, thefts and encumbered coins

I am frequently asked how is it possible to know who received potentially encumbered cryptocurrencies?  For amateur sleuths, there is a long forum thread which lists out some of the major heists and thefts that occurred early on in Bitcoinland.

Above is a video recording of a specific coin lineage: transactions that came from the Bitcoinica Theft that ended up in the hands of Michael Marquardt (“theymos”) who is a moderator of /r/bitcoin and owner of Bitcoin Talk.11

Recall that in July 2012, approximately 40,000 bitcoins were stolen from the Bitcoinica exchange.12 Where did those end up?  Perhaps we will never know, but several users sued Bitcoinica in August 2012 for compensation from the thefts and hacks.

How are consumer protections handled on public blockchains?

In short, they do not exist by design. Public blockchains intentionally lack any kind of native consumer protections because an overarching goal was to delink off-chain legal identities from the pseudonymous interactions taking place on the network.

Thus, stolen cryptocurrencies often recirculate, even without being mixed and laundered.13

Consequently a fundamental problem for all current cryptocurrencies is that they aren’t exempt from nemo dat and have no real fungibility because they purposefully were not designed to integrate with the legal system (such as UCC 8 and 9).14 Using mixers like SharedCoin and features like Confidential Transactions does not fundamentally solve that legal problem of who actually has legal title to those assets.1516

Why should this matter to the average cryptocurrency enthusiast?

If market prices are being partially driven by predators and Ponzi schemes, wouldn’t it be in the best interest of the community to identity and remove those?17

Perversely the short answer to that is no. If Bob owns a bunch of the a cryptocurrency that is benefiting from this price appreciation, then he may be less than willing to remove the culprits involved of driving the prices upward.

For example, one purported reason Trendon Shavers (“pirateat40”) was not immediately rooted out and was able to last as long as he did — over a year — is that his Ponzi activity (“Bitcoin Savings & Trust”) coincided with an upswing in market prices of bitcoin.18  Recall over time, BS&T raised more than 700,000 bitcoins.  Why remove someone whose activity created new demand for bitcoins? 19

But this incentive is short-sighted.

If the end goal of market participants and enthusiasts is to enable a market where the average, non-savvy user can use and trust, then giving them tools for provenance could be empowering.  Ironically however, by integrating KYC and provenance into a public blockchain, it removes the core — and very costly — characteristic of pseudonymous, censorship-resistant interaction.

Thus there will likely be push back for implementing a Kimberley Process: doxxing every step of provenance back to genesis (coin generation) with real world identities removes pseudonmity and consequently public blockchains would no longer be censorship-resistant.  And if you end up gating all of the on-ramps and off-ramps to a public chain, you end up just creating an overpriced permissioned-on-permissionless platform.

Despite this, Michael Gronager, CEO of Chainalysis, notes that:

Public ledgers are probably here to stay – difficult KYC/AML processes or not.  I probably see this as a Nash equilibrium – like in the ideal world all trees would be low and of equal height but there is no path to that otherwise optimal equilibrium.   We believe that fighting crime on Blockchains will both build trust and increase their use and value.

One way some market participants are trying to help law enforcement fight crime is through self-regulating organizations (SRO).

For instance, because we have seen time and time again that the market is not removing these bad actors from the market, several companies have created SROs to help stem the tide.  However, as of right now, efforts like the US-based “Blockchain Alliance” — a gimmicky name for a group of venture-backed Bitcoin companies — has limited capabilities.20 They have monthly calls to discuss education with one another in the West (e.g., what is coin mixing and how does it work?) but currently lack the teeth to plug the KYC/AML gaps in Asia.  Perhaps that will change over time.

And as one source explained: consider this, has any Bitcoin thief been caught?  Even when there is decent evidence, we are not aware of a Bitcoin thief that was actually found guilt of stealing bitcoin, yet.21  Thus an open to question to people who argue that cryptocurrencies are great because of transparency: a lot of bitcoin has been stolen, and no one has been found guilty for that crime.  Why not?

Process of elimination

Over the past six weeks, there has been very little deep research on why market prices have risen and fallen. Usually it is the same unfounded narratives: emerging market adoption; hedge against inflation; hedge against collapse of country X, Y or Z; hedge against Brexit; etc.  But no one provides any actual data, least of all the investors financing the startups that make the claims.

Perhaps the research that has been done on the matter was from Fran Strajnar’s team at BNC.  For instance, on June 1st they noted that:

brave new coinI reached out to Fran and according to him, in early June, “Somebody dropped many many millions ($) across 4 different Chinese Exchanges in a 2 hour period, without moving price – 4 days before the price rise started last week. Because it was over multiple exchanges and these trades were filled, we are digging into it further.”

If there was a standardized Kimberley Process used by all of these exchanges, it would be much easier to tell who is involved in this process and if those funds were based on proceeds of illicit activity.

Furthermore, barring such a Process, we can only speculate why journalists haven’t looked into this story:

(1) many of them do not have reliable contacts in East Asia
(2) those that do have contacts with exchange operators may not be getting the full story due to exchanges lacking KYC / KYCC / AML standards themselves
(3) some reporters and exchange operators own a bunch of cryptocurrencies and thus do not want to draw any negative attention that could diminish their net worth

Third parties such as Wedbush Securities and Needham have also published reports on price action, but these are relatively superficial in their analysis as they lack robust stats needed to fully quantify and explain the behavior we have seen.

Strangely enough, for all the pronouncements at conferences about how public blockchains can be useful for data analysis, very few organizations, trade media or analysts are publishing bonafide stats.

After all, who are the customers of these virtual currency exchanges?  Because of reporting requirement we know who uses Nasdaq and ICE, why don’t we know who uses virtual currency exchanges still?

Stopping predators

Two months ago I had a chance to speak with Marcus Swanepoel, CEO of BitX, about his experiences in Africa.  BitX coordinates with a variety of compliance teams to help block transactions tied to scams and Ponzi schemes. In the past, BitX has managed to help kill off two ponzi schemes and has tried to block MMM Global which has spread to Africa.

Earlier this spring, some MMM users that were blocked by BitX just moved to another competing local exchange that didn’t block such transactions. As a result, over the course of 8 weeks this exchange did more than 3x volume than BitX during same time frame.22 BitX has subsequently regained part of this market share partly due to MMM fading in popularity.

Why is MMM so successful?  Users are asked to upload videos onto Youtube of why MMM Global is great and why you should join and are then paid by MMM as a reward.  This becomes self-reinforcing in large part because of the unsavvy victims who are targeted.

But MMM isn’t to blame for everything.

For instance, in China there have been a variety of get-rich-quick Ponzi schemes that rose and blew up, such as an ant farm scheme in 2007.  And earlier this year, Ezubao, the largest P2P lending platform in China fell apart as a $7.6 billion Ponzi scam.23 No cryptocurrency was involved in either case.

Yet as Emin Gün Sirer pointed out, some of the activities such as The DAO, basically act as a naturally arising Ponzi.

In fact, one allegation over the past couple weeks is that The DAO attacker placed a short of 3,000 bitcoin on Bitfinex prior to attacking The DAO (which was denominated in ether).24  If there was a Kimberley Process in which all traders on all exchanges had to comply with a universal KYC / KYCC / AML standard, it would be much easier to identify the attackers as well as compensate the victims.

Similarly, because ransomware remains a “killer app” of cryptocurrencies such that companies, police stations, hospitals, elementary schools and even universities are now setting up Coinbase accounts and stockpiling cryptocurrencies to pay off hackers.  What is the aggregate demand of all of this activity?  If it is large, does it impact the market price?  And how would a Kimberley Process help provide restitution to the victims of this ransom activity?

A strawman Kimberley Process

How can you or your organization get involved in creating a Kimberley Process for cryptocurrencies?

Right now there is no global, industry standard for “best practices” in mutualizing, implementing, or carrying out KYC / AML provisions for cryptocurrencies.25

In writing this post, several sources suggested the following process to kick-start an effort:

(1) organize an industry-level event(s) which brings together:

(a) AML analytics companies
(b) representatives from regulatory bodies and law enforcement (e.g., FATF, FinCEN)
(c) KYC/AML practitioners
(d) existing market structures and utilities such as SIFMA, ROC, Swift (e.g., KYC registry, LEI)
(e) compliance teams from cryptocurrency exchanges and wallets

(2) at the event(s) propose a list of baseline standards that exchanges and wallets can try to implement and harmonize:

(a) what documentation is required for KYC / KYCC / AML
(b) other financial controls and accountability standards that can assist exchange operators (e.g., remove the ability for an operator to naked short against its own customer base)

(3) tying these standards together with a uniform digital identity management system could be the next step in this process.

On that last point, Fabio Federici, CEO of Skry (formerly Coinalytics), explained:

In general I believe the biggest unsolved problem is still identity and information sharing. Obviously you don’t want all your PII and transaction meta data on a public blockchain, as this information could not only be leveraged by profit seeking organizations, but also malicious actors. So the question becomes what’s the right framework for sharing the right amount of information with only the people that need access to it (maybe even only temporarily).

PII stands for personal identifying information.  In theory, Zcash (or something like it) has the potential to solve some of Fabio’s concerns: relevant info can be encoded in the transaction, and only the relevant parties can read it.  But this delves into “regulated data” which is a topic for another post.26

Similarly, Ryan Straus, an attorney at Riddell Williams and adjunct professor at Seattle University School of Law explained that:

Identity is central to the legal concept of property. Property systems are information systems: they associate identified entities with identified rights.  With the sole exception of real currency, possession or control is not conclusive indicia of ownership.

Factual fungibility simply makes it harder to prove that you have a better claim to a specific thing than the person who now possesses or controls it.  The hard part about what you have written about is that it is difficult to avoid conflating KYC (which involves identity of people) and the Kimberley Process (which involves identifying things).

In order to enable participants to share information without being unduly hounded by social media, it was also suggested that the presence of: investors, cryptocurrency press and cryptocurrency lobbying groups should kept to a minimum for the initial phase.

Conclusions

In addition to implementing additional financial controls and external audits, cryptocurrency exchanges and wallets adopting a Kimberley Process would help provide transparency for all market participants.

While it is probably impossible to remove all the bad actors from any system, reducing the amount of shadows they have to hide could provide assurances and reduce risks to market participants of all shapes and sizes.

However, the trade-off of implementing such a Process is that it negates the core utility that public blockchains provide, turning them into expensive permissioned gateways.  And if you are permissioning activity from the get-go, you might as well use a permissioned blockchain which are cheaper to manage and operate and also natively bake-in the KYC, KYCC and AML requirements.  But that is a topic for another post as well.

End notes

  1. One reviewer argued that analytics may be superior to KYC.  In the event of a compromised account — so goes the argument — analytics can help provide linkage between the flow of funds whereas KYC of compromised accounts would be “illusory.” []
  2. This includes but is not limited to: Chainalysis, Blockseer, Skry, Elliptic, Netki and ScoreChain. []
  3. Incidentally there is a UK-based startup called Everledger which works with insurance companies and tracks a catalogue of diamonds vis-à-vis a blockchain. []
  4. See: Flow of Funds; KYSF; KYSF part 2; and bitcoin movements. To actively monitoring transactions at these entry and exit points, based on anecdotes, up to 20% of all nodes on the Bitcoin network may be managed and operated by these same set of participants as well. []
  5. Note: it bears mentioning that as of this writing, no country has recognized cryptocurrencies as actual legal tender and consequently cryptocurrencies are not exempt from nemo dat. This is important as it means the provenance of the cryptocurrencies actually does matter because those assets could be encumbered. []
  6. I asked around and my sources do not know of a single exchange that does KYC/AML on cryptocurrencies that are directly exchanged for other cryptocurrencies (e.g., Shapeshift).  Furthermore, as highlighted in the past, there are gaps in compliance when it comes to certain fiat-to-cryptocurrency exchanges such as BTC-e and LocalBitcoins. []
  7. This is in USD equivalence, usually not in USD itself. []
  8. OctaCoin is interesting in that the operators behind it claim that it is financed from revenue streams of 3 online casinos who purportedly payout users on a regular basis. Note: gambling in China is a bit like golf in China: it’s illegal but everywhere. It is only legal in a few internal jurisdictions such as Hainan and Macau and elsewhere on the mainland only a couple of state-run lotteries are given legal status. []
  9. Note: stealing electricity to mine bitcoins has occurred in other areas of the world too, including in The Netherlands. []
  10. The official motivation for developing Confidential Transactions is to enable more user privacy which then leads to more fungibility. As one source pointed out: “At the end of the day it’s a balance between privacy and security. Basically the story goes ‘just because I don’t what anyone to know what I’m buying, doesn’t mean I’m a drug dealer.'” []
  11. Marquardt also allegedly co-owns both Bitcoin.org and Blockexplorer.com, and co-manages the Bitcoin Wiki. []
  12. Here’s another video showing some of those transactions. []
  13. The Craig Wright / Satoshi saga is interesting because in a recent interview Craig admittedly used Liberty Reserve which was an illicit exchange based in Costa Rica shut down by the US government.  According to the interview he also had ties to Ross Ulbricht, the convicted operator of Silk Road. []
  14. See The Law of Bitcoin, Section 1.5 in the United States chapter from Ryan Straus.  There are exceptions, see UCC Article 2 – sale of goods. []
  15. See also: Learning from the past to build an improved future of fintech []
  16. Interestingly, SharedCoin.com (sometimes referred to as Shared Send) used to be a mixer run by Blockchain.info, a venture-backed startup.  It was recently shutdown without any notice and the domain now redirects to the CoinJoin wiki entry.  They also pulled the SharedCoin github repo and any material that links it back to Blockchain.info. []
  17. One reviewer mentioned that: “Ponzi schemes will always exist and should probably be fought not just in the crypto space but where in other industries too; requiring continuous education.  It would be way simpler and more effective to shut down domains owned by MMM than it would to be to do anything else, but here you actually meet the pseudonymity feature of the Internet.  Try to do that internationally – it is not easy!” []
  18. From between September 2011 to September 2012 market prices more than doubled.  See SEC vs. Trendon Shavers []
  19. Note: this is a similar argument that Rick Falkvinge made three years ago. []
  20. There are probably several dozen advocacy groups and non-profit working groups scattered across the world.  Each has different goals.  For instance, ACCESS in Singapore works with some regulators in SEA.  While others are merely trying to create technical standards. []
  21. Most of the criminals that are convicted are found guilty of money laundering and interaction with illicit trade, not theft of bitcoins themselves. []
  22. Two months ago, the Financial Times briefly covered this story and Marcus wrote about some of it in March as well. []
  23. There were some early warning signs for that industry.  For instance, according to a Bloomberg story in February 2015: “The value of China’s peer-to-peer lending transactions surged almost 13-fold since 2012 to $41 billion last year, according to Yingcan Group, which tracks the data,” notes Bloomberg. However, 275 of the more than 1,500 lending went bankrupt or had trouble repaying money in 2014, an increase from 76 just a year earlier, according to Yingcan. []
  24. No one has proven this allegation.  Furthermore, there are multiple exchanges to short cryptocurrencies. []
  25. Much of the technology needed to implement these type of processes, such as PKI anchored by certificate authorities. []
  26. For example, see HIPAA and EU-US Privacy Shield []
Send to Kindle

What’s the deal with DAOs?

[Disclaimer: I do not own any cryptocurrencies nor have I participated in any DAO crowdfunding.]

This post will look at the difference between a decentralized autonomous organization (DAO) and a project called The DAO.

Brief explanation

The wikipedia entry on DAOs is not very helpful.  However, Chapters 2 through 5 may be of some use (although it is dated information).

In terms of the uber hyped blockchain world, at its most basic kernel, a DAO is a bit of code — sometimes called a “smart contract” (a wretched name) — that enables a multitude of parties including other DAOs to send cryptographically verifiable instructions (such as a digitally signed vote) in order to execute the terms and conditions of the cloud-based code in a manner that is difficult to censor.

One way to think of a simple DAO: it is an automated escrow agent that lives on a decentralized cloud where it can only distribute funds (e.g., issue a dividend, disperse payroll) upon on receiving or even not receiving a digital signal that a task has been completed or is incomplete.

For instance, let us assume that a small non-profit aid organization whose staff primarily work in economically and politically unstable regions with strict capital controls, set up a DAO — an escrow agent — on a decentralized cloud to distribute payroll each month.

This cloud-based escrow agent was coded such that it would only distribute the funds once a threshold of digital signatures had signed an on-chain contract — not just by staff members — but also from independent on-the-ground individuals who observed that the staff members were indeed doing their job.  Some might call these independent observers as oracles, but that is a topic for a different post.1

Once enough signatures had been used to sign an on-chain contract, the escrow agent would automatically release the funds to the appropriate individuals (or rather, to a public address that an individual controls via private key).  The terms in which the agent operated could also be amended with a predetermined number of votes, just like corporate board’s and shareholder’s vote to change charters and contracts today.

The purported utility that decentralization brings to this situation is that it makes censoring transactions by third parties more difficult than if the funds flowed through a centralized rail.  There are trade-offs to these logistics but that is beyond the scope of this post.

The reason the DAO acronym includes the “organization” part is that the end-goal by its promoters is for it to provide services beyond these simple escrow characteristics such as handling most if not all administrative tasks such as hiring and firing.

Watch out Zenefits, the cryptocurrency world is going to eat your lunch!  Oh wait.

A short history

It is really easy to get caught up in the euphoria of a shiny new toy.  And the original goal of a DAO sounds like something out of science fiction —  but these undertones probably do it a disservice.

Prior to 2014 there had been several small discussions around the topic of autonomous “agents” as it related to Bitcoin.

For instance, in August 2013, Mike Hearn gave a presentation at Turing Festival (see above), describing what was effectively a series of decentralized agents that operated logistical companies such as an autonomous car service.

Several months later, Vitalik Buterin published the Ethereum white paper which dove into the details of how to build a network — in this case a public blockchain — which natively supported code that could perform complex on-chain tasks: or what he dubbed as a decentralized autonomous organization.

Timing

The impetus and timing for this post is based on an ongoing crowdsale / crowdfunding activity for the confusingly named “The DAO” that has drawn a lot of media attention.

Over the past year, a group of developers, some of whom are affiliated with the Ethereum Foundation and others affiliated with a company called Slock.it have created what is marketed as the first living and breathing DAO on the Ethereum network.

The organizers kicked off a month long token sale and at the time of this writing just over 10 million ether (the native currency of the Ethereum blockchain) — or approximately 13% of all mined ether — has been sent to The DAO.  This is roughly equivalent to over $100 million based on the current market price of ether (ETH).

In return for sending ether to The DAO, users receive an asset called a DAO Token which can be used in the future to vote on projects that The DAO wants to fund.2 It is a process that Swarm failed at doing.

An investment fund or a Kickstarter project?

I would argue that, while from a technical standpoint it is possible to successfully set up a DAO in the manner that The DAO team did, that there really isn’t much utility to do so in an environment in which censorship or the theft of funds by third parties will probably not occur.

That is to say, just as I have argued before that permissioned-on-permissionless is a shortsighted idea, The DAO as it is currently set up, is probably a solution to a problem that no one really has.3

Or in short, if you “invested” in The DAO crowdsale thinking you’re going to make money back from the projects via dividends, you might be better off investing in Disney dollars.

Why?

Putting aside securities regulations and regulators such as the SEC for a moment, most of the crowdsale “investors” probably don’t realize that:

  1. crowdfunding in general has a checkered track record of return-on-investment4
  2. crowdfunding in the cryptocurrency world almost always relies on the future appreciation of token prices in order to break-even and not through the actual creation of new features or tools (e.g., see Mastercoin/Omni which effectively flopped)
  3. that the funds, when dispersed to Slock.it and other “products,” could take years, if ever to return a dividend

Why would this pool of capital provide any better expected return-on-investment than others?

Or as Nick Zeeb explained to me:

My sense about The DAO is that it’s a fascinating experiment that I do not want to be part of. I also do not think that a committee of over 1,000 strangers will make wise investment decisions. Most good investment decisions are taken by courageous individuals in my opinion. Anything that can get past a big committee will probably not be the next Google. Imagine this pitch: “Hi I’m Larry and this is Sergey and we want to build the world’s 35th search engine.”

While it probably wasn’t the 35th search engine, tor those unfamiliar with the history of Google, Larry Page and Sergey Brin are the co-founders who created a search engine in what was then though a very crowded market.

So why the excitement?

I think part of it is quite simply: if you own a bunch of ether, there really isn’t much you can do with it right now.  This is a problem that plagues the entire cryptocurrency ecosystem.

Despite all the back-patting at conferences, the market is already filled with lots of different tokens. There is a glut of tokens which do not currently provide many useful things that you couldn’t already do with existing cash systems.5

Part of it also is that most probably think they will some become rich quick through dividends, but that probably won’t happen anytime soon, if at all.

With The DAO, only the development teams of projects that are voted and approved by The DAO (e.g., the thousands of users with DAO Tokens), will see any short term gains through a steady paycheck.  And it is only after they build, ship and sell a product that the original investors may begin seeing some kind of return.

Or in other words: over the past several weeks, the pooling of capital has taken place for The DAO.  In the future there will be various votes as to where that capital goes.  Shortly thereafter, some capital is deployed and later KPI’s will be assessed in order to determine whether or not funding should continue.  All the while some type of profit is sought and dividend returned.

Why, I asked another friend, would this pool of capital offer any better risk adjusted return-on-investment than other asset classes?

In his view:

The return might be high but so is the risk. Always adjust for risk. I think The DAO is better compared to a distributed venture capital firm. Whether that’s better or worse I don’t know — I mean you have the crowd deciding on investments. Or more realistically: nerds who know how to obtain ether (ETH) get to decide on investments.

Does that make them better VCs? Probably not. However, The DAO can decide to hire people with actual credentials to manage and select the investments, admitting its own weakness which would then turn into a strength. I think this can go either way but given the regulator is not prepared for any of this it will probably not work out in the short term.

Does the ‘design-by-giant-nerd-committee’ process work?

Over the past year we have already seen the thousands, probably tens-of-thousands of man-hours dropped into the gravity well that is known as the “block size debate.”  In which hundreds of passionate developers have seemingly argued non-stop on Slack, Twitter, reddit, IRC, conferences and so forth without really coming to an amicable decision any one group really likes.

So if block size-design-by-committee hasn’t worked out terribly well, will the thousands of investors in The DAO take to social media to influence and lobby one another in the future?  And if so, how productive is that versus alternative investment vehicles?

Redistributing the monetary base

Assuming Ethereum has an economy (which it probably doesn’t by most conventional measures), will The DAO create a deflationary effect on the Ethereum economy?

For instance, at its current rate, The DAO could absorb about 20% of the ether (ETH) monetary base.

Does that mean it permanently removes some of the monetary base?  Probably not.

For example, we know that there will be some disbursements to projects such as Slock.it, so there will be some liquidity from this on-chain entity.  And that future DAOs will spend their ether on expenses and development like a normal organization.

But we also know that there is a disconnect between what The DAO is, an investment fund, with what many people see it as: a large vault filled with gold laying in Challenger Deep that will somehow appreciate in value and they will be able to somehow extract that value.

Sure, we will all be able to observe that the funds exist at the bottom of the trench, but someone somewhere has to actually create value with the DAO Tokens and/or ether.

For the same reason that most incubators, accelerators and VC funds fail, that entrepreneur-reliant math doesn’t change for The DAO.  Not only does The DAO need to have a large volume of deal flow, but The DAO needs to attract legitimate projects that — as my friend point out above — have a better risk adjusted return-on-investment than other asset classes.

Will the return-on-investment of the DAO as an asset class be positive in the “early days”?  What happens when the operators and recipients of DAO funds eventually confront the problem of securities regulation?

So far, most of the proposals that appear to be geared up for funding are reminiscent to hype cycles we have all seen over the past couple of years.

Let’s build a product…

  • 2014: But with Bitcoin
  • 2015: But with Blockchain
  • 2016: But with DAO

Maybe the funds will not all be vaporized, but if a non-trivial amount of ETH ends up being held in this DAO or others, it could be the case that with sluggish deal flow, a large portion of the funds could remain inert.  And since this ether would not touching any financial flows; it would be equivalent to storing a large fraction of M0 in your basement safe, siloed off from liquid capital markets.

Ten observations

  1. Since the crowdsale / crowdfund began on April 30, the market price of ETH has increased ~30%; is that a coincidence or is there new demand being generated due to The DAO crowdsale?
  2. A small bug has been discovered in terms of the ETH to DAO Token conversion time table
  3. The DAO surpassed the Ethereum Foundation to become the largest single holder of ether (note: the linked article is already outdated)
  4. In terms of concentration of wealth: according to Etherscan, the top 50 DAO Token holders collectively “own” 38.49% of The DAO
  5. The top 500 DAO Token holders collectively “own” 71.39% of The DAO
  6. As of this writing there are over 15,000 entities (not necessarily individuals) that “own” some amount of a DAO Token
  7. Why is “own” in quotation marks? Because it is still unclear if controlling access to these private keys is the same thing as owning them.  See also: Watermarked Tokens as well as The Law of Bitcoin
  8. Gatecoin, which facilitated the crowdsale of both The DAO and DigixDAO was recently hacked and an estimated $2 million in bitcoins and ether were stolen
  9. Yesterday Gavin Wood, a co-founder of Ethereum, announced that he is stepping down as a “curator” for The DAO.  Curators, according to him, are effectively just individuals who identify whether someone is who they say they are — and have no other duties, responsibilities or authority.
  10. Three days ago, the Slock.it dev team — some of whom also worked on creating The DAO — did a live Q/A session that was videotaped and attempted to answer some difficult questions, like how many DAO Tokens they individually own.

Conclusion

About 17 months ago I put together a list of token crowdsales.  It would be interesting to revisit these at some point later this year to see what the return has been for those holders and how many failed.

For instance, there hasn’t really been any qualitative analysis of crowdsales or ICOs in beyond looking at price appreciation.6 What other utility was ultimately created with the issuance of say, factoids (Factom tokens) or REP (Augur tokens)?

Similarly, no one has really probed Bitcoin mining (and all POW mining) through the lens of a crowdsale on network security. Is every 10 minutes an ICO? After all, the scratch-off contest ties up capital seeking rents on seigniorage and in the long run, assuming a competitive market, that seigniorage is bid away to what Robert Sams has pointed out to where the marginal cost equals the marginal value of a token. So you end up with this relatively large capital base — divorced from the real world — that actually doesn’t produce goods or services beyond the need to be circularly protected via capital-intensive infrastructure.

Other questions to explore in the future include:

  • what are the benefits, if any, of using a centralized autonomous organization (CAO) versus decentralized autonomous organization (DAO) for regulated institutions?
  • how can a party or parties sue a decentralized autonomous organization? 7
  • what are the legal implications of conducting a 51% attack on a network with legally recognized DAOs residing on a public blockchain?8
  • will the continued concentration of ether and/or DAO Tokens create a 51% voting problem identified in the “Curator” section?

Still don’t fully understand what The DAO is?  Earlier this week CoinDesk published a pretty good overview of it.

[Special thanks to Raffael Danielli, Robert Sams and Nick Zeeb for their thoughts]

Endnotes

  1. Note: for the purposes of The DAO, “curators” are effectively identity oracles. []
  2. It appears that currently, once a quorum is achieved, a relatively small proportion of token holders can vote “yes” to a proposal to trigger a large payout. []
  3. The current line-up of goods and services are not based around solving for problems in which censorship is a threat, such as those facing an aid worker in a politically unstable region. []
  4. That is not to say that they all fail. In fact according to one statistic from Kickstarter, there was a 9% failure rate on its platform. Thus, it depends on the platform and what the reward is. []
  5. CoinGecko is tracking several hundred tokens. []
  6. ICO stands for “initial coin offering” — it is slight twist to the term IPO as it relates to securities. []
  7. An added wrinkle to identifying liable parties is: what happens when systems like Zcash launch? []
  8. This presupposes that a DAO will gain legal recognition and/or a public blockchain gains legal standing as an actual legal record. []
Send to Kindle

Self-doxxing, dynamic block making and re-decentralization of mining

There are currently two popular interrelated narratives on social media surrounding participation of the block making process on a public blockchain.  The stories are most pronounced within the Bitcoin community but are also reused by Litecoin, Ethereum and other cryptocurrencies too.

This includes the unchallenged statements that:

(1) anyone can still participate in block making, it is ungated and “permissionless”

(2) following a reward halving (“halvening”), networks become more decentralized because large, centralized farms and actors split apart due to economic pressures

This post looks at both of these and show that in practice neither is really true as of April 2016.

Named block makers

A year ago I reflected on some of the debate surrounding permissioned and permissionless blockchains.  Part of that post involved looking at how the mining market actually evolved in practice; not just based on the generalized claims made by enthusiasts at conferences.

For instance, based on block height below is a list of the first time a pool self-doxxed and signed a coinbase transaction, courtesy of Organ of Corti.  Only the first 50 are chronologically included:

Pool name                Block height                   Date
Eligius 130635 14-Jun-11
BitMinter 152246 7-Nov-11
BTC Guild 152700 10-Nov-11
Nmcbit.com 153343 15-Nov-11
YourBTC 154967 27-Nov-11
simplecoin.us 158291 20-Dec-11
Ass Penny Pool 161432 10-Jan-12
btcserv.net 163672 25-Jan-12
Slush 163970 27-Jan-12
BitLC 166462 12-Feb-12
pool.mkalinin.ru 170937 13-Mar-12
Bitclockers 173863 1-Apr-12
MaxBTC 174819 9-Apr-12
Triplemining 175144 11-Apr-12
CoinLab 180947 21-May-12
wizkid057 184148 12-Jun-12
Generated by General 194247 17-Aug-12
HHTT 197602 7-Sep-12
Ozcoin 207017 8-Nov-12
EclipseMC 208419 18-Nov-12
MTRed 219115 2-Feb-13
50BTC.com 219933 7-Feb-13
Bitparking 226272 17-Mar-13
Discus Fish 236494 17-May-13
ASICMiner 237050 20-May-13
ST Mining Corp 238456 29-May-13
Satoshi Systems 245445 8-Jul-13
GHash.IO 250205 5-Aug-13
175btc.com 253884 24-Aug-13
For Pierce and Paul 259214 21-Sep-13
Alydian5335 261051 1-Oct-13
Megabigpower 261530 4-Oct-13
GIVE-ME-COINS 267919 4-Nov-13
Polmine 282943 29-Jan-14
KoiSystems 285715 14-Feb-14
AntPool 286681 19-Feb-14
MMPool 294747 8-Apr-14
KNC Miner 300700 14-May-14
Bitfinex pool 306406 18-Jun-14
BitAffNet 309657 8-Jul-14
Bitfury 311333 18-Jul-14
Hashmine.io 313882 4-Aug-14
Solo.ckpool 319980 10-Sep-14
Kano.is 325306 14-Oct-14
BTCChina Pool 327211 27-Oct-14
Tangpool 339210 16-Jan-15
For Pyra 339547 19-Jan-15
BW Pool 341167 30-Jan-15
Huobi 341760 3-Feb-15
Dot pool 342104 6-Feb-15

Recall that even though it didn’t initially sign coinbase transactions, Slush began publicly operating at the end of November 2010.  Eligius was announced on April 27, 2011.  DeepBit publicly launched on February 26, 2011 and at one point was the most popular pool, reaching for a short period in July 2011, more than 50% of the network hashrate.

While many enthusiasts claim that “anyone can mine,” in practice, very few choose to for a number of reasons that will be discussed below.

But more to the point, the reason cryptocurrencies allegedly have a “permissionless” characteristic in the first place has to do exclusively with the fact that there is no administrative gating or vetting process for allowing actors on the network to participate in the block making process.  In 2009 there was no whitelist, blacklist, KYC or KYM (know your miner) process.

That is to say, those wanting to create a block did not need permission from a network administrator.1  That is the sole context of the term “permissionless.”

It is not related to developing other platforms that plug into the network.  It is not related to whether the network codebase is open source or not.  It is not related to being able to build software products that somehow utilize the network.  It is not related to being able to view or not view transactions.

Yet due to how the market evolved, today in 2016 while everyone is still paying for the high marginal costs to maintain a network designed for pseudonymous and anonymous interaction, few participants, specifically block makers, are actually capitalizing off of that utility.

For instance:

(1) Acquiring the necessary hardware to become a profitable miner invariably leaves a paper trail.  If instead you acquire the hardware on the second-hand market — in order to remain anonymous — you will still likely leave a paper trail with your legal identity in order to pay for the large energy bill and property taxes.  This is one of the reasons why miners in locations such as China do not publicize their fundraising activities or annual revenue: they don’t want to leave a paper trail to pay any extra taxes.2

(2) The other main mechanism for vetting miners now is through the use of data science itself.  Roughly 10 companies globally provide law enforcement, compliance teams and regulators access to relatively robust analytics tools to track provenance of bitcoins (or other cryptocurrencies) back to coin generation itself.  And in order to sell these mined bitcoins (e.g., to pay for the electricity and the mining hardware), nearly every bitcoin conversion to fiat marketplace now requires some compliance of local KYC and AML regulations.

While there are workarounds such as LocalBitcoins and SharedCoin, generally speaking the pseudonymous network itself in 2016 has largely become doxxed.  Yet the high costs of maintaining pseudonymity, via proof-of-work, still remain.

Hashrate distribution

Above is a pie chart that estimates the hashrate distribution among mining pools over the past 4 days (as of late April 2016).  The 10 largest pools collectively made 97% of the blocks during that time period.3

What about beyond 4 days?

Blocktrail

Source: Blocktrail

Above is the pool distribution of the past year based on coinbase data aggregated by Blocktrail.

The 10 largest pools collectively account for roughly 91.6% of all block making activity.  There is also a relatively long tail that includes roughly another 60 entities (some of whom do sign coinbase transactions) that represent the remaining 8.4% of all block making the past year.

Why do any actors sign transactions at all, after all, isn’t a core characteristic of a public blockchain pseudonymous consensus?  To my knowledge, no one has formally published a thorough explanation for the reasons why.  But one repeated rationale is that pools do so in order to prove to the miners (hashers) connected to the pool what the provenance of the block reward income is.

What does that mean?

For those who have never partaken in the mining process before, a quick history lesson: within the first two years of Bitcoin’s existence a division of labor arose in which block making became separated from hashing itself (e.g., generating proofs-of-work).

That is to say, the security of network security was outsourced to entities who create proofs-of-work and who are colloquially referred to as miners.4  Miners, in return for steady payouts of income, send their work to a pool operator who subsequently batches transactions together into blocks and pays workers based on a pre-arranged agreement (usually proportional, share-based).5

Today, if average Joe buys ASIC mining equipment, he typically does not connect them to his own pool but instead connects them to a pool run by Bob the devops professional.6  And how can Joe trust Bob not to shave off pennies from each share of work that Joe submits?

Block signing in theory provides some semblance of transparency: letting the hashers know if pool operators are skimming off the proceeds by not accurately reporting blocks found (e.g., income).

For instance, if a pool operator makes a block based off of the proof-of-work submitted by one of the hashers connected to a pool, such as Joe, but does not sign the coinbase, the pool operator can try to pretend that it didn’t win the block reward in the first place and therefore would not have to pay the workers (hashers).  This was allegedly more commonplace prior to 2013, before the advent of VC financed farms and pools.7 Now many of the medium and large hashing farm operators want to know the exact revenue number and hear good reasons for why some is missing or if the pool was just “unlucky.”8

Why doesn’t everyone become a block maker, after all, the process is billed as being “open” to all?

There are multiple reasons why, but the most important reason boils down to economics.  Dave Hudson has written about 10 different articles on the baked-in variance (inhomogenous Poisson process) that motivates individuals to continually pool  their mining effort versus solo mine.9 Spoiler alert: you are likely to be struck by lightning before you will ever create a block and reap a block reward by solo mining off of your laptop at home.

Other reasons for why few decide to become block-makers include: the added costs of providing DOS protection to your pool and the need to hire competent staff that can prevent and be on the lookout for problems like BGP hijacking which results in lost revenue.

This has not changed for multiple years and will likely not change for reasons discussed below.

Non-existent re-decentralization

With the upcoming Bitcoin block reward halving that is expected to take place in mid-July, there is a growing chorus of ‘hope’ that it will somehow lead to fewer large mining farms and pools.

This probably won’t occur for several simple reasons, namely due to economic incentives.

Recall that the major reasons why mining activity itself has gravitated to locations such as China isn’t due to conspiracy theories involving lizards but instead ancillary costs.

Specifically the following factors:

  • relatively low labor costs (e.g., professional hashing facilities need to be maintained by a workforce 24 x 7 and wages in China are lower than Russia and the US for this activity)
  • relatively low property costs (e.g., if you have good guanxi, you can utilize and own land at rates below those found in parts of Russia and the US)
  • lower energy costs; I and others have frequently written about this10
  • first-to-market with hardware; because a lot of the final assembly of hashing equipment takes place in southern China, in terms of logistics and transportation end-users have a lead-time advantage over other geographical regions
  • close personal connections with hardware manufacturers and fabrication plants in China and Taiwan; acquiring hardware for mining cryptocurrencies is just as relationship driven as other specialized non-commoditized industries.  Because medium and large miners know who the chip design teams are and what the ASIC roadmaps will be, they can stand in line at the front and acquire hardware before others.

What will happen after a block reward halving?

Just as oil producers with the highest marginal costs have been forced to exit the fracking market over the past couple of years, Bitcoin miners with the thinnest margins will likely exit the market immediately.

What this actually results in, at least the short run, is a more concentrated group of larger hashing farms and pools.

Why?

Because miners as a whole are effectively being given a 50% pay cut to provide the same utility as before.  And ceteris paribus, if Alice doesn’t currently have thick 50% margins, then she will likely exit the market.

In contrast, some of the most profitable miners in China and Republic of Georgia are now operating — even with the large difficulty rise over the past 6 months — with 50+% margins.  They may be squeezed, but they do not have to exit the market.

Basically, the less efficient players will be squeezed out and the more efficient players will remain.  Who is likely be be more efficient?  Larger farms in cheaper locations, or smaller pools made up of less sophisticated players with less capital?

But if the price of cryptocurrencies rise — in this case bitcoins — then won’t former miners come back into the market?

Maybe, but recall, we have seen this song and dance before and it is likely that the block reward halving is already factored into both the current market price and the hardware replacement cycle and as a result there probably will not be a doubling of the market price of bitcoins.  However, that is a topic for a different post.

Other public blockchains

What do mining pool distributions look like for other cryptocurrencies?

Above is the distribution of mining pools for Litecoin over the past day.  Interestingly, Coinotron — a pool I used when mining 3 years ago — currently represents 2.8% of the block making during that time frame.  Two years ago, in May 2014, it represented about 50%.

In August 2015, Litecoin underwent its first block reward halving.  Contrary to popular belief, its market price did not double.  In fact, nine months later the price of a litecoin measured in USD is just fifty cents higher than what it was pre-halving.11

Ethereum mining pool

Source: Etherchain

Above is the distribution of mining pools for Ethereum over the past day.

Interestingly Ethereum formally launched in August 2015 and has seen the same consistent pattern of 3-4 pools representing the majority of block making activity as other cryptocurrencies have witnessed.

In fact, Dwarfpool, despite its name, has flirted with the 50% threshold several times, most notably in March.  The Ethereum development team plans to transition the network from proof-of-work to proof-of-stake (Casper) later this year; it is unclear if the “staking” process will result in similar centralization.

Other cryptocurrencies continue to face similar pool centralization. This includes Namecoin which last year saw one pool, F2Pool provide more than 50% of the network hashrate for multiple months.  While it does not appear that F2Pool behaved maliciously, the fact that one block maker could potentially rewrite history by doing block reorgs motivated Onename to migrate away from Namecoin.

China

It is surprising that with the 60%+ hashrate located in China that there is scant detail in English about how that ecosystem works.  But there are reasons for this.

Recall that based on the current 25 BTC block reward, roughly $450 million in mining rewards has been divvied out over the past year to miners.  On paper that would mean that China-based miners received more than $270 million in revenue, which cements this industry as one of two that continually see large annual revenue flows (the second being exchanges themselves).

I contacted a mining operator in China that currently operates about 40 petahashes per second in equipment.  Note: miners use the abbreviated term ‘P’ and ‘PH’ to denote petahashes per second.

According to him:

“Our public hashing number is based on all our own hardware. This includes two facilities in western Sichuan plus a new Xinjiang site. All of these machines were originally S3’s from Bitmain but we have replaced them with S7’s.  We want to build larger operations than what we have today, but our goal is to maintain a specific percentage of the entire network.”

“Remember our electric rates changes from season to season: different time of year and that hydro power has problems in the winter because of less melt water which results in an energy price that is twice as the rate in the summer.”

“The land is basically free because it is in the mountains and no one is interested in buying property there. So all it takes is construction materials and labor. We hired 10 people last year. We intentionally hired more than we needed so we can build a team and send them places. Our front end operation probably only needs 4-5 people and we pay them $1,000 a month which is actually very competitive for that region.”

“We know a Chinese guy, Mr. LY.  He lives in Sichuan and was originally a hydroelectric operator but now owns his own hydro power station. He learned he could make more money mining than just running the station.”

“Why are people like us able to be competitive?  In Yunnan, Guizhou and Sichuan there was an overinvestment in hydropower last decade and now there is a surplus of electricity.12  Dam operators couldn’t sell the electricity generated so that’s where Bitcoin miners moved to. Also, in Liaoning, some people can free electricity because of the proximity to oil fields – they are given cheap electricity to local residents as compensation for confiscated land/polluting the environment — it is subsidized electricity.”

“No one really pays taxes because miners don’t generate something considered valuable. That’s to say from the perspective of taxpayer, miners don’t generate something of value, because the government doesn’t really recognize bitcoin. Bitcoin mining isn’t illegal, we still pay a small amount of taxes but it’s like running a company that doesn’t make money. Instead a miner just pays a small amount of taxes and all the profit is invisible to the law as it stands today.”

I also reached out to another mining operator based in southern China who explained that in practice, mining farms that produce 1 PH or more are usually not based in cities:

“Most of the time they are not in cities, more like in the middle of nowhere and it would be inaccurate to name towns.”

Instead he listed provinces where they are spread out including: Heilongjiang,Liaoning, Hebei, Sichuan, Tianjin, Anhui, Jiangsu, Ghuizhou, Inner Mongolia, Shanxi, Guangdong.  “Shenzhen for sure, there are testing facilities that are easily over 1P.”

What about ‘subprovincial’ locations?

“It is inaccurate to present information that way.  A lot of the time, the sites are between borders because it’s in the middle of nowhere.  And it normally spreads over lots of sites.  One place has nearly 200 sites crossing two provinces; a lot of small ones representing about 100KW of power each.  They are spread over several hundred kilometers; no economy of scale after a certain point.”

No service-level agreements

This type of self-doxxing, quasi-dynamic environment has led to another interesting phenomenon: ad hoc customer service via social media.

For example, two days ago, a user sent approximately 291.2409 bitcoins as a mining “fee.”13  A small pool called BitClub Network built the block that included this fee.  This fee is equivalent to about $136,000.

The community as a whole then began a crowdsourced investigation into who may have sent this fee and the motivations for doing so, with many believing it to be a mistake.  After all they reasoned, a typical “fee” that most mining pools require in order to be included in the next block is usually less than 25 cents on most days.

A user affiliated with BitClub has since publicly stated it would like to return the fee to the original entity that sent it, though it is unclear if he is speaking with any authority or if the whole thing was a ruse to begin with.

But, as I have argued before, this not only sets a bad precedent for miners as a whole due to a loss of revenue from the forthcoming ‘halvening,’ but the ability to contact a block maker sets a dangerous precedent for the core utility of the network: the disappearance of pseudonymous consensus.

Or as one redditor adroitly pointed out:

Or in other words, if block making was actually pseudoymous and decentralized, with 100+ unidentified pools creating blocks each day, it would be difficult if not impossible to locate and provide timely customer service to a user who made a mistake.

For instance, the most well-known block reorg occurred in March 2013 and it was only resolved when miners, including Slush and BTCGuild, contacted and coordinated with one another via IRC.  If the network was more decentralized and pseudonymous, this coordination would have been very difficult to do, and this was by design.

I pointed out this irony on Twitter earlier this week as well: that there are trade-offs with this approach and the downside of using a bearer asset-based system that had no service level agreement, no EULA, no terms of service results in a world in which users who make mistakes have to complain on social media and hope someone is charitable.

And this happens on a regular basis: earlier this month a user accidentally sent 13.65 bitcoins to the BTCC pool and used reddit as his customer service forum.

That type of friction is not what most consumers want.14  It is a poor user experience which has gradually led to the creation of ‘trusted’ intermediaries in this ecosystem which as described in previous posts, recreates the existing financial system but without the same level of oversight and financial controls.

The cryptocurrency community is learning the hard way why intermediaries exist, why SLAs exist, why legal identities are required for financial transactions, why consumer protection laws arose and so forth.  Pointing out these patterns is not malice or due to a lack of understanding of how cryptocurrencies work, but rather it serves as illustrations for why it has been hard to find real sustainable traction in the space.

How else is this visualized?

scaling bitcoin panel

Source: Jameson Lopp

This past December an event was held in Hong Kong called “Scaling Bitcoin.”

One of the sessions involved a panel comprised of the world’s largest mining farm and pool operators.

The individuals in the photo above allegedly represent about 90% of the network hashrate.

Thus, for all the hype around “trust anchors” tied into public blockchains such as Bitcoin, claims of decentralization and “trust-lessness” are empirically untrue.

In practice, due to centralization and identity leakage, the cost to successfully reorganize a block isn’t through a Maginot Line attack (e.g., via hashrate), but through cheaper out-of-band attacks, such as hosting events in which self-doxxed miners participate.  But that is also a topic for a different post.

Conclusion

16 months ago, Vitalik Buterin and others jokingly quipped that the trends towards centralization in Bitcoin mining (and other cryptocurrencies) resulted in a world where each coinbase transaction effectively arose from a multisig process.

To quote Buterin: “with Bitcoin, we’re paying $600 million a year on a 5-of-10 multisig.”

10 is roughly the amount of quasi-permanent block makers in a given day.  And $600 million was the amount of revenue that miners received at that time due to the higher market value of bitcoin.

In theory, anyone can turn on their computer and hope to become a block maker on a public blockchain — no one has to register with a “Blockchain Admin” because there is no admin.  However, in practice it requires a certain amount of technical knowledge and more importantly, capital, to profitably and sustainably operate a mining farm and pool.

And in order to scale this profitably, in practice, most miners at some point reveal their legal identities thereby negating the core characteristic of a public blockchain: pseudonymity.  How?  Miners, after having erected purpose-built facilities or to liquidate their holdings, may be required by external authorities to go through a gating / vetting process (such as KYC).

Ironically, a substantial increase in cryptocurrency prices may inevitably result in self-doxxing of all major farms. How?  As market prices increase, miners in turn expend more capital to increase their own hashrate to chase the seigniorage rents.

Because of the KYC requirements of utilizing resources like electricity at a hydroelectric dam and the subsequent identity leakage, this turns the block making process itself into a mostly known, permissioned activity.  Consequently, based on this past history, the term DMMS should probably be qualified with a “quasi” modifier in the front: QDMMS.

Similarly, while many enthusiasts have been led to believe a block reward halving will somehow re-decentralize the mining ecosystem, the fact of the matter is chip performance (as measured in hashrate efficiency) is only one factor in the total calculation that professional miners must account for.15

Furthermore, semiconductor engineering itself is effectively on a known, mature trajectory and which appears to be lacking any significant leaps in technological improvement.  The largest entities, such as Intel, see this relatively static path which is one of the reasons why they have formally abandoned their tick-tock roadmap and now plan to lay off 12,000 people.

In contrast, energy prices, land prices, labor costs and taxes are among other major components that professional mining operators look at as a whole and decide whether to stay in a market or not.  Even if there is some price increase after the halvening, home mining by amateurs outside of China will likely continue to remain unprofitable after July.

Thus a year from now the mining ecosystem will probably look a lot like it does today, with most farms and pools being self-doxxed and relatively centralized.16

[Special thanks to Antony Lewis for his constructive feedback]

Endnotes

  1. Censorship-resistance is an emergent property that arises from this design.  See also: Settlement Risks Involving Public Blockchains []
  2. There are other reasons too including not wanting to divulge any comparative advantage they might have that would incentivize new entrants to come into the market. []
  3. Note: it is believed that some large mining operators, such as Bitfury, may actually spread some of their hashers (workers) across multiple pools, in order to reduce their own pool percentage and thereby reduce the concerns over centralization.  This can only be proven with an on-site physical audit. []
  4. There has been research done on non-outsourceable block making. See Nonoutsourceable Scratch-Off Puzzles to Discourage Bitcoin Mining Coalitions by Miller et. al. []
  5. Analysis of Bitcoin Pooled Mining Reward Systems by Meni Rosenfeld []
  6. Most of the pools in operation do not require documentation of equipment or legal identification of miners. []
  7. Note: technically speaking nothing is stopping mining pools from signing blocks and in fact, some do it for advertising purposes. []
  8. There is also a term-of-art called “luck” which Organ of Corti and others analyze on a regular basis. []
  9. Incidentally for those wanting access to the block-making superhighway, to reduce orphan rates, there exists a centralized service: Bitcoin Relay Network. []
  10. See also Appendix B and Section 2 []
  11. Note: Dogecoin began to merge mine with Litecoin in September 2014 and in terms of hashrate the two have moved in tandem with one another ever since. []
  12. China’s water hegemony in Asia from Livemint []
  13. Note: a fee implies something that is mandatory.  The discussion surrounding what is and is not a fee or how it should be calculated and applied is a contentious topic in the cryptocurrency community. []
  14. Cryptocurrencies are effectively designed ‘for cypherpunks by cypherpunks.’  While caveat emptor may be desirable to certain demographics, others prefer consumer protection which bearer-based systems do not have. []
  15. Note: in terms of efficiency, 28nm chips are usually in the range of 0.25-0.35 watts/(gh/s), while the newer 14nm or 16nm ones are more likely 0.12 watts/(gh/s) or less. []
  16. See also: Permissioned-on-permissionless []
Send to Kindle

Reading the tea leaves

Three years since the current wave began and $1 billion later, cryptocurrency / public blockchain ecosystem is experiencing such a level of “fast growth” that no one is able to publish any real usage numbers.1

Sarcasm aside, despite copious amounts of news coverage, interviews and conferences, very few VC-backed cryptocurrency-related startups are divulging any non-gamable numbers.

I had hoped to do a regular quarterly update (see previous January post regarding usage numbers) but there just isn’t much public data to go on.  In fact, there is less data today than 3 months ago.

For instance, at some point in the past couple of months, Coinbase removed its wallet transaction volume chart from its chart site.  This coincides with a public announcement made in February that ‘Coinbase is not a wallet.’  As Brian Armstrong, CEO of Coinbase stated:

Over the next year or so, you’ll see the Coinbase brand shift from being a hybrid wallet/exchange to focusing on purely being a retail and institutional exchange. It will take some time to update, but the transition will happen.

Interestingly, this somewhat conflicts with another statement made in a Forbes piece this past week covering Coinbase and Blockchain.info, stating:

Currently, 80% of Coinbase’s customers buy bitcoin as an investment, and 20% transact with it, though that balance is currently shifting more toward transactions.

Perhaps transaction volume overall is increasing, but if so, why remove the wallet transaction volume chart?  Or is it solely related to transaction volume on the exchange?

The same Forbes article also mentioned another specific aggregate number:

“Startups play a pretty integral role in the sense that we represent most of the end. If you look at users of Bitcoin on the network, most of them are represented by one of the major Bitcoin companies,” says Peter Smith, chief executive of Blockchain, adding that five or six companies, including Coinbase and Blockchain, represent about 80% of transaction volume on the network. Numerous startups are also using Bitcoin to enable their users to more easily send remittances, cross-border payments and peer-to-peer payments, as well as make mobile in-app purchases.

Maybe this is true, maybe there are 5 or 6 companies that represent the lionshare of volume on the Bitcoin network itself.  If so, we should be able to see that.

chainalysis

This is a simplified, color coded version of a tool that Chainalysis provides to its customers such as compliance teams at exchanges. The thickness of a band accurately represents the volume of that corridor, it is drawn to scale.  The names of certain entities are redacted.

The image is based on data for the first quarter of 2016 and is an update to the chart I published in an article back in January.

Based on the chart above, there are in fact 5-6 organizations that represent 80% of the volume; both Coinbase and Blockchain.info are among them (Blockchain.info also operates SharedCoin).

In fact, Chainalysis recently updated their methodology and found that Coinbase transactions represent every 6th or 7th transaction on the Bitcoin blockchain. 2 This specific area of data science is continuously undergoing refinement and should be looked at once again in the coming months.

The same Forbes article says that Coinbase has 3.5 million users and Blockchain.info has 6.5 million wallet holders.

But as we have looked at before, what does that even mean?  Few companies publicly define what a user or wallet actually represents.  I have looked at this twice in the past:

The bottom line is that “monthly active users” (MAU) — which is one of the standard methods for measuring real growth (and success) of an application, is still largely unreported by any cryptocurrency-related company that has raised a Series A or higher.3

Other public data

Where can we find data that is still be published and could reflect usage numbers of public blockchains?

P2SH addresses

Source: P2SH.info

As shown above, over the past month, the amount of bitcoins stored using P2SH addresses increased from 9.99% to 11.7%.

A large noticeable pop took place two weeks ago and some speculated that it could be a Liquid-related multi-sig movement.

opreturn total transactions

Source: opreturn.org

OP_RETURN has also seen increased usage.  Above is a chart measuring the past 15 months of usage.

As described in Watermarked Tokens, OP_RETURN is an opcode in Bitcoin’s scripting language that is commonly used by colored coin projects.

At the time of this writing, in terms of percentages, the top 5 projects that have used OP_RETURN the most are:

  • Blockstack: 107254 transactions (28.4%)4
  • Open Assets: 68069 (18%)5
  • Monegraph: 51601 (13.7%)6
  • Factom: 34007 (9%)7
  • Coinspark: 25223 (6.7%)8

Two of the five are colored coin-specific projects and all five cumulatively account for about 76% of all OP_RETURN usage.

Any other numbers?

  • Looking at the previous charts from January, the ‘Bitcoin Distribution by Address at Block 400,000‘ looks roughly the same as the distribution at a block height of 390,000.
  • According to CoinATMRadar, the ‘number of Bitcoin ATMs installed by Bitcoin machine type’ increased from 536 at the beginning of January to 612 at the end of March. This comes to roughly 0.84 ATMs installed per day or a rate slightly higher than the past 2 years (it is on pace for 308.2 installations altogether this year compared with 275 per year for 2014 and 2015).
  • In terms of market prices, there were some relatively big swings in volatility (about $100 from peak to trough) in the first quarter due in part to the continued block size debate which still remains unresolved.9
  • And activity on both BitWage and Blockchain.info wallets looks roughly the same as they did in January.

Funding

Some venture funding bounced back from the dearth in Q4 2015.

According to the venture capital aggregation at CoinDesk there was $148 million of publicly announced rounds for both Bitcoin-related and Blockchain-related startups spread among 14 deals in Q1 2016.  Though two investments alone (DAH and Blockstream) accounted for more than two-thirds of that funding tranche.

However, the list is probably not complete as two investments into Kraken’s Japanese subsidiary were for undisclosed amounts (first from SBI in January and then by Money Partners Group in March).  Similarly, Ripple also received capital from SBI in January (for a reported 3 billion yen or ~$25 million).

In addition, last week, CB Insights (a venture tracking firm) held a webinar that covered the “Bitcoin / Blockchain” ecosystem (deck) (recording).

While providing a good general overview, I think it lacks a number of recent developments in the overall “Blockchain” capital markets world.10

For instance, Tradeblock recently launched Axoni (a private / permissioned blockchain) and Peernova isn’t really a “Blockchain” company now. 11 The webinar is a little outdated on the cryptocurrency side of things too.  For example, Mirror is completely out of the ecosystem altogether, 21inc is basically a software company at this point, Buttercoin is bankrupt and Blockscore shouldn’t be included in either bucket.

Any other charts?

Counterparty Transaction History

Source: Blockscan

I would be remiss to not include Counterparty, a platform has effectively plateaued (see image above) and has now been eclipsed by Ethereum based on multiple measurements including transaction growth (which actually may be eventually be gamed via “long chains” just like some Bitcoin transactions are).

What kind of other metrics are available?

Counterparty compared to Ethereum

Source: Coingecko

Ignoring the liquidity and market cap sections (basically all cryptocurrencies are illiquid and easily manipulable) there is a marked difference in terms of terms of social media engagement and interest between the two platforms.  For example, in terms of public interest, one measure that could be added to the Coingecko list is the amount of organized Meetup’s: Ethereum has roughly a hundred globally and Counterparty has about 10.

As an aside, I attended two Ethereum meetup’s last month: one hosted by Coinbase in San Francisco and another one hosted by IFTF in Palo Alto.  Both were well-attended with roughly 120 people showing up for the latter.

[Note: I do not own, control or hold any cryptocurrency nor do I have any trading position on them either.]

Why is no one actively publishing numbers?

It could be the case that some of the startups feel that any user / usage number is commercially important and therefore treat it like a trade secret.

Is there really less transparency in this market compared to other tech markets?

Maybe, maybe not.  What about public markets?

Last spring, Blizzard Entertainment announced it would no longer publish World of Warcraft subscription numbers.  This was done because of the continual decline in subscriptions (more than halving from its 12 million peak).  Similarly, last fall, Microsoft said it would no longer publish Xbox One unit sales and would instead share Xbox Live usership. ((Disclosure: I own an Xbox One))  At the time this move was seen as a way to downplay the growing gap in sales between Sony’s PS4 and the Xbox One.

zynga

Source: Statista / Zynga

An exception to this rule is Zynga — the mobile / social gaming company — which has seen continual drop offs in monthly active users for over three years, but still publishes numbers. 12

Back to the public blockchain sphere: why would 40+ companies that have closed a Series A or higher as a whole decide not to publish user / usage numbers in a market that claims to always be growing by leaps and bounds?

One of the problems appears to be that when you raise a lot of money, $50+ million for B2C applications your charts are expected to look a bit like other high-growth companies.

slack growth

Source: TechCrunch

For instance, above is a two-year chart displaying two types of users: daily active and paid for Slack.  With 3.5x daily user growth over the past year, Slack announced last week that it has closed its new round, raising $200 million at $3.8 billion post-money valuation.  About a third of its daily users which are paid users, a relatively high conversion rate.

Obviously social media commenters will point out that “cryptocurrencies” are not the same thing as communication tools, but the point remains that eventually the aspirations of investors will re-calibrate with the actual growth trajectories of a platform.  And as of right now, based on public data it is unclear where that traction is in the cryptocurrency world — perhaps it does exist somewhere but no one is publicly revealing those stats.

It bears mentioning, based on anecdotes there are several cryptocurrency-related startups that have gained relatively large customer bases in certain corridors focused on cross-border payments and remittances involving The Philippines.13 There are also several cash-flow positive companies in this space that have flown under the radar.  On the flipside, based on similar anecdotes, multi-level marketing scams like MMM Global also have seen continued traction.14

Conclusion

Where is the growth, where are the numbers?  Those are the two questions that continue to drive blog posts on this site.  Perhaps startups in the public blockchain ecosystem will be more forthcoming later this year as more capital is deployed.  We will try to revisit this topic once more information is publicly available.

It will also be interesting to see how many more cryptocurrency-related companies rebrand or pivot into the “private blockchain” sphere without actually changing how they interact with cryptocurrencies.  Thus, my older October post on the Great Pivot should be revisited at some point as well.  In addition, if “private blockchain” platforms are eventually flipped on into production mode, they may begin to yield usage numbers worth looking at in a year or so.

  1. For a concise explanation of “fast growth” in this context see the recent interview with Chamath Palihapitiya: Top V.C. on “Mostly Crap” Start-Ups, Mark Zuckerberg, and Early Facebook’s Grim Lunches by Vanity Fair. []
  2. And according to other data science companies I have spoken to in the recent past, several confirm this as well. []
  3. A notable exception was in December 2015 when BitPay provided a transaction chart to Forbes.  Additionally, BitGo has published numbers from time to time.  And while it hasn’t raised a Series A, Blockstack is also fairly open about its userbase. []
  4. Blockstack.org is not the same thing as Blockstack.io — two different groups. []
  5. Flavien Charlon, creator of Open Assets, also maintains Openchain. []
  6. Monegraph is a platform for managing digital artwork. []
  7. During its crowdsale last year, Factom sold about 4.4 million factoid (tokens) for 2,278 bitcoins. []
  8. CoinSciences, the team behind Coinspark, also has another product called MultiChain. []
  9. See: What is the blockchain hard fork “missile crisis?” and also Appendix B []
  10. One interesting stat they mentioned was in terms of ratios: in 2015 there was about $15 billion invested in “fintech” overall and about $450 million in the entire umbrella of “cryptocurrency / blockchain” ecosystem.  That amounts to about 3%. []
  11. Peernova has transitioned from being a Bitcoin mining company to creating “Blockchain-inspired” tools for other industries. []
  12. See Zynga quarterly earnings reports and Statista []
  13. This includes: Align Commerce, BitX and Coins.ph []
  14. This is based on actual data I have been shown. []
Send to Kindle

A brief update on the shared ledger ecosystem

A year ago to the day I published: “Consensus-as-a-service: a brief report on the emergence of permissioned, distributed ledger systems.”

Since then, the paper and portions thereof, have been translated into multiple languages, emailed and downloaded thousands of times, copied word-for-word by many consulting companies and used as a primer for managers and executives at organizations big and small.  In short, it helped articulate what was then happening in a new niche industry, one that has grown over the subsequent months.

What has changed and why did it become popular to the point where vendors now use bullet points marketing their product as a “permissioned ledger”?

Before answering these questions I should point out that it was Robert Sams, CEO of Clearmatics, that actually coined the term “permissioned ledger.”  He first publicly used it at a Coinscrum event a month before the publication of CaaS. Prior to that he had been using it in private discussions including on a now-defunct mailing list which incidentally involved other notable individuals who still work in the overall “blockchain” space.1

Fluid market

Let’s quickly look at what happened to the market participants that were highlighted in the main body of the report (by alphabetical order):

  • Clearmatics: in November 2015 they announced they had closed their seed funding; have also publicly announced their pilot “utility settlement coin” with UBS (note: ‘settlement coin’ is not a cryptocurrency)
  • CryptoCorp: rebranded as Blockstack and were acquired in October 2015 by Digital Asset Holdings (DAH)
  • Eris Industries: in January 2016 they announced they were selected to be part of the PwC “strategic blockchain portfolio”2
  • Hyper (Hyperledger): in June 2015 they announced they had been acquired by DAH. 3  Its namebrand was then donated to the Linux Foundation; see What is the difference between Hyperledger and Hyperledger?
  • Ripple (Labs): in October 2015 they announced that their Series A had closed at $32 million in funding with the inclusion of Santander.  In January 2016 additional funding from SBI Holdings into Ripple’s Japanese subsidiary was also announced.
  • Tembusu System: they had a co-founder dispute that led to dormancy of the company
  • Tezos: the project has continued in the background as a part-time project of its creator
  • Tillit: rebranded as Ldger and is currently focused on market place lending and structured products; no longer uses Ripple.

If we extend the analysis to the tangentially related projects listed in Appendix A:

  • Blockstream: in October 2015 it announced a cryptocurrency product called “Liquid” for wallets and exchanges and in February 2016 announced it had closed its Series A funding of $55 million
  • Augur: in October 2015 it concluded its crowdfunding of over $5 million and in March 2016 launched its beta
  • SKUChain: in January 2016 it announced its seed funding and in March 2016 joined the Plug and Play FinTech Incubator
  • Ethereum: officially launched its Frontier release at the end of July 2015 and then launched a “production” version called Homestead in March 2016
  • Pactum: turned from a standalone product into a technology specification and approach – currently being used by ULedger – and being further developed by Bitsapphire
  • Symbiont: in June 2015 it announced closing a seed round for $1.25 million and then in March 2016 announced it was creating a new company with Ipreo
  • Vennd: in April 2015 it joined the Startmate accelerator and later moved away from the “vending machine” cryptocurrency creation market

What about the rest of the marketplace?

The non-cryptocurrency distributed ledger marketplace has bifurcated into two distinct areas:

  1. those creating some type of ledger or blockchain; and
  2. those creating some type of application that connects to a ledger, chain or network

[Note: sometimes those creating #1 are also creating #2 but usually not vice versa]

Altogether, since September 2015, at R3 we have been approached or pitched by around 150 vendors of all shapes and sizes who do something orthogonally related to distributed ledgers.

By and large, most of them are uninvolved with cryptocurrencies themselves: that ship seems to have sailed with the Great Pivot.  Perhaps that will change again?

We are currently tracking around two dozen companies that have built or are building some kind of distributed ledger and about the same amount of startups trying to build applications on top of a ledger. 4

Many of these can be seen on slides 21 and 23 of the presentation I published in December:

The end of “Proof-of-work maximalism”

What has resonated with people, especially financial institutions regarding this new market?

Part of it for sure is related to hype.  Distributed ledgers and blockchains have been sold as silver bullets and panaceas to all the worlds ills.  This exuberance will likely lead to another washout cycle which has happened in many other tech segments (most notably cleantech).

Another reason is that as articulated in Appendix B, while there was latent interest in the cryptographic toolkit utilized by Ethereum and Bitcoin, managers were finally afforded an explanation as to why something like proof-of-work is purposefully expensive and why it is unneeded and undesirable in an environment in which trusted intermediaries with legal contracts already operate in (e.g., capital markets).

In short: CaaS began to untie the narrative and fable that “the only secure network is one that involves proof-of-work.”

While they are not the only entities experimenting with blockchains, regulated financial institutions have also spent the past year looking at the consequences of using pseudonymous consensus methods, discovering that platforms like Bitcoin fundamentally lack definitive settlement finality which was briefly discussed on page 22 and 23 in CaaS.

The reaction on social media to this over the past year has ranged from acceptance all the way to angry threats.  Yet fundamentally it is empirically clear that the marketing spin which proof-of-work maximalists have used — such as “hardening a chain” — is simply a misapplication of Bitcoin’s Sybil protection.  But that is a topic for another day.5

Conclusion

This was supposed to be a brief post so we have to pass on dovetailing into the myriad of other interesting changes in the landscape.

Regular readers may have noticed just a few posts on this site over the past few months.  Why?  Part of this is because the content I do write is typically sent to R3 members only.

What about other discussions?

Even though the capital markets have largely settled on a specific class of ledger — one that is integrated with the existing legal system without any type of cryptocurrency or proof-of-work — the debate around public versus private blockchains will likely continue into the year by enthusiasts.

For those involved in regulated capital markets who are looking at solutions to problems with a set of requirements involving post-trade activities of clearing and settlement, it is worth pointing out that yesterday Richard Brown unveiled the project he has been working on the past 7 months: Corda.

A year from now the distributed ledger landscape will likely look a lot different than what it did in 2016 let alone 2015.  It will be interesting to see how many projects are still replicating and reusing older “blockchain” designs versus building systems that are fit-for-purpose like Corda.

[Endnotes]

  1. Source: I am an advisor to Clearmatics and a member of the mailing list.  This included: Vitalik Buterin (Ethereum), Vlad Zamfir (Ethereum), Dominic Williams (Mirror / String), Jae Kwon (Tendermint), Andrew Miller (IC3 / University of Maryland), Nick Szabo (Mirror / Access), Jonathan Levin (Chainalysis), Dave Hudson (Peernova), Richard Brown (R3), Zaki Manian (SKUChain) and about a dozen others. []
  2. According to Dominic Williams: 21.91% of all tweets using the term “marmots” involved Eris Industries and Preston Byrne (its COO). []
  3. Disclosure: I was an advisor to Hyper. []
  4. It is a noisy startup ecosystem, but once you filter out companies reliant on cryptocurrency price appreciation there aren’t hundreds or thousands of startups to keep track of. []
  5. See also Anchor’s aweigh []
Send to Kindle

Additional citations, quotes and panels

Following up from the last batch, below are some of the public-facing activities I have been involved with the past couple of months.

Op-ed:

Public presentations / panels:

Quoted:

Citations:

Send to Kindle

What is the difference between Hyperledger and Hyperledger?

hyperledgerI am frequently asked this question because there is some confusion related to the legacy name and the current branding of certain technology. The two are distinct. And how we got there involves a little history.

Hyper, the parent company of Hyperledger, was founded by Dan O’Prey and Daniel Feichtinger in the spring of 2014. Fun fact: one of the alternative names they considered using was “Mintette.com” — after the term coined by Ben Laurie in his 2011 paper.

The simplest way to describe Hyperledger, the technology platform from Hyper, during its formative year in 2014 was: Ripple without the XRP. Consensus was achieved via PBFT.1 There were no blocks, transactions were individually validated one by one.

Hyperledger, the technology platform from Hyper, was one of the first platforms that was pitched as, what is now termed a permissioned distributed ledger: validators could be white listed and black listed. It was designed to be first and foremost a scalable ledger and looked to integrate projects like Codius, as a means of enabling contract execution.

Most importantly, Hyperledger in 2014 was not based off of the Bitcoin codebase.

Note: in the fall of 2014 Richard Brown and I both became the first two advisors to Hyper, the parent company of Hyperledger.  Our formal relationship ended with its acquisition by DAH.2

In June 2015, DAH acquired Hyper (the parent company of Hyperledger) which included the kit and caboodle: the name brand, IP and team (the two Dans).  During the same news release, it was announced that DAH had acquired Bits of Proof, a Hungary-based Bitcoin startup that had designed a Java-based reimplementation of Bitcoin (which previously had been acquired by CoinTerra).3

It was proposed at that time that Hyperledger, the Hyper product, would become the permissioned ledger project from DAH.  It’s product landing page (courtesy of the Internet Archive) uses roughly the same terminology as the team had previously pitched it (see also the October homepage older homepage for DAH as well).

digital asset homepage october 2015

Source: Digital Asset / Internet Archive

On November 9, 2015, on a public blog post DAH announced that it was “Retiring Hyperledger Beta, Re-Open Sourcing Soon, and Other Changes.”

The two most notable changes were:

(1) development would change from the languages of Erlang and Elixir to Java and Scala;

(2) switch to the UTXO transaction model

The team noted on its blog in the same post:

We are also switching from our simplistic notion of accounts and balances to adopt to de facto standard of the Bitcoin UTXO model, lightly modified. While Hyperledger does not use Bitcoin in any way, the Bitcoin system is still extremely large and innovative, with hundreds of millions of dollars invested. By adopting the Bitcoin transaction model as standard, users of Hyperledger will benefit from innovation in Bitcoin and vice versa, as well as making Hyperledger more interoperable.

During this same time frame, IBM was working on a project called OpenChain, which for trademark reasons was later renamed (now internally referred to as OpenBlockchain).4

IBM’s first public foray into distributed ledgers involved Ethereum vis-a-vis the ADEPT project with Samsung (first announced in January 2015). Over the subsequent months, IBM continued designing its own blockchain (see its current white paper here).

In December 2015, the Linux Foundation publicly announced it was creating a new forum for discussion and development of blockchain technology.  Multiple names were proposed for the project including Open Ledger (which was the name originally used in the first press release). However, in the end, the name “Hyperledger” was used.

How did that occur?

DAH, one of the founding members of the project, donated two things to the Linux Foundation: (1) the brand name “Hyperledger” and (2) the codebase from Bits of Proof.

Recall that Bits of Proof was the name of a Bitcoin startup that was acquired by DAH in the fall of 2014 (the Chief Ledger Architect at DAH was the co-founder of Bits of Proof). 5 Architecturally, Bits of Proof is a Java-implementation of Bitcoin. 6

In other words: today the term “Hyperledger” represents an entirely different architectural design and codebase than the original Hyperledger built by Hyper.7

The major architectural switch occurred in November 2015, which as noted above involved adopting the UTXO transaction set and Java language that Bits of Proof was built with.  Therefore, Hyperledger circa 2016 is not the same thing as Hyperledger circa 2014.

Over the past two months there have been multiple different codebases donated to the Linux Foundation all of which is collectively called “Hyperledger” including the IBM codebase (partly inspired by Ethereum) as well as the DAH and Blockstream codebase (one is a clone of Bitcoin and the other is a set of extensions to Bitcoin). The technical discussions surrounding this can be found on both the public Linux Foundation mailing list and its Slack channel.

How do different, incompatible codebases work as one?

This technical question is being discussed in the Linux Foundation. It bears mentioning that as of now, the codebases are incompatible largely due to the fact that Bitcoin uses the UTXO transaction set and OpenBlockchain uses an “accounts” based method for handling balances.  There are other reasons for incompatibility as well, including that they are written in completely different languages: Java/Scala versus Go versus C++ (Blockstream).

How extensive is the reuse of the Bits of Proof Bitcoin codebase donated to the Linux Foundation from the DAH team?  According to a quick scan of their GitHub repo:

So when someone asks “what is Hyperledger technology?” the short answer is: it is currently the name of a collective set of different codebases managed by the Linux Foundation and is not related to the original distributed ledger product called Hyperledger created by Hyper. The only tenuous connection is the name.

Timeline in brief: Hyperledger was originally created in Spring 2014 by Hyper; Hyper was acquired in June 2015 by DAH; the original Hyperledger architecture was entirely replaced with Bits of Proof in November 2015; the Hyperledger brand name and Bits of Proof code was donated to the Linux Foundation in December 2015.

  1. Interestingly enough, the current OpenBlockchain project from IBM also uses PBFT for its consensus mechanism and uses an “accounts” based method; two characteristics that the original Hyperledger platform from Hyper had too. []
  2. For more info on the original Hyperledger, see the Innotribe pitch; the description in Consensus-as-a-service from April 2015 and the Epicenter Bitcoin interview. []
  3. Following the bankruptcy of CoinTerra, the Bits of Proof team became independent once again. []
  4. CoinPrism launched a project called OpenChain, before IBM did. []
  5. Sometimes there is a confusion between Bits of Proof and Bits of Gold.  Bits of Proof was the independent Java-implementation of Bitcoin (which is not the same thing as bitcoinj).  Bits of Gold is an Israeli-based Bitcoin exchange.  A co-founder of Bits of Gold also works at DAH and is their current CTO. []
  6. In the future it may contain some modifications including Elements from Blockstream. []
  7. What was once the original Hyperledger GitHub repo has been handed over to the Linux Foundation but some of the original code base and documentation from the 2014 project can still be viewed elsewhere. []
Send to Kindle

What did bitcoin movements look like in 2015?

[Note: opinions expressed below are solely my own and do not represent the views of my employer or any company I advise.]

Last April, May and August I wrote three posts that attempted to look at the flow of funds: where bitcoins move to throughout the ecosystem.

Thanks to the team at Chainalysis we can now have a more granular view into specific  transfer corridors and movements (not necessarily holdings) between miners, exchanges, darknet markets, payment processors and coin mixers.

The first three charts are backwards looking.

Bitcoin PieAbove is a simplified, color coded version of a tool that Chainalysis provides to its customers such as compliance teams at exchanges.  The thickness of a band accurately represents the volume of that corridor, it is drawn to scale.

What is the method used to generate the plot?

The chord-plot shows all bitcoin transactions in 2015 traced down all the way back to a known entity. This means that the connection between the entities can be any number of hops away.

So for instance, for the exchanges it will include direct arbitrage, but also the modus operandi for bitcoin: individuals buying bitcoins at an exchange and then doing peer-to-peer transfers.  Again this can be any number of hops and then perhaps later end at an exchange again where someone is cashing out.

According to Chainalysis, by hiding all the intermediate steps we can begin to learn how most of the Bitcoin ecosystem is put together (e.g., can it be split into sub systems?, is there a dark and a lit economy?, and what is bitcoin actually used for?).

Legend:

  • Blue: virtual currency exchanges
  • Red: darknet markets
  • Pink: coin mixers
  • Green: mining pools
  • Yellow: payment processors

Altogether there are 14 major exchanges tracked in blue including (in alphabetical order): Bitfinex, Bitreserve (now Uphold), Bitstamp, BitVC (subsidiary of Huobi), BTCC (formerly BTC China), BTC-e, Circle, Coinbase (most), Huobi, itBit, Kraken, LocalBitcoins, OKCoin and Xapo.

The identity of 12 exchanges were removed with the exception of BTC-e and LocalBitcoins.

  • BTC-e was founded in July 2011 and is one of the oldest operating exchanges still around.  It does not require users to provide KYC documentation nor has it implemented AML processes.  This has made it an attractive exchange for those wanting to remain anonymous.
  • LocalBitcoins was founded in June 2012 and is a combination of Craigslist and Uber for bitcoin transfers.  It enables users to post trade requests on its site and provides escrow and reputation services for the facilitation of those trades.  Like BTC-e, it does not require users to provide KYC documentation nor has it implemented AML processes.  As a result it is a popular service for those wanting to trade bitcoins anonymously.

sharedcoinSharedCoin (depicted in pink above) is a product / service from Blockchain.info that allows users to mix their coins together with other users.  It is one of about a dozen services that attempt to — depending who you talk to — delink the history or provenance of a bitcoin.

agoraFounded in the spring of 2013, Agora (depicted in red above) was the largest known darknet market operating in 2015.

Forward Tracing

For each of the entities labeled on the charts below there is a ‘send to self’ characteristic which in fact are the UTXOs that originate from that entity and ends in unspent funds without first hitting another service.  So it can be both cold storage owned by the service or someone hoarding (“hodling”) coins using that service.

Interestingly enough, the deposits held at one VC-backed intermediary almost all stay cold.

forward looking localbitcoinsAbove is LocalBitcoins.

forward looking btceAbove is BTC-e.

forward looking sharedcoinAbove is SharedCoin.

Questions and Answers

I also spoke with the Chainalysis team about how their clustering algorithm worked.

Q: What about all the transactions that did not go between central parties and intermediaries?  For instance, if I used my wallet and sent you some bitcoins to your wallet, how much is that in terms of total activity?

A: The analysis above is intended to isolate sub-economies, not to see who is directly trading with who. The Chainalysis team previously did a Chord of that roughly a year ago which shows the all-time history (so early days will be overrepresented) and it was based only on one hop away transactions and normalized to what the team can ascribe to a known service.

The new chord above is different as it continues searching backwards until it locates an identified entity – this means it could have passed through an other either unidentified or less perfectly described service – but as it is same for everything and we have the law of large numbers it will still give a pretty accurate picture of what subeconomies exist.  It was made to identify if the Bitcoin network had a dark economy and a lit economy (e.g. if the same coins were moving in circles e.g. dark-market->btc-e->localbitcoin->dark-market and what amount of that loop would include the regulated markets too).

So, for example, the transfers going between the regulated exchanges, many will be multihop transfers, but they start and end in regulated exchanges and as such could be described as being part of the lit economy.

Q: What specific exchange activity can you actually identify?

A: It varies per service but Chainalysis (and others) have access to some “full wallets” from clients.  Also newer deposits are often not known so the balance in a wallet will be underestimated due to how the current algorithms work.

Further, some services require special attention and special analytics to be well represented due to their way of transacting – this includes some of the regional dark markets and Coinbase (due to how the company splits and pools deposits, see below).  By looking at all the known entities and how many addresses they contain as a percentage of all addresses ever used for bitcoin in all time, Chainalysis has significant coverage and these are responsible for more than half of all transactions ever happened.

Q: And what was the motivation behind building this?

A: The initial purpose of the plot was to identify subsystems and pain points in the ecosystem – the team was at first uncertain of the possibility that every Bitcoin user simply bought bitcoins from exchanges to buy drugs but that does not seem to be the case.  Most drug buyers use LocalBitcoins and sellers cash-in via mixers on LocalBitcoins or BTC-e (for the larger amounts).

Q: How large is SharedCoin and other mixers?

A: SharedCoin is currently around 8 million addresses and Bitcoin Fog is 200,000 addresses; they are the two largest.1

Additional analysis

Based on the charts above, what observations can be seen?

  • With a forward tracing graph we can see where all the unspent bitcoins come from (or are stored).  One observation is that intermediaries, in this case exchanges, are holding on to large quantities of deposits.  That is to say that many users (likely traders) — despite the quantifiable known risks of trusting exchanges — still prefer to store bitcoins on virtual currency exchanges.  Or to look at it another way: exchanges end up with many stagnant bitcoins and what this likely means is that users are buying lots of bitcoins from that exchange and not moving them and/or the exchange itself is holding a lot of bitcoins (perhaps collected via transaction fees or forfeited accounts).2

  • A lot of the activity between exchanges (as depicted in blue lines) is probably based on arbitrage.  Arbitrage means if Exchange A is selling bitcoins for a higher price than Exchange B, Alice will buy bitcoins on Exchange B and transfer them to Exchange A where they are sold for a profit.
  • Despite the amount of purported wash trading and internal bot trading that several Chinese exchanges are believed to operate, there is still a lot of on-chain flows into and out of Chinese-based exchanges, most likely due to arbitrage.
  • An unknown amount of users are using bitcoin for peer-to-peer transactions.  This may sound like a truism (after all, that’s what the whitepaper pitches in its title), but what this looks like above is that people go to exchanges to transfer fiat currencies for virtual currencies.  Then users, using the P2P mechanic of bitcoin (or other virtual currencies), transfer their coins to someone else.  We can see this by counting hops between the exchanges.

A potential caveat

Because of how certain architectures obfuscate transactions — such as Coinbase and others — it can be difficult for accurate external data analysis.  However with their latest clustering algorithm, Chainalysis’s coverage of Coinbase now extends to roughly the same size of the size of Mt. Gox at its height.3

Why can this be a challenge?  Coinbase’s current design can make it difficult for many data analytics efforts to clearly distinguish bitcoins moving between addresses.  For instance, when Bob deposits bitcoins into one Coinbase address he can withdraw the deposit from that same address up to a limit.  After about two bitcoins are withdrawn, Bob then automatically begins to draw out of a central depository pool making it harder to look at the flow granularly.

Other secondary information also makes it unclear how much activity takes place internally.  For instance, in a recent interview with Wired magazine, Coinbase provided the following information:

According to Coinbase, the Silicon Valley startup that operates digital bitcoin wallets for over 2.8 million people across the globe, about 20 percent of the transactions on its network involve payments or other tasks where bitcoin is used as a currency. The other 80 percent of those transactions are mere speculation, where bitcoin is traded as a commodity in search of a profit.

In a subsequent interview with New York Business Journal, Coinbase stated that it “has served 2.9 million people with $3 billion worth of bitcoin transactions.”

It is unclear at this time if all of those transactions are just an aggregation of trades taking place via the custodial wallet or if it also includes the spot exchange it launched last January.

Future research

Publishing cumulative bitcoin balances and the number of addresses for different entities such as exchanges could help compliance teams and researchers better understand the flows between specific exchanges.  For instance, a chart that shows what percentage of the 15 million existing bitcoins everyone holds at a given moment over different time intervals.

This leads to the second area: rebittance, a portmanteau of remittance and bitcoin.  Last year it was supposed to be the “killer app” for cryptocurrencies but has failed to materialize due in part, to some of the reasons outlined by Save on Send.4 Further research could help identify how much of the flows between exchanges and the peer-to-peer economy is related to cross-border value transfer as it relates to rebittance activity.

And as the market for data analysis grows in this market — which now includes multiple competitors including Coinalytics, Blockseer, Elliptic and Scorechain — it may be worth revisiting other topics that we have looked at before including payment processors, long-chains and darknet markets and see how their clustering algorithms and coverage are comparable.

Conclusions

For compliance teams it appears that the continued flow between illicit corridors (darknet markets) is largely contingent on liquidity from two specific exchanges: BTC-e and LocalBitcoins.  In addition, coin mixing is still a popular activity: from this general birds-eye view it appears as if half of the known mixing is directly related to darknet market activity and the motivation behind the other half is unknown.

Based on the information above other economic activity is still dwarfed by arbitrage and peer-to-peer transactions. And lastly, based on current estimates it appears that several million bitcoins are being stored on the intermediaries above.

[Note: special thanks to Michael Gronager and the Chainalysis team for their assistance and feedback on this post.]

  1. There are many regional smaller projects in, for example, smaller European countries whose flows may be underrepresented as they are less known in part because they do not use commonly used languages. However most are likely a part of the long tail of coin distribution. []
  2. There is a spectrum of intermediaries in which bitcoins are stagnant (or active).  For instance, in an interview last May, Wences Casares, founder and CEO of Xapo stated:

    Still, Casares indicated that Xapo’s customers are most often using its accounts primarily for storage and security. He noted that many of its clientele have “never made a bitcoin payment”, meaning its holdings are primarily long-term bets of high net-worth customers and family offices.

    “Ninety-six percent of the coins that we hold in custody are in the hands of people who are keeping those coins as an investment,” Casares continued. []

  3. See also The missing MtGox bitcoins from WizSec []
  4. There are notable exceptions that have gained regional traction including: BitX, Coins.ph and Align Commerce. []
Send to Kindle

AFA Presentation: Cryptocurrencies, Blockchains and the Future of Financial Services

The slideshow below was first presented at an AFA panel on January 4, 2016 in San Francisco.

References:

Send to Kindle

A proxy for users

[Note: opinions expressed below are solely my own and do not represent the views of my employer or any company I advise.  Today is the 7th anniversary of the Genesis block.]

With over $900 million invested in cryptocurrency startups over the past couple of years, what does adoption and usage numbers look like?

Unfortunately very few of the companies that have received funding have publicly divulged actual numbers, primarily because consumer uptake has been lower than expected (or promised).

For instance, Coinbase recently published five charts it says reflect growth.

The first chart they show is transactions per day.

However, since we know that most transactions are “long-chain” transactions (comprised of spam, wallet shuffling, coin mixing, mining payouts, faucets, etc.), this is a poor indicator of actual on-chain trade and commerce or adoption.

long-chain transactionsAs illustrated in the chart above, once long-chains are removed, growth (as highlighted in the pink region) is roughly linear since 2014, at ~0.5x per year.

What about Coinbase itself?

Coinbase doesn’t typically divulge much about specifics, however it’s older pitch deck (from September 2014) does give a few details about its users, such as 40% of all Coinbase users are from three states: California, New York and Texas; as well as the amount of deposits that Coinbase holds for each customer.

wallet size

Slide 14, Coinbase pitch deck

While this number likely has changed in the past 15 months, ignoring the fluctuation in token prices it may be the case that the average deposit per customer has not increased significantly.  Why might that be?

Above is a 1-year chart produced by Coinbase showing the daily amount of off-chain transactions.  Or rather, transactions that take place on their own internal system.  As we can see, the volume is roughly the same across all of 2015.  If usage actually was increasing or user numbers were growing substantially, then we should be able to see some visible changes upward.  This has not occurred.

P2SH

P2SH chart

Source: P2SH.info

P2SH, or pay to script hash, is probably the most common method for securing bitcoins (or UTXOs) via multisig.  As shown in the two charts above, over the course of 2015 the percentage of existing bitcoins held in P2SH addresses increased from 6% to around 10% today.  Though over the past 5 months the amount has effectively plateaued.

According to marketing material, BitGo processes more than 50% of all P2SH transactions (more than all other service providers combined).  So this may also be an upward bound indicator of people who are savvy enough to secure their bitcoins via multisig (note: many custodial wallets such as Coinbase and Xapo purportedly secure certain layers of “cold wallets” via multisig and P2SH is just one method of doing so).

Multisig and Top Rich List

The chart above visualizes the percent of bitcoins owned by each address balance range.

As of block height 390,000 approximately 98.16% of all bitcoins reside on 513,648 addresses.  This is not to say there are only half a million bitcoin users on the planet, as some of the addresses are owned or controlled by multiple people (such as a custodial wallet or exchange).  But it is probably a pretty good proxy of on-chain users — users who actually control the private key and do not use an intermediary.

This is roughly twice as many on-chain users as twenty-one months ago (in April 2014) — at block height 295,000 — when I first started looking at this source.1

One interesting trend that ties in with the multisig window above is that at one point as recently as April 2014, none of the Top 500 addresses were using multisig.  But over the past year, as seen by the “3” prefix at the start of addresses, we can visibly see several dozen Top 500 addresses that now use multisig (note: some of the other addresses may use hardware wallets such as Trezor, Ledger or Case and not use multisig).

ATMs

bitcoin atm

Source: CoinATMRadar

I once heard a Bitcoin reporter tell me in the August 2014 that BitAccess was on track to be the first billion dollar Bitcoin company.  Whoops!

As we know empirically, the ATM industry in general is very low margin; companies make it up on volume which none of these startups have been able to thus far.  Despite the hype, over the past a grand total of 536 Bitcoin ATMs have been installed, roughly 275 per year.

For comparison, according to the ATM Association there are roughly 3 million ATMs globally.

Can’t this change in the future?   Perhaps, but recall that the average two-way (roundtrip) Bitcoin ATM fee is ~11% and there are only a handful located in emerging markets.  Why is the fee relatively high?  Because ATM owners are not operating charities and want to turn a profit.  If Bitcoin adoption truly was going gang busters you would expect this number to be growing exponentially and not linearly.

Bitcoin volatility

bitcoin volatility seriesAdmittedly this chart doesn’t have to deal with adoption.  There is no scientific correlation between the amount of usage or users of cryptocurrencies and the volatility of its trading pairs.

The reason I have included this is because in the Coinbase post above they state that bitcoin volatility is decreasing… relative to the Russian ruble and Brazilian real.  Yet from the volatility chart above, it is clear that volatility has not really decreased.  The BTC/USD volatility may be less than what it was in 2012, but on any given day it is still 10x more volatile than CNY/USD and 6x more volatile than USD/EUR — trading pairs that represent the real lionshare of global economic activity.

VC Funding

vc funding

Source: btcuestion / Coindesk

The chart above was created by user “btcuestion” and is based on data in the Coindesk venture investment spreadsheet.  It is a month by month bar chart over the course of the past two years.

What it shows is that VC investment in cryptocurrency-related startups peaked in Q1 2015.  Yet, the bulk of the Q1 investments came from the 21inc announcement which itself was an aggregation of its previous rounds that had taken place over the previous 18 months.  So funding may have actually peaked in Q4 2014.2

What this probably illustrates is that aside from a couple of permabull investors (such as Boost and Pantera), most serious venture capital has decided to wait and see how the dust settles before investing anything in this space.  Why?  Basically there has been no product market fit and few viable business models.3  Sure there has been a lot of publicity, but as Kevin Collier recently explored, there does not appear to be any permanent impact of say: Bitpay sponsoring a college bowl game last year.4

Bitwage activity

user signups

Source: Bitwage

payroll volume

Source: Bitwage

The two charts above both come from Bitwage, a startup that converts payrolls into bitcoins.  Ignoring the drop-off in January 2016 (it is the beginning of a new month), for most of 2015 there were roughly 200-300 new user signups each month and about $250,000 in salaries converted as well.

Again, this is not to say that Bitwage’s service is not useful, rather that if there was increased bitcoin growth and adoption, then one proxy could be through payroll conversion.  However, as shown above, growth is linear not exponential.

Blockchain.info wallets

Above is a 2-year, nearly linear line chart from Blockchain.info depicting the “My Wallet” Number of Users.  It bears mentioning that many people still use Blockchain.info wallets like a “temporary” wallet (or burner wallet) for coin mixing, yet despite the rapid creation rate for this purpose even if we look just at the last 6 months, it is not close to being exponential.

Hash rate

But what about hash rate?  It has continually gone up and to the right the last few months, surely this is an indicator of mass adoption?

All hash rate is measuring is the amount of work being generated by an unknown amount of computers (typically ASICs) somewhere on the planet.  Hash rate typically rises when the price of bitcoins rise and falls when the price of bitcoins fall (see Appendix B).  Since prices have nearly doubled over the past four months then it stands to reason that hash rate would correspondingly increase as hashing farms deploy new capital.5

Unless each site is inspected, it’s difficult to tell if there are more hashing farms and equipment and therefore “more users.”  However, what we do know is that there are roughly the same amount of pools today (~20) as there were three years ago.6

Counterparty

counterparty transactions

Source: Blockscan

Counterparty is an embedded consensus system (see section 1): an asset issuance platform that effectively staples itself onto the Bitcoin blockchain.

As shown above, on a given day roughly 500-1000 transactions take place through the platform.  According to Laurent MT, the spikes may be related to the weekly distribution of LTBCoins.  And again, despite turnkey services and vending machines such as Tokenly and CoinDaddy (and CounterpartyChain), overall growth on the ECS has effectively plateaued over the past year.

Conclusion

Bitcoin is a solution and service provider for those who hold bitcoins.  Despite the fanfare, the conferences and the perpetual feel-good op-eds in Techcrunch, the only people who seem to use it regularly seven years later are a niche demographic group: young, white, tech-savvy men in North America and Western Europe.  Many of whom have access to multiple other payment networks and asset classes for investment.

As a result, it is probably not a surprise that instead of using bitcoins to pay for coffee on-chain each day, most private key owners prefer to “hodl” or use intermediaries.  This may make sense for those with low time preferences, but it shouldn’t then come as a surprise that there are few, if any metrics that show wide-scale adoption beyond this core demographic.  Will this change in 2016 or will the “great pivot” continue?

  1. Spam and dust (such as “tips”) likely represents the remaining 1.84% of all bitcoins (located on 99% of all addresses). []
  2. Funding has instead switched over to the fledgling non-cryptocurrency distributed ledger industry. []
  3. Anecdotally, it appears that Coins.ph, BitX and Align Commerce have each gained actual traction in their respective regions. []
  4. Stephen Pair provided a new chart for Forbes which purportedly shows a large uptick in transactions processed.  This “surge” occurred during the same month as Bitcoin Black Friday and should be looked at again in the following months to see if it was a one-off event. []
  5. There are also stories of new chips supposedly being deployed.  In practice hashing farms do the Red Queen race: replace a machine… with another machine that uses the same amount of energy. []
  6. The claim that 21inc or other mining chip manufacturers will “redecentralize mining” is a misnomer.  Mining and hashing are not the same thing.  Unless a hashing operator also runs a fully validating node, then they are part of the outsourcing process.  More people may be hashing as part of the 21inc botnet, but not mining (mining is defined as selecting transactions to include in blocks; hashers do not do this activity, pools do). []
Send to Kindle

More events and articles

The past couple of months I’ve attended a number of events and written a few external articles.  Below is a compilation of them.

Panels:

Interviews and op-eds:

Citations

Send to Kindle

Anchor’s aweigh

One comment I have noticed continually re-appear on social media over the last couple months is roughly the following:

If you’re building a new blockchain you should regularly take a hash of the network state and “anchor” it (write it) into another blockchain, for redundancy purposes.

This “anchor” idea has appeared in public material from BitFury, Factom, Tierion, Gil Luria and now 21inc (a VC-backed botnet operator).

Part of the current popularity in the anchoring meme is that some cryptocurrency enthusiasts and Bitcoin maximalists in particular want other non-cryptocurrency distributed ledgers to rely on existing cryptocurrency networks — networks that some enthusiasts own tokens to and hope that price appreciation will take place in the event that the network is used.

Ignoring the hypothetical monetary incentives, let’s assume that writing/storing network states externally is useful and it is the goal of every blockchain designers such as Bob and Alice.  Are other blockchains the only relevantly secure places that all blockchain designers should look at using?

Probably not.

For instance, if the goal is to publish a hash of a state in a media that is difficult to censor and widespread enough to retrieve over time, then there are several “old school” newspapers and magazines that can be used for such purposes (which is what Guardtime does).

For instance:

  • There are half a dozen Japanese newspapers that each have over 2 million in circulation.
  • In the UK, both The Sun and Daily Mirror have a circulation of over 1.5 million
  • Similarly, in the US, there are three companies: USA Today, The New York Times and The Wall Street Journal that also have a circulation of over 1.5 million

The question for the paranoid is, what is more likely: someone deliberately destroying and/or replacing 1.5 million newspapers which contain the hash of the network state, or someone knocking out 5,728 network nodes?

While “anchoring” the hash of state into other media may be useful, leaving it in just one blockchain — such as the Bitcoin blockchain — does not fully reduce the risk of a well-funded attacker trying to revise history.  Safety in this case comes in numbers and if it is redundancy Bob and Alice are looking for (and paranoid about), it may be worth it to publish hashes in multiple venues and media.

Similarly, if sustainability is a key concern then public goods such as cryptocurrencies have a question mark on them as well. Why?  Because there are over 100 dead altcoins now.  Convincing users — and more importantly miners — to maintain a network when it is no longer profitable to do so is an uphill challenge.1

Lastly, a well designed network (or distributed ledger in this case) that is robust and mature should not necessarily rely on “anchoring” at all.  But this dovetails into a different conversation about how to design a secure network, a topic for another post.  Either way, hash-storage-as-service, is probably not the next big trillion dollar idea for 2016.

  1. It’s a challenge for any public good, not just Bitcoin, that eventually relies solely on altruism and charity. []
Send to Kindle

The evolving distributed ledger tech landscape

Yesterday I gave an abbreviated presentation based on R3CEV research first publicly shown at the GaiaX – Blockchain University event “Blockchain Summit” held in Tokyo.

[Japanese translation 日本語]

Note: below are the citations and notes for several of the slides:

  • Slide 3: The companies in the red square boxes are some of the startups that are primarily trying to create non-cryptocurrency distributed ledgers. (Source: Startup Management)
  • Slide 6: CB Insights
  • Slide 7: CNN|Money
  • Slide 9: Twitter
  • Slide 10: CoinDesk Venture Capital aggregation
  • Slide 13: The great pivot or just this years froth? and NY Post estimate
  • Slide 15: Field of Dreams image in reference to the model that you build it first with the hope that customers come
  • Slide 19: One example of this euphemism is from Adam Draper (and a similar reference point on Twitter).  Each of these five companies has a couple product lines, one of which focuses on cryptocurrencies in a non-marginal manner.
  • Slide 21: This list could include a number of others including Tezos (DLS) and a handful of other startups including a couple in Japan
  • Slide 22: Aite Group
  • Slide 23: Collective head count for these companies is just under 100 and total funding raised (that is publicly announced) is around $10 million.  There are still more companies trying to build foundational layers (some proprietary, others open) than teams building applications on top.   Legend in parenthesis: E=Ethereum, R=Ripple, CP=Counterparty, OA=OpenAssets, TM=Tendermint
  • Slide 24: Most of the large non-bank financial institutions such as clearing houses and exchanges all have working groups focused on distributed ledger technology (e.g., CLS, SWIFT, LSEG, CME, Nasdaq, Deutsche Borse, DTCC).  The Linux Foundation project is in its formative stage.
Send to Kindle

Watermarked tokens and pseudonymity on public blockchains

As mentioned a couple weeks ago I have published a new research paper entitled: “Watermarked tokens and pseudonymity on public blockchains

In a nutshell: despite recent efforts to modify public blockchains such as Bitcoin to secure off-chain registered assets via colored coins and metacoins, due how they are designed, public blockchains are unable to provide secure legal settlement finality of off-chain assets for regulated institutions trading in global financial markets.

The initial idea behind this topic started about 18 months ago with conversations from Robert Sams, Jonathan Levin and several others that culminated into an article.

The issue surrounding top-heaviness (as described in the original article) is of particular importance today as watermarked token platforms — if widely adopted — may create new systemic risks due to a distortion of block reorg / double-spending incentives.  And because of how increasingly popular watermarked projects have recently become it seemed useful to revisit the topic in depth.

What is the takeaway for organizations looking to use watermarked tokens?

The security specifications and transaction validation process on networks such as the Bitcoin blockchain, via proof-of-work, were devised to protect unknown and untrusted participants that trade and interact in a specific environment.

Banks and other institutions trading financial products do so with known and trusted entities and operate within the existing settlement framework of global financial markets, with highly complex and rigorous regulations and obligations.  This environment has different security assumptions, goals and tradeoffs that are in some cases opposite to the designs assumptions of public blockchains.

Due to their probabilistic nature, platforms built on top of public blockchains cannot provide definitive settlement finality of off-chain assets. By design they are not able to control products other than the endogenous cryptocurrencies they were designed to support.  There may be other types of solutions, such as newer shared ledger technology that could provide legal settlement finality, but that is a topic for another paper.

This is a very important issue that has been seemingly glossed over despite millions of VC funding into companies attempting to (re)leverage public blockchains.  Hopefully this paper will help spur additional research into the security of watermarking-related initiatives.

I would like to thank Christian Decker, at ETH Zurich, for providing helpful feedback — I believe he is the only academic to actually mention that there may be challenges related to colored coins in a peer-reviewed paper.  I would like to thank Ernie Teo, at SKBI, for creating the game theory model related to the hold-up problem.  I would like to thank Arthur Breitman and his wife Kathleen for providing clarity to this topic.  Many thanks to Ayoub Naciri, Antony Lewis, Vitalik Buterin, Mike Hearn, Ian Grigg and Dave Hudson for also taking the time to discuss some of the top-heavy challenges that watermarking creates.  Thanks to the attorneys that looked over portions of the paper including (but not limited to) Jacob Farber, Ryan Straus, Amor Sexton and Peter Jensen-Haxel; as well as additional legal advice from Juan Llanos and Jared Marx.  Lastly, many thanks for the team at R3 including Jo Lang, Todd McDonald, Raja Ramachandran and Richard Brown for providing constructive feedback.

Watermarked Tokens and Pseudonymity on Public Blockchains

Send to Kindle

What challenges arise when trying to scale watermarked tokens on Bitcoin?

[Note: the following overview on scaling Bitcoin was originally included in a new paper but needed to be removed for space and flow considerations]

Looking in the past, the older Viceroy overlay network scaled at O(logN) where N is the number of peers which is different than the contentious scaling in Bitcoin, where even Core developers do not agree on how per node bandwidth actually scales.1

For instance, one group of developers thinks that per node bandwidth on the Bitcoin network scales linearly, O(n).2

The use of O(n) is a way of capturing simply whether something scales linearly or not.   O(n) means: if it takes 5 seconds to do something when there are 10 nodes, it will take 50 seconds if there are 100. An example would be washing the dishes. It takes 30 seconds per plate and you just keep going one plate after another.

In contrast, another group of developers believes bandwidth requirements squares per node, which reads as O(n2).3

O(n2) means: if it takes 5 seconds to do something when there are 10 nodes, it will take 5 hundred seconds if there are 100. O(x) notation is an approximate. That is to say, while you have increased the number of items by a factor of 10, the time taken increased by a factor of about 100.

An example here might be if Bob needs to broker bilateral contracts between all the members of a new limited partnership fund.   Four partners would require six bilateral NDAs in total. Eight partners would require 24. Thus if Bob doubled the number of partners he would need more than four times as many contracts executing.4

One calculation (BitFury 2015a) implies that in terms of block verification time, Bitcoin scales at: N(1 + 0:091 log2 N).5 For comparison, Ripple’s consensus ledger also has O(n2) scaling.67

What does this have to do with watermarked tokens?

As described in (Breitman 2015c):8

[C]olored coins are potentially nefarious to the Bitcoin ecosystem. The security of Bitcoin rests on the assumption that miners stand to lose more by departing from consensus than they stand to gain. This assumption requires a balance between the reward received by miners, and the amounts they might stand to gain by reversing transactions. If colored coins represent valuable assets, this balance might be upset, endangering the status of all transactions.

A consequence of the hold-up problem is that it could lead to vertical integration. That is to say, to prevent this type of event (holding up the whole network) from happening in the future, colored coin platforms could acquire (or build) hashing facilities and pools.

Yet if they did this, not only would they need to increase expenditures by several orders of magnitude – which is the very reason they wanted to piggy back off the existing infrastructure to begin with – but they would effectively be building a permissioned network, with very high marginal costs.

In (Breitman 2015c) the author uses a car analogy to describe the cantankerous situation colored coins have created.9

In the analogy, the author explores an alternative universe in which the car was recently created and new owners foresaw the ability to use the car in many different ways, including a new “application” called shipping.

In this scenario, the car owners unilaterally dismissed unproven alternative “truck technology” and instead designed a solution for shipping: bolt a new wooden layer on top of four cars, much like watermarked platforms bolt themselves on top of Bitcoin.

But what about all the various mechanical challenges that came with this new ad hoc design?

Breitman makes the point that, though the same functionality of a truck can be achieved by putting a slab of wood on top of four cars, choosing it as a solution when other options exist is not effective. Similarly, in the context of a closed system, it makes little sense to rely on bitcoind, though inexperienced developers may have a bias towards it:

To be sure, they were several problems with the design. The aerodynamics were atrocious, but that could be somewhat alleviated by placing a tent over the contraption. Turning was initially difficult, but some clever engineers introduced swivels on top of the car, making the process easier. The cars would not always stay at the same speed, but using radio communication between the drivers more or less remedied the issue.

But, truck technology? Well that was unproven, and also trucks looked a lot like train wagons, and the real innovation was the car, so cars had to be used!

Where am I going with this? A large number of projects in the space of distributed ledgers have been peddling solutions involving the use of colored coins within permissioned ledgers. As we’ve explained earlier, colored coins were born out of the near impossibility of amending the code base of Bitcoin. They are first and foremost a child of necessity in the Bitcoin world… a necessary evil, a fiendish yet heroic hack unlocking new functionality at a dire cost.

One could argue that reusing the core bitcoind code offers the benefit of receiving downstream bug fixes from the community. This argument falls flat as the gist of such fixes can be incorporated into any implementation. Issues encountered by Bitcoin have ranged from a lack of proper integer overflow checking to vulnerabilities with signature malleability. Such issues can potentially affect any blockchain implementation; the difficulty lies in identifying them, not in producing a patch to fix them, a comparatively straightforward process. Of course, other bugs might be introduced when developing new functionalities, but the same is true regardless of the approach undertaken.

Basing a fresh ledger, independent from the Bitcoin blockchain, on a colored coin implementation is nothing short of perversion. It is akin to designing a truck using a wooden board bolted on the top of four cars. If, for some reason, the only type of vehicle that could use a highway were sedans, that solution might make sense. But if you have the chance to build a truck and instead chose to rig a container on top of a few cars then perhaps you should first learn how to engineer trucks.

As explored in the game theory model in Appendix B and car example above, there are real security issues with using this specific layered approach in both permissionless and permissioned systems.

The typical excuse for going such route is that building a new blockchain from scratch (e.g., Ethereum, Zerocash, Tendermint, Tezos) delays market entry and could make your startup fall behind the competition.

While it may be true that spending a year or more to purposefully design a new distributed ledger network from scratch will take significant time and resources, the reasons for doing (better security and scalabity) outweigh the downsides (systemic risks and vulnerabilities). Future research should also build models with additional agents.

It also bears repeating that based on the model presented in Appendix B, if the cost of attack is very high, the more plausible outcome is to not attack. However, if it is very attractive to attack there could have a different outcome that is worth further research.

  1. See A Survey and Comparison of Peer-to-Peer Overlay Network Schemes by Lua et al. p. 10 and Big-O scaling by Gavin Andresen []
  2. Over the past five months there have been volumes of emails, forum posts and panel discussions on the topic of how Bitcoin can and does scale. One thread that is recommended to readers is a recent reddit debate between Mike Hearn (mike_hearn) and Greg Maxwell (nullc). []
  3. Why do people say that bitcoin scales according to O(n^2)? from StackExchange []
  4. I would like to thank Richard Brown for this example and illustration. []
  5. Block Size Increase from BitFury Group, p. 5 []
  6. See p. 9 from Ripple Protocol Consensus Algorithm Review by Peter Todd []
  7. Surveying literature we can see that historically there have been dozens of attempts to create decentralized peer-to-peer reputation systems that needed to be self-organizing, Sybil-resistant, fault tolerant as well as the ability to scale. A Survey and Comparison of Peer-to-Peer Overlay Network Schemes by Lua et al.; A Survey of Attack and Defense Techniques for Reputation Systems by Kevin Hoffman, David Zage and Cristina Nita-Rotaru; and Survey of trust models in different network domains by Mohammad Momani and Subhash Challa []
  8. Making sense of colored coins by Arthur Breitman []
  9. Ibid []
Send to Kindle

A brief literature review

[Note: the following literature review was originally included in a new paper but needed to be removed for space and flow considerations]

How has previous research looked at information security?

Academic literature covering distributed computing and economics of information security and specifically peer-to-peer networks “Before Bitcoin” spans several decades.

Surveying literature (Lua et al. 2004; Hoffman et al. 2007; Momani and Challa 2009) we can see that there have been dozens of attempts to create decentralized peer-to-peer reputation systems that needed to be self-organizing, Sybil-resistant and fault tolerant.1

For instance, the Content Addressable Network (CAN), Chord, Kademlia and the Cooperative File System (CFS) each had a variety of characteristics that attempted to stave off abuse from attackers due to the environments they operated in (e.g., a distributed decentralized P2P infrastructure). Some used public-private key pairs, content hashes and others used NodeID.

These surveys also looked at Distributed Hash Trees (DHT) which have been known to be vulnerable to a number of attacks including Eclipse attacks, where the peering network itself comes under attack (which Bitcoin’s network is also prone to).2

What about other game theory issues? For example in (Lua et al., 2004) the authors wrote that:3

The ability to overcome free-rider problems in P2P overlay networks will definitely improve the system’s reliability and its value.

Sybil attacked termed by Douceur4 described the situation whereby there are a large number of potentially malicious peers in the system and without a central authority to certify peers’ identities. It becomes very difficult to trust the claimed identity. Dingledine et al.,5 proposes puzzles schemes, including the use of micro-cash, which allows peers to build up reputations. Although this proposal provides a degree of accountability, this still allows a resourceful attacker to launch attacks.

This is the same problem discussed above, that (Rosenfeld 2012) runs into regarding how to pay nodes on an open network.

How do these researchers believe it could be solved or fixed? According to (Lua et al., 2004):6

Having some sort of incentive model using economic and game theories, for P2P peers to collaborate is crucial to create an economy of equilibrium. When non-cooperative users benefit from free-riding on others’ resources, the tragedy of the commons7 is inevitable. Such incentives implementation in P2P overlay services would also provide a certain level of self-regulatory auditing and accounting behavior for resource sharing.

As shown above, despite rhetoric at Bitcoin-related conferences, many of the challenges facing Bitcoin today are in fact known problems facing decentralized peer-to-peer networks in general. The problem space for preventing Sybil attacks was and is relatively well-defined, Bitcoin again side-steps the actual solution by making it economically expensive, but not technically impossible to conduct history-reversing attacks, or even Sybil attacks on the gossip network.

P2Prep is a reputation system designed to “mitigate the effects of selfish and malicious peers in an anonymous, completely decentralized system.”8

How did it do this?

The system guards the anonymity of users and the integrity of packets through the use of public key cryptography. All replies are signed using the requester’s public key, protecting the identity of the responder and the integrity of the data. Only the requester is able to decrypt the packet and check the validity of the information.9

Credence (Walsh and Sirer 2006) is another peer-to-peer reputation system that uses gossip-based techniques to disseminate information.10 It defends itself:11

A key security consideration in the Credence system is the use of mechanisms to prevent spoofed votes or votes generated by fake identities. The system guards against such attacks by issuing digital certificates in an anonymous but semi-controlled fashion. The authors propose to mitigate Sybil attacks by requiring expensive computation on the part of the client before the server grants a new digital certificate. Every voting statement is digitally signed by the originator and anyone can cryptographically verify the authenticity of any given voting statement.

In (Momani and Challa 2010) the authors looked at security and trust concepts surrounding wireless sensor networks (WSN). At first glance this may seem unrelated to peer-to-peer networks but there are many similarities:12

The security issue has been raised by many researchers [14 – 24], and, due to the deployment of WSN nodes in hazardous and/or hostile areas in large numbers, such deployment forces the nodes to be of low cost and therefore less reliable or more prone to overtaking by an adversary force. Some methods used, such as cryptographic authentication and other mechanisms [25 – 32], do not entirely solve the problem. For example, adversarial nodes can have access to valid cryptographic keys to access other nodes in the network. The reliability issue is certainly not addressed when sensor nodes are subject to system faults. These two sources of problems, system faults and erroneous data or bad routing by malicious nodes, can result in the total breakdown of a network and cryptography by itself is insufficient to solve these problems. So new tools from different domains social sciences, statistics, e-commerce and others should be integrated with cryptography to completely solve the unique security attacks in WSNs, such as node capturing, Sybil attacks, denial of service attacks, etc.

In their survey they identified previous research that had looked at some of these same issues including In (Xiong and Liu 2003) where the authors attempted to build a reputation-based trust model for peer-to-peer distributed commerce platforms and use game theory to ameliorate the trust parameters by threats from malicious attacks.13

Going back more than fifteen years we can see that other researchers (Lamport 1998) and (Castro and Liskov 1999), that successful attempts were made to “use cryptographic techniques to prevent spoofing and replays and to detect corrupted messages” on a network that replicates services in the face of Byzantine faults.14

Volumes more can and will likely be written covering the research on these specific topics due in large part to the integral role that different types of information and financial networks play in the lives of consumers and businesses alike.

  1. A Survey and Comparison of Peer-to-Peer Overlay Network Schemes by Lua et al.; A Survey of Attack and Defense Techniques for Reputation Systems by Kevin Hoffman, David Zage and Cristina Nita-Rotaru; and Survey of trust models in different network domains by Mohammad Momani and Subhash Challa []
  2. Eclipse Attacks on Bitcoin’s Peer-to-Peer Network by Heilman et al. []
  3. A Survey and Comparison of Peer-to-Peer Overlay Network Schemes by Lua et al., p. 11 []
  4. J. R. Douceur, “The sybil attack,” in Proceedings of the First International Workshop on Peer-to-Peer Systems , March 7-8 2002, pp. 251– 260. []
  5. R.   Dingledine,   M.   J.   Freedman,   and   D.   Molnar,   “Accountability measures for peer-to-peer systems,” in Peer-to-Peer: Harnessing the Power of Disruptive Technologies , D. Derickson, Ed.     O’Reilly and Associates, November. []
  6. A Survey and Comparison of Peer-to-Peer Overlay Network Schemes by Lua et al., p. 20 []
  7. G. Hardin, “The tragedy of the commons,” Science , vol. 162, pp. 1243– 1248, 1968. []
  8. A Survey and Comparison of Peer-to-Peer Overlay Network Schemes by Lua et al., p. 28. Among other startups, Mnet was a peer-to-peer distributed data store, whose (former) employees would go on to help create BitTorrent and Tahoe-LAFS. This was during the same survey period. []
  9. Ibid, p. 29 []
  10. Experience with an Object Reputation System for Peer-to-Peer Filesharing by Kevin Walsh and Emin Gün Sirer []
  11. A Survey of Attack and Defense Techniques for Reputation Systems by Kevin Hoffman, David Zage and Cristina Nita-Rotaru, p. 30 []
  12. Survey of trust models in different network domains by Mohammad Momani and Subhash Challa []
  13. A Reputation-Based Trust Model for Peer-to-Peer eCommerce Communities by Li Xiong and Ling Liu []
  14. Practical Byzantine Fault Tolerance by Miguel Castro and Barbara Liskov. According to Leslie Lamport, in The Part-Time Parliament, p. 23: “The Paxon Parliament protocol provides a distributed, fault-tolerant imiplmentation of the database system.” []
Send to Kindle

Creative angles of attacking proof-of-work blockchains

[Note: the following views were originally included in a new paper but needed to be removed for space and flow considerations]

While most academic literature has thus far narrowly focused under the assumption that proof-of-work miners such as those used in Bitcoin will behave according to a “goodwill” expectation, as explored in this paper, there may be incentives that creative attackers could look to exploit.

Is there another way of framing this issue as it relates to watermarked tokens such as colored coins and metacoins?

Below are comments from several thought-leaders working within the industry.

According to John Light, co-founder of Bitseed:1

When it comes to cryptocurrency, as with any other situation, an attacker has to balance the cost of attacking the network with the benefit of doing so. If an attacker spends the minimum amount required to 51% attack bitcoin, say $500 million, then the attacker needs to either be able to short $500 million or more worth of BTC for the attack to be worth it, or needs to double spend $500 million or more worth of BTC and receive some irreversible benefit and not get caught (or not have consequences for getting caught), all while taking into consideration the loss of future revenues from mining honestly. When you bring meta-coins into the equation, things get even murkier; the cost is less dependent on the price of bitcoin or future mining revenues, and depends more on the asset being attacked, whether it’s a stock sale or company merger that’s being prevented, or USD tokens being double-spent.

There’s no easy answer, but based on the economics of the situation, and depending on the asset in question, it doesn’t seem wise to put more value on chain than the market cap of BTC itself (as a rough benchmark – probably not that exact number, but something close to it).

Not a single study has been publicly published looking at this disproportionalism yet it is regularly touted at conferences and social media as a realistic, secure, legal possibility.

According to Vitalik Buterin, creator of Ethereum:2

There are actually two important points here from an economics perspective. The first is that when you are securing $1 billion on value on a system with a cryptoeconomic security margin that is very small, that opens the door to a number of financial attacks:

  1. Short the underlying asset on another exchange, then break the system
  2. Short or long some asset at ultrahigh leverage, essentially making a coin-flip bet with a huge amount of money that it will go 0.1% in one direction before the other. If the bet pays off, great. If it does not pay off, double spend.
  3. Join in and take up 60%+ of the hashrate without anyone noticing. Then, front-run everyone. Suppose that person A sends an order “I am willing to buy one unit of X for at most $31”, and person B sends an order “I am willing to sell one unit of X for at least $30”. As a front-runner, you would create an order “I am willing to sell one unit of X for at least $30.999” and “I am willing to buy one unit of X for at most $30.001”, get each order matched with the corresponding order, and earn $0.998 risk-free profit. There are also of course more exotic attacks.

In fact, I could see miners even without any attacks taking place front-running as many markets as they can; the ability to do this may well change the equilibrium market price of mining to the point where the system will, quite ironically, be “secure” without needing to pay high transaction fees or have an expensive underlying currency.

The second is that assets on a chain are in “competition” with each other: network security is a public good, and if that public good is paid for by inflation of one currency (which in my opinion, in a single-currency-chain environment, is economically optimal) then the other currencies will gain market share; if the protocol tries to tax all currencies, then someone will create a funky meta-protocol that “evades taxes by definition”: think colored coins where all demurrage is ignored by definition of the colored coin protocol. Hence, we’ll see chains secured by the combination of transaction fee revenue and miner front running.

Unsolved economics question: would it be a good thing or a bad thing if markets could secure themselves against miner frontruns? May be good because it makes exchanges more efficient, or bad because it removes a source of revenue and reduces chain security.

Cryptoeconomics is a nascent academic field studying the confluence of economics, cryptography, game theory and finance.3

Piotr Piasecki, a software developer and independent analyst explained:4

If a malicious miner sees a big buy order coming into the market that would move the price significantly, they can engage in front running – the buy order could be pushed to the back of the queue or even left out until the next block, while the miner buys up all of the current stock and re-lists it at a higher price to turn a profit. Alternatively, when they see there is a high market pressure coming in, especially in systems that are inefficient by design, they can buy the orders up one by one by using their power to include any number of their own transactions into a block for free, and similarly re-list them for people to buy up.

Or in other words, because miners have the ability to order transactions in a block this creates an opportunity to front run. If publicly traded equities are tracked as a type of colored coin on a public blockchain, miners could order transaction in such a way as to put certain on-chain transactions, or trades in this case, to execute before others.

Robert Sams, co-founder of Clearmatics, previously looked at the bearer versus registered asset challenge:5

One of the arguments against the double-spend and 51% attacks is that it needs to incorporate the effect a successful attack would have on the exchange rate. As coloured coins represent claims to assets whose value will often have no connection to the exchange rate, it potentially strengthens the attack vector of focusing a double spend on some large-value colour. But then, I’ve always thought the whole double-spend thing could be reduced significantly if both legs of the exchange were represented on a single tx (buyer’s bitcoin and seller’s coloured coin).

The other issue concerns what colour really represents. The idea is that colour acts like a bearer asset, whoever possesses it owns it, just like bitcoin. But this raises the whole blacklisted coin question that you refer to in the paper. Is the issuer of colour (say, a company floating its equity on the blockchain) going to pay dividends to the holder of a coloured coin widely believed to have been acquired through a double-spend? With services like Coin Validation, you ruin fungibility of coins that way, so all coins need to be treated the same (easy to accomplish if, say, the zerocoin protocol were incorporated). But colour? The expectations are different here, I believe.

On a practical level, I just don’t see how pseudo-anonymous colour would ever represent anything more than fringe assets. A registry of real identities mapping to the public keys would need to be kept by someone. This is certainly the case if you ever wanted these assets to be recognised by current law.

But in a purely binary world where this is not the case, I would expect that colour issuers would “de-colour” coins it believed were acquired through double-spend, or maybe a single bitcoin-vs-colour tx would make that whole attack vector irrelevant anyway. In which case, we’re back to the question of what happens when the colour value of the blockchain greatly exceeds that of the bitcoin monetary base? Who knows, really depends on the details of the colour infrastructure. Could someone sell short the crypto equity market and launch a 51% attack? I guess, but then the attacker is left with a bunch of bitcoin whose value is…

The more interesting question for me is this: what happens to colour “ownership” when the network comes under 51% control? Without a registry mapping real identities to public keys, a pseudo-anonymous network of coloured assets on a network controlled by one guy is just junk, no longer represents anything (unless the 51% hasher is benevolent of course). Nobody can make a claim on the colour issuer’s assets. So perhaps this is the real attack vector: a bunch of issuers get together (say, they’re issuers of coloured coin bonds) to launch a 51% attack to extinguish their debts. If the value of that colour is much greater than cost of hashing 51% of the network, that attack vector seems to work.

On this point, Jonathan Levin, co-founder of Chainalysis previously explained that:6

We don’t know how much proof of work is enough for the existing system and building financially valuable layers on top does not contribute any economic incentives to secure the network further. These incentives are fixed in terms of Bitcoin – which may lead to an interesting result where people who are dependent on coloured coin implementations hoard bitcoins to attempt to and increase the price of Bitcoin and thus provide incentives to miners.

It should also be noted that the engineers and those promoting extensibility such as colored coins do not see the technology as being limited in this way. If all colored coins can represent is ‘fringe assets’ then the level of interest in them would be minimal.

Time will tell whether this is the case. Yet if Bob could decolor assets, in this scenario, an issuer of a colored coin has (inadvertently) granted itself the ability to delegitimize the bearer assets as easily as it created them. And arguably, decoloring does not offer Bob any added insurance that the coin has been fully redeemed, it is just an extra transaction at the end of the round trip to the issuer.

  1. Personal correspondence, August 10, 2015. Bitseed is a startup that builds plug-and-play full nodes for the Bitcoin network. []
  2. Personal correspondence, August 13, 2015. []
  3. See What is cryptoeconomics? and Formalizing Cryptoeconomics by Vlad Zamfir []
  4. Mining versus Consensus algorithms in Crypto 2.0 systems by Piotr Piasecki []
  5. As quoted in: Will colored coin extensibility throw a wrench into the automated information security costs of Bitcoin? by Tim Swanson; reused with permission. []
  6. This example originally comes from Will colored coin extensibility throw a wrench into the automated information security costs of Bitcoin? by Tim Swanson; reused with permission. []
Send to Kindle

A few known Bitcoin mining farms

[Note: the following overview on known Bitcoin mining farms was originally included in a new paper but needed to be removed for space and flow considerations]

Several validators on the Bitcoin network, as well as many watermarked token issuers, are identifiable and known.1 What does this mean?  Many Bitcoin validators are drifting usage outside the pseudonymous context of the original network due to their use of specialty equipment that creates a paper trail.  In other words, pseudonymity has given way to real world identity.  Soon issuers of color will likely follow because they too have strong ties to the physical, off-chain world.

For instance, on August 4, 2015, block 368396 was mined by P2Pool. This is notable for two reasons.

The first is that the block included a transaction sent from Symbiont.io, a NYC-based startup building “middleware” that enables organizations and financial institutions to create and use ‘smart securities’ off-chain between multiple parties and have the resulting transaction hashed onto a blockchain, in this case, the Bitcoin blockchain.2

Several weeks later, Symbiont announced that it would begin using their “stack” to provide similar functionality on a permissioned ledger.3 This follows a similar move by T0.com – a wholly owned subsidiary of Overstock.com – which initially used Open Assets to issue a $5 million “cryptobond” onto the Bitcoin blockchain, but have subsequently switched to using a “blockchain-inspired” system designed by Peernova.456

The second reason this was notable is that the block above, 368396, included at least one transaction from Symbiont which was mined by a small pool called P2Pool.7 Unlike other pools discussed in this paper, P2Pool is not continually operated in a specific region or city.

It is decentralized in that all participants (hashers) must run their own full Bitcoin nodes which stand in contrast with pools such as F2Pool, KnC mining pool and BTCC (formerly called BTC China), where the pool operator alone runs the validating node and the labor force (hashers) simply search for a mid-state that fulfills the target difficulty.8

Due to this resource intensive requirement (running a full node requires more bandwidth and disk space than merely hashing itself), P2Pool is infrequently used and consequently comprises less than 1% of the current network hashrate.

P2Pool’s users are effectively pseudonymous. Due to the intended pseudonymity it is also unclear where the transaction fees and proceeds of hashing go. For instance, do the hashers comprising this pool benefit from the proceeds of illicit trade or reside in sanctioned countries or who to contact in the event there is a problem? And unlike in other pools, there is no customer service to call and find out.

Bitcoin’s – and P2Pool’s – lack of terms of service was intentionally done by design (i.e., caveat emptor). And in the event of a block reversal, censored transaction or a mere mistake by end-users, as noted above there is no contract, standard operating procedure or EULA that mining pools (validators) must adhere to. This is discussed in section 3.

This pseudonymous arrangement was the default method of mining in 2009 but has evolved over the years. For example, there are at least two known incidents in which a miner was contacted and returned fees upon request.

Launched in late summer of 2012 and during the era of transition from GPUs and FPGA mining, ASICMiner was one of the first publicly known companies to create its own independent ASIC mining hardware. Its team was led by “FriedCat,” a Chinese businessman, who custom designed and integrated ASIC chips called Block Eruptors, ASICMiner operated their own liquid immersion facility in Hong Kong.9

At its height, ASICMiner (which solo-mined similar to KnC and BitFury do today) reached over 10% of the network hashrate and its “shareholders” listed its stock on GLBSE (Global Bitcoin Stock Exchange), GLBSE is a now defunct virtual “stock market” that enabled bitcoin users to purchase, trade and acquire “shares” in a variety of listed companies.10 GLBSE is notable for having listed, among other projects, SatoshiDice which was later charged by the Securities and Exchange Commission (SEC) for offering unregistered securities to the public.1112

While unregistered stock exchanges catering to cryptocurrency users and China-based mining pools may be common sights today, on August 28, 2013, a bitcoin user sent a 200 bitcoin fee that was processed by ASICMiner.13 Based on then-market rates, this was approximately worth $23,518.14 The next day, for reasons that are unknown, ASICMiner allegedly sent the errant fee back to the original user.15 At the time, one theory proposed by Greg Maxwell (a Bitcoin Core developer) was that this fee was accidentally sent due to a bug with CoinJoin, a coin-mixing service.16

Liquid Bitcoin

Liquid cooled hashing equipment at ASICMiner in 2013. Source: Xiaogang Cao

The second notable incident involved BitGo, a multisig-as-a-service startup based in Palo Alto and AntPool, a large China-based pool (which currently represents about 15% of the network hashrate) operated by Bitmain which also manufacturers Antminer hardware that can be acquired directly from the company (in contrast to many manufacturers which no longer sell to the public-at-large). On April 25, 2015 a BitGo user, due to a software glitch, accidentally sent 85 bitcoins as a mining fee to AntPool. Based on then-market rates, this was worth approximately $19,197.17

The glitch occurred in BitGo’s legacy recovery tool which used an older version of a library that causes a 32-bit truncation of values and results in a truncation of outputs on the recovery transaction.18 To resolve this problem, the user “rtsn” spent several days publicly conversing with tech support (and the community) on Reddit.19

Eventually the glitch was fixed and Bitmain – to be viewed as a “good member of the community” yet defeating the purpose of a one-way-only, pseudonymous blockchain – sent the user back 85 bitcoins.

May Bitcoin Fee

Fee to Bitmain (Antpool) highlighted in red on Total Transaction Fee chart.  Source: Blockchain.info

On September 11, 2015 another user accidentally sent 4.6 bitcoins (worth $1,113) as a fee to a mining pool, which in this instance was AntPool.20 Bitmain, the parent company, once again returned the fee to the user.

Do we know about other farms?21

HaoBTC is a newly constructed medium-sized hashing farm located in Kangding, western Sichuan, near the Eastern border with Tibet.22 It currently costs around 1.5 million RMB per petahash (PH) – or $242,000 – to operate per year. This includes the infrastructure and miner equipment costs. It does not include the operating costs which consists of: electricity, labor, rent and taxes (the latter two are relatively negligible).

The facility itself cost between $600,000 – $700,000 to build (slightly less than the $1 million facility BitFury built in 2014 in the Republic of Georgia) and its electrical rate of 0.2 RMB per kWh comes from a nearby hydroelectric dam which has a 25,000 kW output (and cost around $10 million to construct).23

In dollar terms this is equivalent to around $0.03 / kWh (during the “wet” or “summer” season). For perspective, their electric bill in August 2015 came in at 1.4 million RMB (roughly $219,000); thus electricity is by far the largest operating cost component.

When all the other costs are accounted for, the average rises to approximately $0.045 per kWh. The electricity rate is slightly more expensive (0.4 RMB or $0.06) during winter due to less water from the mountains. The summer rate is roughly the same price as the Washington State-based hashing facilities which is the cheapest in the US (note: it bears mentioning that Washington State partly subsidizes hydroelectricity).

HaoBTC

HaoBTC staff installing hashing equipment. Source: Eric Mu

At this price per joule it would cost around $105 million to reproduce “work” generated by the 450 petahash Bitcoin blockchain. Due to a recent purchase of second-hand ASICMiner Tubes, HaoBTC currently generates just over 10 PH and they are looking to expand to 12 PH by the end of the year.24 The key figure that most miners are interested in is that at the current difficulty level it costs around $161 for HaoBTC’s farm to create a bitcoin, giving them a nearly 100% margin relative to the current market price.

The ASIC machines they – and the rest of the industry uses – are single use; this hashing equipment cannot run Excel or Google services, or even bitcoind. Thus common comparisons with university supercomputers is not an apples-to-apples comparison as ASIC hashing cannot do general purpose computing; ASIC hashing equipment can perform just one function.25

There is also a second-hand market for it. For instance, hashing facilities such as HaoBTC actively look to capitalize off their unique geographical advantages by using older, used hardware. And there is a niche group of individuals, wanting to remain anonymous, that will also purchase older equipment.26

Although individual buyers of new hashing equipment such as Bob, do typically have to identify themselves to some level, both Bob can also resell the hardware on the second-hand market without any documentation. Thus, some buyers wanting to buy hashing equipment anonymously can do so for a relative premium and typically through middlemen.2728

While Bitbank’s BW mining farm and pool have been in the news recently29, perhaps the most well-known live visual of mining facilities is the Motherboard story on a large Bitcoin mining farm in Dalian, Liaoning:30

Incidentally, while Motherboard actually looked at just one farm, the foreigner helping to translate for the film crew independently visited another farm in Inner Mongolia which during the past year Bitbank apparently acquired.31

Are there any other known facilities outside of China?32

Genesis Mining

Source: Business Insider / Genesis Mining

Genesis Mining is a cloudhashing service provider that purportedly has several facilities in Iceland.33 According to a recent news story the company is one of the largest users of energy on the island and ignoring all the other costs of production (aside from electricity), it costs about $60 to produce a bitcoin.34 However, when other costs are included (such as hardware and staffing) the margin declines to — according to the company — about 20% relative to the current bitcoin price. At the time of the story, the market price of a bitcoin was around $231.

The four illustrations above are among a couple dozen farms that generate the majority of the remaining hashrate.

What does this have to do with colored coins?

The network was originally designed in such a way that validators (block makers) were pseudonymous and identification by outside participants was unintended and difficult to do.  If users can now contact validators, known actors in scenic Sichuan, frigid Iceland or rustic Georgia, why not just use a distributed ledger system that already identifies validators from the get go?  What use is proof-of-work at all? Why bother with the rhetoric and marginal costs of pseudonymity?

The social pressure type of altruism noted above (e.g,. Bitmain and BitGo returning fees) actually could set a nebulous precedent: once block rewards are reduced and fees begin to represent a larger percentage of miner revenue, it will no longer be an “easy” decision to refund the user in the event there is a mistake.35 If Bitmain did not send a refund, this backup wallet error would serve as a powerful warning to future users to try and not make mistakes.

While there have been proposals to re-decentralize the hashing process, such as a consumer-device effort led by 21inc which amounts to creating a large corporate operated botnet, one trend that has remained constant is the continued centralization of mining (block making) itself.3637 The motivation for centralizing block making has and continues to be about one factor: variance in payouts.38 Investors in hashing prefer stable payouts over less stable payouts and the best way to do that with the current Poisson process is to pool capital (much like pooling capital in capital markets to reduce risk).

Whether or not these trends stay the same in the future are unknown, however it is likely that the ability to contact (or not contact) certain pools and farms will be an area of continued research.

Similarly one other potential drawback of piggy backing on top of a public blockchain that could be modeled in the future is the introduction of a fat tail risk due to the boundlessness of the price of the native token.39 In the case of price spikes even if for short time can create price distortions or liquidity problem on the off-chain asset introducing a correlation between the token and the asset that theoretically was not supposed to be there.

  1. For instance, the staff of Let’s Talk Bitcoin issues LTBCoin on a regular basis to listeners, content creators and commenters. []
  2. Wall Street, Meet Block 368396, the Future of Finance from Bloomberg []
  3. On August 20, 2015, Symbiont announced it is also building a permissioned ledger product. See also the second half of Bitcoin’s Noisy Size Debate Reaches a Hard Fork from The Wall Street Journal, Why Symbiont Believes Blockchain Securities Are Wall Street’s Future from CoinDesk and Why Symbiont Believes Blockchain securities are Wall Street’s Future []
  4. The CoinPrism page for the specific token that Overstock.com initially used for the “cryptobond” can be viewed here; similarly the file on the T0 domain that verifies its authenticity can be seen here. See also: World’s First Corporate “Cryptobond” was issued using Open Assets []
  5. Overstock CEO Uses Bitcoin Tech to Spill Wall Street Secret from Wired and Overstock.com and FNY Capital Conclude $5 Million Cryptobond Deal from Nasdaq []
  6. One reviewer likened the Overstock “cryptobond” proof of concept as a large wash trade: ”Basically it’s a cashless swap of paper and thus no currency settlement. And the paper has no covenants and thus very easy to digitally code. Basically Overstock is paying FNY a spread of 4% for doing this deal. And if the bond and loan are called simultaneously, say in the next month, that means that Overstock paid FNY about $16,667.00 to do this trade. And since there was no cash exchanged, I am presuming, then this is smoke and mirrors. But they actually did it. However, I don’t see much of a business model where the issuer of a bond has to simultaneously fund the investor with a loan to buy the bond and pay him 33 basis points to boot!” []
  7. P2Pool wiki and P2Pool github []
  8. See Target, How Bitcoin Hashing Works and On Mining by Vitalik Buterin []
  9. ASICMINER: Entering the Future of ASIC Mining by Inventing It from Bitcoin Talk, Mystery in Bitcoinland…. the disappearance of FriedCat from Bitcoin Reporter; Chinese Mining mogul FriedCat has stolen more than a million in AM hash SCAM from Bitcoin Talk and Visit of ASICMINER’s Immersion Cooling Mining Facility from Bitcoin Talk []
  10. See 12.2 Pool and network miner hashrate distributions from Organ of Corti and Bitcoin “Stock Markets” – It’s Time To Have A Chat from Bitcoin Money []
  11. See SEC Charges Bitcoin Entrepreneur With Offering Unregistered Securities from SEC and the Administrative Proceeding order []
  12. In (Rosenfeld 2012) the author noted that one of the risks for running an “alternative to traditional markets” – such as GLBSE – were the regulatory compliance hurdles. Overview of Colored Coins by Meni Rosenfeld, p. 4. []
  13. Block 254642 and Some poor person just paid a 200BTC transaction fee to ASICminer. []
  14. According to the Coindesk Bitcoin Price Index, the market price of a bitcoin on August 28, 2013 was approximately $117.59. []
  15. Included in block 254769 []
  16. A thread discussed this theory: Re: CoinJoin: Bitcoin privacy for the real world (someday!) []
  17. According to the Coindesk Bitcoin Price Index, the market price of a bitcoin on April 25, 2015 was approximately $225.85. []
  18. The user “vytah” debugged this issue in a reddit thread: Holy Satoshi! Butter pays 85Btc transaction fees for a 16Btc transaction. Is this the largest fee ever paid? []
  19. Help! Losing Over 85 BTC Because of BitGo’s Flawed Recovery Process! on Reddit []
  20. To AntMiner, miner of block #374082. I did an accidental 4.6 BTC fee. on Reddit []
  21. Readers may be interested in a little more history regarding self-identification by miners: Slush, the first known pool, began publicly operating at the end of November 2010 and was the first to publicly claim a block (97838).   Eligius was announced on April 27, 2011 and two months later signed the first coinbase transaction (130635).   DeepBit publicly launched on February 26, 2011 and at one point was the most popular pool, reaching for a short period in May 2011, more than 50% of the network hashrate. See Deepbit pool owner pulls in $112* an hour, controls 50% of network and DeepBit pool temporarily reaches critical 50% threshold from Bitcoin Miner and What has been the reaction to permissioned distributed ledgers? []
  22. This information comes from personal correspondence with Eric Mu, July 7, 2015 as well as two other public sources: Inside a Tibetan Bitcoin Mine: The Race for Cheap Energy from CoinTelegraph and Three months living in a multi-petahash BTC mine in Kangding, Sichuan, China from Bitcoin Talk []
  23. Last summer BitFury quickly built a relatively cheap data center in Georgia partly due to assistance from the national government. See BitFury Reveals New Details About $100 Million Bitcoin Mine from CoinDesk []
  24. Personal correspondence with Eric Mu, August 10, 2015 []
  25. One common talking point by some Bitcoin enthusiasts including venture capitalists is that Google’s computers, if repurposed for mining Bitcoin, would generate only 1-2% of the network hashrate – that the Bitcoin network is “faster” than all of Google’s data centers combined. This is misleading because these Bitcoin hashing machines cannot provide the same general purpose utility that Google’s systems can. In point of fact, the sole task that ASIC hashing equipment itself does is compute two SHA256 multiplications repeatedly. []
  26. Some academic literature refers to miners on the Bitcoin network as “anonymous participants.” In theory, Bitcoin mining can be anonymous however by default mining was originally a pseudonymous activity. Participants can attempt to remain relatively anonymous by using a variety of operational security methods or they can choose to identify (“doxx”) themselves as well. See The Bitcoin Backbone Protocol: Analysis and Applications by Garay et al. []
  27. Thanks to Anton Bolotinsky for this insight. []
  28. This is similar to the “second-hand” market for bitcoins too: bitcoins originally acquired via KYC’ed gateways sometimes end up on sites like LocalBitcoins.com (akin to “Uber for bitcoins”) – where the virtual currency is sold at a premium to those wanting to buy anonymously. []
  29. The Unknown Giant: A First Look Inside BW, One of China’s Oldest and Largest Miners from Bitcoin Magazine []
  30. Inside the Chinese Bitcoin Mine That’s Grossing $1.5M a Month from Motherboard []
  31. Jake Smith, the translator, also wrote a short story on it: Inside one of the World’s Largest Bitcoin Mines at The Coinsman []
  32. While it is beyond the scope of this paper, there are a couple of general reasons why medium-sized farms such as HaoBTC have been erected in China. Based upon conversations with professional miners in China one primary reason is that both the labor and land near energy generating facilities is relatively cheap compared with other parts of the world. Furthermore, energy itself is not necessarily cheaper, unless farms managers and operators have guanxi with local officials and power plant owners.   And even though it is common to assume that due to the capital controls imposed at a national level – citizens are limited to the equivalent of $50,000 in foreign exchange per year – there have been no public studies as to how much capital is converted for these specific purposes. There are other ways to avoid capital controls in China including art auctions and pawn shops on the border with Macau and Hong Kong. See also How China’s official bank card is used to smuggle money from Reuters and What Drives the Chinese Art Market? The Case of Elegant Bribery by Jia Guo See On Getting Paid From China. Is There Really A $50,000 Yearly Limit? from China Law Blog and Bitcoins: Made in China []
  33. Look inside the surreal world of an Icelandic bitcoin mine, where they literally make digital money from Business Insider []
  34. It is unclear how much hashrate they actually operate or control, a challenge that plagues the entire cloudhashing industry leading to accusations of fraud. []
  35. And this is also a fundamental problem with public goods, there are few mechanisms besides social pressure and arbitrary decision making to ration resources. As described in (Evans 2014), since miners are the sole labor force, they create the economic outputs (bitcoins) and security, it is unclear why they are under any expectation to return fees in a network purposefully designed to reduce direct interactions between participants. See Economic Aspects of Bitcoin and Other Decentralized Public-Ledger Currency Platforms by David Evans []
  36. See 21 Inc Confirms Plans for Mass Bitcoin Miner Distribution from CoinDesk and What impact have various investment pools had on Bitcoinland? []
  37. In 2014 the state of New Jersey sued a MIT student, Jeremy Rubin, for creating a web-based project that effectively does the same thing as the silicon-based version proposed by 21inc. See Case Against Controversial Student Bitcoin Project Comes to Close from CoinDesk. In addition, the FTC, in its case against Butterfly Labs also looked at BFL not informing customers properly regarding difficulty rating changes. According to the FTC’s new release on this case: “A company representative [BFL] said that the passage of time rendered some of their machines as effective as a “room heater.” The FTC charged that this cost the consumers potentially large sums of money, on top of the amount they had paid to purchase the computers, due to the nature of how Bitcoins are made available to the public.” []
  38. This issue was cited in the CryptoNote whitepaper as one motivation for creating a new network. On p. 2: “This permits us to conjecture the properties that must be satisfied by the proof-of-work pricing function. Such function must not enable a network participant to have a significant advantage over another participant; it requires a parity between common hardware and high cost of custom devices. From recent examples [8], we can see that the SHA-256 function used in the Bitcoin architecture does not possess this property as mining becomes more efficient on GPUs and ASIC devices when compared to high-end CPUs. Therefore, Bitcoin creates favourable conditions for a large gap between the voting power of participants as it violates the “one-CPU-one-vote” principle since GPU and ASIC owners possess a much larger voting power when compared with CPU owners. It is a classical example of the Pareto principle where 20% of a system’s participants control more than 80% of the votes.” []
  39. I would like to thank Ayoub Naciri for providing this example. []
Send to Kindle

A dissection of two Bitfury papers

BitFuryBitfury, the Bitcoin mining company, recently published two papers:

The underlying motivations for writing them was that Bitfury is trying to assure the world that public blockchains can still be used in “proprietary contexts.” While they provide a good frame for the issue, there are several leaps in logic, or direct contradictions to established theory that necessarily weaken their argument.

Below is my discussion of them. Note: as usual, this only represents my opinion and does not necessarily represent the views of the organizations that I advise or work for.

Overall I thought the two papers did not seem to have been reviewed by a wider audience including lawyers: specifically they should have sent them to commercial and securities lawyers to see if any legal issues should be considered. Much of their pitch basically amounts to mining for the sake of mining.

One final note: for additional commentary I also reached out to Dave Hudson who is proprietor of HashingIt and an expert as it relates to Bitcoin mining analysis.  He is unaffiliated with Bitfury.

Notes for Part 1:

On p. 2, Bitfury wrote the following statement:

The key design element of blockchains – embedded security – makes them different from ordinary horizontally scalable distributed databases such as MySQL Cluster, MongoDB and Apache HBase. Blockchain security makes it practically impossible to modify or delete entries from the database; furthermore, this kind of security is enforced not through the central authority (as it is possible with the aforementioned distributed databases), but rather through the blockchain protocol itself.

Is this a problematic summary?

According to Dave Hudson:

As a network protocol engineer of many years I tend to find the concept of a “blockchain protocol” somewhat odd. Here’s a link to definitions of “protocol.”

What do we mean by protocol here? It’s not actually a network protocol because there is no “blockchain protocol”, there are many different ones (each altcoin has its own and there are many more besides). At best the idea of a “blockchain protocol” is more a meta-protocol, in that we say there are some things that must be done in order for our data to have blockchain-like characteristics. It’s those characteristics that provide for non-repudiation.

Also on p. 2, Bitfury uses the term “blockchain-based ledger.”  I like that because, as Vlad Zamfir and Peter Todd (among others) have pointed out in the past, the two concepts are not the same — distributed ledgers are not necessarily blockchains and vice versa.

On p. 4 and 5 they list several objections for why financial institutions are hesitant to use a public blockchain yet leave a couple noticeable ones off including the lack of a service level agreement / terms of service between end users and miners.  That is to say, in the event of a block reorg or 51% attack, who calls who?

On p. 7, I don’t think that censorship resistance can be generalized as a characteristic for “all blockchains.”

In Dave Hudson’s view:

Moreover, censorship resistance makes absolutely no sense in many instances. Who would be censoring what?

I’m actually not convinced that censorship resistance is actually a “thing” in Bitcoin either. Plenty of well-formed transactions can be censored by virtue of them being dust or having non-standard scripts. If anything the only thing that Bitcoin does is provide a set of conditions in which a transaction is probabilistically going to be mined into blocks in the network.

For those interested, there are a handful of “standard’ transaction types that are usually accepted by most mining pools.

On p. 11, I disagree with this statement:

If a blockchain database is completely opaque for clients (i.e., they have no access to blockchain data), the security aspect of blockchain technology is diminished. While such system is still protected from attacks on the database itself, interaction with clients becomes vulnerable, e.g. to man-in-the middle attacks. As a built-in protocol for transaction authorization is one of core aspects of blockchain technology, its potential subversion in favor of centralized solutions could negatively influence the security aspect of the system. Additionally, as transactions are accessible to a limited set of computers, there exists a risk of human factor intervening into the operation of the blockchain with no way for clients to detect such interference. Thus, the opaque blockchain design essentially undermines the core aspects of blockchain technology:
• decentralization (absence of a single point of failure in the system)
• trustlessness (reliance on algorithmically enforced rules to process transactions with no human interaction required).

I think trustlessness is a red herring that cypherpunks and Bitcoiners have been perpetually distracted by. It may be an end-goal that many would like to strive for but trust-minimization is a more realistic intermediate characteristic for those operating within the physical, real world.

Why? Because existing institutions and legal infrastructure are not going to disappear tomorrow just because a vocal group of cryptocurrency enthusiasts dislikes them.

According to Dave Hudson:

As with so many things-Bitcoin, I think this is an implementation necessity being seen as a innately desirable characteristic. Bitcoin requires “trustlessness” because it’s non-permissioned, yet in truth it totally relies on trust to work. We trust that Sybil attacks aren’t happening and that network service providers are not colluding to support such attacks. We trust that a large body of miners are not colluding to distort the system. We trust that changes to the software (or updates to compilers and operating systems) have not rendered old, non-recently-used keys are still able to support signing of transactions. We trust that Satoshi (and other large holders) will not drop 1M, or worse 10M coins onto exchanges crashing the price to a few cents per coin! There’s no “too big to fail” here!

In truth real-world people actually like to trust things. They want to trust that their national governments will ensure services work and that invaders are kept out. They want to trust that law enforcement, fire and medical services will keep them safe. I’m not sure that I like the idea of a trustless Police force?

What people do like is the ability to verify that the entities that they actually do trust are in fact doing what they should. Blockchain designs allow us to do just this.

That last statement in particular succinctly summarizes some of the motivations for financial institutions looking to use a shared ledger that is not the Bitcoin blockchain.

On p. 12, I disagree with this statement:

While the permissioned nature of blockchains for proprietary applications may be a necessary compromise in the medium term because of compliance and other factors, read access to blockchain data together with the publicly available blockchain protocol would remove most of vulnerabilities associated with opaque blockchain designs and would be more appealing to the clients of the institution(s) operating the blockchain. As evidenced by Bitcoin, simplified payment verification softwarecan be used to provide a direct interface to blockchain data that would be both secure and not resource intensive.

The reason I disagree with this statement is because the term “opaque” is loaded and ill-defined.

For instance, several groups within the Bitcoin ecosystem have spent the last several years trying to delink or obfuscate transaction history via zk-SNARKs, stealth addresses, mixing via Coinjoin and Coinshuffle and other methods. This type of activity is not addressed by Bitfury — will they process Bitcoin transactions that are obfuscated?

Granular permissions — who is allowed to see, read or write to a ledger — is a characteristic some of these same Bitcoin groups are not fans of but is a needed feature for financial institutions. Why? Because financial institutions cannot leak or expose personal identifiable information (PII) or trading patterns to the public.

Securely creating granular permissions is doable and would not necessarily reduce safety or transparency for compliance and regulatory bodies. Operating a non-public ledger is not the same thing as being “opaque.” While hobbyists on social media may not be able to look at nodes run by financial institutions, regulators and compliance teams can still have access to the data.

It also bears mentioning that another potential reason some public blockchains have and/or use a token is as an anti-spam mechanism (e.g., in Ripple and Stellar a minute amount is burnt).1

On p. 13, I disagree with this statement:

The problem is somewhat mitigated if the access to block headers of the chain is public and unrestricted; however, convincing tech-savvy clients and regulators that the network would be impervious to attacks could still be a difficult task, as colluding operators have the ability to effortlessly reorganize the arbitrary parts of the blockchain at any given moment. Thus, the above consensus protocol is secure only if there is no chance of collusion among blockchain operators (e.g., operators represent ideal parties with conflicting interests). Proof of work provides a means to ensure absence of collusion algorithmically, aligning with the overall spirit of blockchain technology.

This is untrue. People run pools, people run farms. Earlier this year Steve Waldman gave a whole presentation aptly named “Soylent Blockchains” because people are involved in them.

As we have seen empirically, pool and farm operators may have conflicting incentives and this could potentially lead to collusion. Bitcoin’s “algorithms” cannot prevent exogenous interactions.

On p. 14 I disagree with this statement:

There is still a fixed number of miners with known identities proved by digital signatures in block headers. Note that miners and transaction processors are not necessarily the same entities; in the case that mining is outsourced to trusted companies, block headers should include digital signatures both from a miner and one or more processing institutions.

Having a “trusted company” run a proof-of-work mining farm is self-defeating with respect to maintaining pseudonymity on an untrusted network (which were the assumptions of Bitcoin circa 2009). If all miners are “trusted” then you are now operating a very expensive trusted network. This also directly conflicts with the D in DMMS (dynamic-membership multi-party signature).

According to Dave Hudson:

If the signing is actually the important thing then we may as well say there’s a KYC requirement to play in the network and we can scale it all the way back to one modest x86 server at each (with the 1M x reduction in power consumption). Of course this would kill mining as a business.

On p. 14 I think the Bitfury proposal is also self-defeating:

The proposed protocol solves the problem with the potentially unlimited number of alternative chains. Maintaining multiple versions of a blockchain with proof of work costs resources: electricity and hashing equipment. The hashing power spent to create a blockchain and the hashing power of every miner can be reliably estimated based on difficulty target and period between created blocks; an auditor could compare these numbers with the amount of hashing equipment available to operators and make corresponding conclusions.

The authors go into detail later on but basically they explain what we can already do today: an outside observer can look at the block headers to see the difficulty and guess how much hashrate and therefore capital is being expended on the hash.

On p. 15 they present their proposal:

Consequently, $10 million yearly expenses on proof of work security (which is quite low compared to potential gains from utilizing blockchain technology, estimated at several billion dollars per year [54]) correspond to the hash rate of approximately 38 PHash / s, or a little less than 10% of the total hash rate of the Bitcoin network.

This is entirely unneeded. Banks do not need to spend $10 million to operate hardware or outsource operation of that hardware to some of its $100 million Georgia-based hydro-powered facilities.

According to Dave Hudson:

Precisely; banks can use a permissioned system that doesn’t need PoW. I think this also misses something else that’s really important: PoW is necessary in the single Bitcoin blockchain because the immutability characteristics are derived from the system itself, but if we change those starting assumptions then there are other approaches that can be taken.

In section 3.1 the authors spend some time discussing merged mining and colored coins but do not discuss the security challenges of operating in a public environment. In fact, they assume that issuing colored coins on a public blockchain is not only secure (it is not) but that it is legal (probably not either).2

On p. 16 they mention “transaction processors” which is a euphemism that Bitfury has been using for over a year now. They dislike being called a mining company preferring the phrase “transaction processors” yet their closed pool does not process any kind of transactions beyond the Bitcoin variety.

On page 17 they wrote:

[M]aintenance of the metachain could be outsourced to a trusted security provider without compromising confidential transaction details.

If taken to the logical extreme and all of the maintenance was “outsourced” to trusted security providers they would have created a very expensive trusted network. Yet in their scenario, financial institutions would have to trust a Republic of Georgia-based company that is not fully transparent.

Also on page 17 they start talking about “blockchain anchors.” This is not a new or novel idea. Peter Todd has talked about it in the past and Guardtime puts anchors into newspapers like The New York Times (e.g., publishes the actual hashes in a newspaper).  And, again, this could easily be done in other ways too. Why restrict anchoring to one location? This is Bitcoin maximalism at work again.

On p. 20 they wrote:

Bitcoin in particular could be appropriate for use in blockchain innovations as a supporting blockchain in merged mining or anchoring due to the following factors: • relatively small number of mining pools with established identities, which allows them to act as known transaction validators by cooperating with institutions

This is self-defeating for pseudonymous interactions (e.g., Bitcoin circa 2008). Proof-of-work was integrated to fight Sybil attacks. If there are only a few mining pools with established identities then there are no Sybil’s and you effectively have an extremely expensive trusted network.

Notes on Part 2:

On p. 3 they wrote:

If an institution wants to ensure that related Bitcoin transactions are mined by accredited miners, it may send transactions over a secure channel directly to these miners rather than broadcasting them over the network; accepting non-broadcast transactions into blocks is a valid behavior according to the Bitcoin protocol.

An “accredited miner” is a contradiction.

On p. 4 the first paragraph under section 1.3 was well written and seems accurate. But then it falls apart as they did not consult lawyers and financial service experts to find out how the current plumbing in the back-office works — and more importantly, why it works that way.

On p.4 they wrote:

First, the transfer of digital assets is not stored by the means of the Bitcoin protocol; the protocol is unaware of digital assets and can only recognize and verify the move of value measured in bitcoins. Systems integrating digital assets with the Bitcoin blockchain utilize various colored coin protocols to encode asset issuance and transfer (see Section 2.2 for more details). There is nothing preventing such a protocol to be more adapted to registered assets.

Yes there is in fact things preventing Bitcoin from being used to move registered assets, see “Watermarked tokens and pseudonymity on public blockchains.”  And their methods in Section 1.6 are non-starters.

Also on page 4 they wrote:

Second, multisignature schemes allow for the creation of limited trust in the Bitcoin environment, which can be beneficial when dealing with registered assets and in other related use cases. Whereas raw bitcoins are similar to cash, multisignature schemes act not unlike debit cards or debit bank accounts; the user still has a complete control of funds, and a multisignature service provides reputation and risk assessment services for transactions.

This is the same half-baked non-sense that Robert Sams rightly criticized in May. This is a centralized setup. Users are not gaining any advantage for using the Bitcoin network in this manner as one entity still controls access via identity/key.

On p. 5 they wrote:

One of the use cases of the 2-of-3 multisignature scheme is escrow involving a mediator trusted by both parties. A buyer purchasing certain goods locks his cryptocurrency funds with a multisignature lock, which requests two of the three signatures: the buyer’s, the seller’s, and the mediator’s.

This is only useful if it is an on-chain, native asset. Registered assets represent something off-chain, therefore Bitcoin as it exists today cannot control them.

On p. 6 they talk about transactions being final for an entire page without discussing why this is important from a legal perspective (e.g., why courts and institutions need to have finality). This paper ignores how settlement finality takes place in Europe or North America nor are regulatory systems just going to disappear in the coming months.

On page 7 they mention that:

To prevent this, a protocol could be modified to reject reorganizations lasting more than a specified number of blocks (as it is done in Nxt). However, this would make the Bitcoin protocol weakly subjective [21], introducing a social-driven security component into the Bitcoin ecosystem.

There is already a very publicly known, social-driven security component: the Bitcoin dev mailing list. We see this almost daily with the block-size debate. The statement above seems to ignore what actually happens in practice versus theory.

On p. 7 and 8 they write:

The security of the Bitcoin network in the case of economic equilibrium is determined by the rewards received by block miners and is therefore tied to the exchange rate of Bitcoin. Thus, creating high transaction throughput of expensive digital assets on the Bitcoin blockchain with the help of colored coin protocols has certain risks: it increases the potential gain from an attack on the network, while security of the network could remain roughly the same (as there are no specific fees for digital asset transactions; transaction fees for these transactions are still paid in bitcoins). The risk can be mitigated if Bitcoin fees for asset transactions would be consciously set high, either by senders or by a colored coins protocol itself, allowing Bitcoin miners to improve security of the network according to the value transferred both in bitcoins and in digital assets.

There is no way to enforce this increase in fee. How are “Bitcoin fees for asset transactions … consciously set high”? This is a question they never answer, (Rosenfeld 2012) did not answers it, no one does. It is just assumed that people will start paying higher fees to protect off-chain securities via Bitcoin miners.

There is no incentive to pay more and this leads to a hold-up problem described in the colored coin “game” from Ernie Teo.

On p. 8 they wrote:

As there is a relatively small number of Bitcoin mining pools, miners can act as known processors of Bitcoin transactions originating from institutions (e.g., due to compliance reasons). The cooperation with institutions could take the form of encrypted channels for Bitcoin transactions established between institutions and miners.

This is silly. If they are known and trusted, you have a trusted network that lacks a Sybil attacker. There is no need for proof-of-work mining equipment in such a scenario.

On p. 8 they wrote:

In the ideal case though, these transactions would be prioritized solely based on their transaction fees (i.e., in a same way all Bitcoin transactions are prioritized), which at the same time would constitute payments for the validation by a known entity. Thus, this form of transaction processing would align with the core assumption for Bitcoin miningthat miners are rational economic actors and try to maximize their profit.

It cannot be assumed that miners will all behave as “rational economic actors.” They will behave according to their own specific incentives and goals.

On p. 9 they wrote:

Additionally, partnerships between institutions and miners minimize risk in case transactions should not be made public before they are confirmed.

Registered and identifiable miners is the direct anti-thesis of pseudonymous interactions circa Bitcoin 2008. That type of partnership is a win-lose interaction.

On p. 10 they wrote:

One of the interesting financial applications of colored coins is Tether (tether.to), a service using colored coins to represent US dollars for fast money transfer. Several cryptocurrencies such as Nxt and BitShares support custom digital assets natively.

As it exists today, Tether.to is similar in nature to a Ripple gateway such as SnapSwap: both are centralized entities that are subject to multiple regulatory and compliance requirements (note: SnapSwap recently exited its USD gateway business and locked out US-based users from its BTC2Ripple business).

tether msb

According to FinCEN’s MSB Registrant Search Web page, Tether has a registration number (31000058542968) and one MSB.  While they have an AML/CTF program in place, it is unclear in its papers how Bitfury believes the Bitcoin network (which Tether utilizes) can enforce exogenous claims (e.g., claims on USD, euros, etc.).

Furthermore, there has been some recent research looking at how the Federal Reserve and the Bank of England could use distributed ledgers to issue digital currency.3

If a central bank does utilize some kind of distributed ledger for a digital currency they do not need proof-of-work mining or the Bitcoin network to securely operate and issue digital currency.

Ignoring this possible evolution, colored coins are still not a secure method for exogenous value transfers.

On page 10 they wrote:

Colored coins are more transparent for participants and auditors compared to permissioned blockchains

This is untrue and unproven. As Christopher Hitchens would say, what can be asserted without evidence can be dismissed without evidence.

On page 10 they wrote:

As colored coins operate on top of permissionless blockchains, systems using colored coins are inherently resistant to censorship – restrictions on transactions are fully specified by a colored coins protocol instead of being enforced by a certain entity

This is also untrue. This is a bit like trying to have their cake and eat it too.

On page 11 they have a diagram which states:

Figure 2: Using colored coins on top of the Bitcoin blockchain to implement asset transactions. For compliance, financial institutions may use secure communication channels with miners described in Section 2.1 to place asset transactions on the blockchain

Again this is self-defeating. As the saying goes: be careful what you wish for. If Bitfury’s proposal came true, their pool(s) could become payment service providers (PSP) and regulated by FinCEN.

On page 12 and 13 they wrote:

Bitcoin and other public permissionless blockchains could be a part of the interconnected financial environment similarly to how cash is a ubiquitous part of the banking system. More concretely, cryptocurrencies could be used as: • one of the means to buy and sell assets on permissioned blockchains • an instrument that enables relatively fast value transfer among permissioned blockchains • an agreed upon medium for clearing operations among blockchains maintained by various institutions (Fig. 4).

Bitcoins as a permanent store-of-value are effectively a non-starter as they lack any endogenous self-stabilizing mechanism.4

According to Dave Hudson:

The systemic risks here just make this idea farcical. The Internet is somewhat immune to this because there are technology providers all over the world who can independently choose to ignore things in regulatory domains that want to do “bad things”. There is no such safety net in a system that relies on International distributed consensus (the Internet has no such problem, although DNS is a little too centralized right now). Even if it could somehow be guaranteed that things can’t be changed, fixed coin supply means artificial scarcity problems are huge (think Goldfinger trying to irradiate the gold in Fort Knox) – you wouldn’t need a nuclear weapon, just a good piece of malware that could burn coins (if they’re not stolen then there’s no way to trace who stole them). There’s also the 1M coins dropped onto exchanges problem.

The discussion over elastic and inelastic money supplies is a topic for another post.

On page 15 they wrote:

If a blockchain is completely opaque for its end users (e.g., a blockchain-based banking system that still uses legacy communication interfaces such as credit cards), the trustless aspect of blockchains is substantially reduced. End users cannot even be sure that a blockchain system is indeed in use, much less to independently verify the correctness of blockchain data (as there is no access to data and no protocol rules to check against). Human factor remains a vulnerability in private blockchain designs as long as the state of the blockchain is not solely based on its protocol, which is enforced automatically with as little human intervention as possible. Interaction based on legacy user authentication interfaces would be a major source of vulnerabilities in the case of the opaque blockchain design; new interfaces based on public key cryptography could reduce the associated risk of attacks.

While mostly true, there are existing solutions to provide secure verification. It is not as if electronic commerce did not or could not occur before Bitcoin came into existence. Some private entities take operational security seriously too. For instance, Visa’s main processing facility has 42 firewalls and a moat.

On page 15 they wrote:

Proprietary nature of private blockchains makes them less accessible; open sourced and standardized blockchain implementations would form a more attractive environment for developers and innovations. In this sense, blockchains with a public protocol are similar to open Internet standards such as IP, TCP and HTTP, while proprietary blockchain designs could be similar to proprietary Internet protocols that did not gain much traction. A proprietary blockchain protocol could contain security vulnerabilities that remain undiscovered and exploited for a long time, while a standardized open blockchain protocol could be independently studied and audited. This is especially true for protocols of permissionless blockchains, as users have a direct economic incentive to discover vulnerabilities in the system in order to exploit them.

This is just scaremongering. While some of the “blockchain” startups out there do in fact plan to keep the lower layers proprietary, the general view in October 2015 is that whatever bottom layer(s) are created, will probably be open-sourced and an open-standard. Bitcoin doesn’t have a monopoly on being “open” in its developmental process.

On page 15 they wrote:

As the Bitcoin protocol has been extensively studied by cryptographers and scientists in the field, it could arguably form the basis for the standardized blockchain design.

This is untrue, it cannot be the backbone of a protocol as it is not neutral. In order to use the Bitcoin network, users are required to obtain what are effectively illiquid pre-paid gift cards (e.g., bitcoins). Furthermore, an attacker cannot collect “51%” of all TCP/IP packets and take over the “internet” whereas with Bitcoin there is a real “majoritarianism” problem due to how network security works.

A truly neutral protocol is needed and there have been at least two proposals.5

On page 15 they wrote:

The key design element of blockchains is “embedded economy” – a superset of embedded security and transaction validation. Each blockchain forms its own economic ecosystem; a centrally controlled blockchain is therefore a centrally controlled economy, with all that entails.

This is untrue. If we are going to use real-world analogies: Bitcoin’s network is not dynamic but rather disperses static rewards to its labor force (miners). It is, internally, a rigid economy and if it were to be accurately labeled, it is a command economy that relies on altruism and VC subsidies to stay afloat.6

On page 16 they wrote:

It is not clear how the blockchain would function in the case validators would become disinterested in its maintenance, or how it would recover in the case of a successful attack (cf. with permissionless blockchains, which offer the opportunity of self-organization).

The statement above is unusual in that it ignores how payment service providers (PSPs) currently operate.  Online commerce for the most part has and likely will continue to exist despite the needed maintenance and profit-motive of individual PSPs.  There are multiple motivations for continued maintenance of maintenance transfer agreements — this is not a new challenge.

While it is true that there will likely be dead networks in the futures (just like dead ISPs in the past), Bitcoin also suffers from a sustainability problem: it continually relies on altruism to be fixed and maintained and carries with it an enormous collective action burden which we see with the block-size debate.

There are over a hundred dead proof-of-work blockchains already, a number that will likely increase because they are all public goods that rely on external subsidies to exist. See Ray Dillinger’s “necronomicon” for a list of dead alt coins.

If Bitfury’s proposal for having a set of “fixed” miners arises, then it is questionable about how much self-organization could take place in a static environment surrounding a public good.

Conclusion

Despite the broad scope of the two papers from Bitfury neither was able to redress some of the most important defects that public blockchains have for securing off-chain assets:

  • how is legal settlement finality resolved
  • how to incentivize the security of layers (such as colored coins) which distort the mining process
  • how to enforce the security of merged mining which empirically becomes weaker over time

If Bitfury is truly attempting to move beyond merely processing Bitcoin transactions in its Georgian facilities, it needs to address what constraints and concerns financial institutions actually face and not just what the hobbyist community on social media thinks.

  1. See also: Needing a token to operate a distributed ledger is a red herring and A blockchain with emphasis on the “a” []
  2. See also: Can Bitcoin’s internal economy securely grow relative to its outputs? and Will colored coin extensibility throw a wrench into the automated information security costs of Bitcoin? []
  3. This includes: Fedcoin—how banks can survive blockchains by Robin Winkler and Centrally Banked Cryptocurrencies by George Danezis and Sarah Meiklejohn []
  4. See Seigniorage Shares from Robert Sams []
  5. See: A Protocol for Interledger Payments by Stefan Thomas and Evan Schwartz and An architecture for the Internet of Money by Meher Roy []
  6. See also: Chapter 10 in The Anatomy of a Money-like Informational Commodity and Economic Aspects of Bitcoin and Other Decentralized Public-Ledger Currency Platforms by David Evans []
Send to Kindle