Book Review: “Easy Money”

I recently finished reading the Kindle version of Easy Money by Ben McKenzie and Jacob Silverman. Simultaneously, I also read Number Go Up from Zeke Faux, another blockchain-focused book that came out about two months after the publication of Easy Money. These would make the 10th and 11th blockchain-specific books I have reviewed. See the full list here.

Easy Money was not the worst blockchain-related book I have read, that award would go to Popping the Crypto Bubble. Easy Money had a lot of potential, in fact, several chapters had some pretty good prose and first-hand reporting.

But for some inexplicable reason – unlike most of the other blockchain books I have reviewed – the authors insert Ben McKenzie into the story for no apparent reason.

Previous books written by reporters might explain in first person how difficult it was to use a wallet or how difficult it was to explain mining to someone – but McKenzie finds a way to insert himself into every chapter even if he is irrelevant.1 And that takes a lot away from what could have been a powerful book.

For instance, Chapter 7 was probably the best written and interesting chapter of the book. The two authors flew down to El Salvador to investigate what kind of traction Bitcoin-based payments was having in the small Central American country. And as the authors describe the plight of one of the residents who is unlucky to live on land that was to be turned into an airport, they write:

Here was a famous Hollywood actor who wanted to film and interview him, to tell his story, yet no one in his own country could tell him when he would be kicked off his land or where he might go.

The reader is constantly reminded of how McKenzie was in several popular TV shows. In all but one other blockchain book I have reviewed few authors attempt to regularly remind people of who they are. The main exception is Fais Khan who wrote The Billionaire’s Folly, which was an insiders account of working at ConsenSys.

McKensie was not an insider. In his own words, he was stoned and out of work in late 2020, and came to the conclusion that he should pivot careers and write a book about crypto. Yet because he did not get really started until late 2021 – near the height of the recent bubble – it all comes across as Johnny-come-lately ambulance chasing self-serving plot filler to boost his PR so he can appear in the Netflix adaptation.2 It is both poor form and cringey.

Furthermore, the dual authors make a number of elementary mistakes. For instance on p. 36 they write: “In 2016, Tether was hacked. More than 100,000 Bitcoin (worth $71 million at the time) was stolen, and the company was in desperate straits.”

What they meant to write was that Bitfinex, the centralized exchange, was hacked. It was actually hacked twice in 2016, the second time 119,756 bitcoins were stolen.

Later, on p. 264 they write: “The other major player left standing was Tether. The stablecoin company, valued at $71 billion as of March 1, 2023, had miraculously survived while the industry around it bit the dust.”

This is not an accurate way of describing the company. The valuation of a bank – or in this case, a shadow bank – is usually determined by its book value of equity (BVE), not by how large its deposit base is. If we took its self-disclosed quarterly reports at face value, Tether LTD itself is worth several billion dollars. In contrast, the aggregate value of USDT spread across all chains, as of this writing, is around $86 billion. Academics such as Stephen Kelly, have publicly analyzed these claims, a future edition should include such remediations.

It is also worth pointing out that the book quickly glosses over any deep or detailed technical discussion and that is likely to help the reader move through the pages. Yet there is no glossary for further explanations and the Appendix consists of a single page copied from the SEC website regarding Ponzi schemes.

This is kind of strange considering even Diehl’s book at least paid some lip service towards the technical bits. To be fair though, unlike Diehl’s book, McKenzie and Silverman do not repeat the same refrain over and over again. But that should not be the bar. With the resources of a real publisher (Abrams), this should have been a top shelf book. But instead it is 1-star quality book and a hard pass.

As usual, all transcription errors are my own.

Chapter 1: Money and Lying

On page 1 the authors write:

These get-rich-quick speculative schemes were merely the latest iteration of casino capitalism. Political economist Susan Strange populated the term in the 1980s, but its roots stretch at least as far back as the 1930s.

This may seem pedantic but I am pretty certain the authors meant to write “popularized” and not “populated.”

On page 1 the authors write:

You may have noticed something about cryptocurrencies: They don’t do anything. Sure, you can trade them, betting that one will rise or fall, but they aren’t used for anything productive. Cryptos aren’t tied to anything of real value, unlike shares in a company or a commodities future. They’re computer code uncorrelated with any actual asset.

This requires nuance, something the book does not really have.

For instance, not every cryptocurrency is the same. Some, such as non-fungible tokens (NFTs), attempt to represent off-chain assets. A myriad of financial institutions and other large enterprises have attempted to tokenize a plethora of atoms, often in toy experiments that do not last a year or so. However there is an entire category of “real world assets” (RWA) that do in fact represent “real value.”3 We can argue about the particulars – should Paxos USD or PYUSD be allowed to exist? – but the authors cannot ignore the existence of tokenized assets identified by Centrifuge.

A better, a stronger argument they could have used involves “self-referential assets” — which many major cryptocurrencies are considered.

On page 1 they write:

In crypto, this comes from the fees charged by the exchanges, as well as the costs associated with validating the transactions. In Las Vegas, it’s called the rake, the amount the house takes from every pot. This means that, given enough time, the average gambler will lose. It’s how casinos keep the lights on.

I actually agree with one of their points here (regarding opportunity costs) but without evidence it is just another random opinion. A future edition could also cite the musings of Jack Bogle, the founder of Vanguard and creator of the index fund. He often characterized the excessive speculation that benefited financial intermediaries as the “croupier’s take.”

On page 2 they write:

When I first started paying attention to financial markets in the fall of 2020, I came to a similar conclusion, a troubling sense that graft and deceit had penetrated all aspects of the economy, operating with political and legal impunity. It made me want to scream in anger—and to make a wager of my own.

McKenzie is a couple of years older than me and it is hard to imagine how he thinks this helps his credibility.

How can you go your adult life – as someone with an economics degree – without paying attention to financial markets until three years ago? What were you doing in 2008 during the financial crisis? How did you miss the craziness of the ICO boom in 2017-2018 that John Oliver ridiculed?45

On p. 3 they write “crypto-currency” with a dash and then inexplicably use “cryptocurrency” without a dash later. And back and forth. The same happened with the word “block-chain.” Where was the proof reading?

On p. 3 they write:

A few thousand cryptos in 2020 grew to 20,000 two years later, and their purported value swelled in tandem, from some $300 billion in the summer of 2020 to $3 trillion by November 2021.

The authors use this 20,000 figure throughout the book. It comes from reference #4 for Chapter 1 which refers to CoinMarketCap (CMC) but in going to the website, there are currently 9,213 cryptocurrencies.6 For comparison, CoinGecko currently catalogues 10,812 coins. There probably have been significantly more than 10,000 coins or tokens created – many of which have died – but the author’s figure seems like an outlier.7

On p. 4 they write:

Narrative Economics was published in 2019, prior to both the current viral spread of cryptocurrency and the COVID-19 pandemic.

That seems like a weird tie-in especially since there was a mountain of PR for cryptocurrency projects during 2017-2018 in the U.S. For instance, between December 2017 to January 2018, you could turn on CNBC to hear some guest promoting a random coin they liked.8 More than likely, Narrative Economics was published before the viral spread of cryptocurrencies that the authors paid attention to.9

On p. 5 they write:

Two of its biggest drivers were financial deregulation and low interest rates—a decades-long, mostly bipartisan political effort to grow the financial sector combined with a policy intended to stimulate the economy in the wake of the first dot-com bubble.

This is partially true. A future edition should include a conversation around just how leveraged banks were, both foreign and domestic. This would have also been a good spot for the authors to discuss systemically important financial institutions (SIFIs) such as ‘too big to fail banks’ (TBTF) which even Diehl’s book paid lip service to once.

Why are SIFIs and TBTF banks worth discussing? Putting aside the ever present rent-seeking and moral hazard issues, the infrastructure that these organizations rely on often is highly centralized and dependent on a specific vendor thereby creating single points of trust and single points of failure. The book largely ignores legacy infrastructure operated by incumbents.

For example, a future edition could highlight one area the U.S. financial system (specific banks) could be improved: make banks public utilities.

On p. 7 they write:

Coordinating with other countries’ central banks, the US government offered $700 billion in bank bailouts and trillions in loan guarantees, managing to stem the worst of the contagion.

Probably worth telling the readers that this controversial bailout package, frequently referred to as TARP, failed to pass the initial House vote.

On p. 8 they write:

Public key encryption plays a vital role in modern life. For example, all https:// websites (nearly all the ones the average person uses) employ public key encryption. It does things like protect users’ credit card information from being stolen when making online purchases. Public key encryption has two useful properties: Anyone can verify the legitimacy of a transaction using publicly available information (the public key), but the people/parties conducting those transactions are able to keep their identities hidden (the private key).

While this is not a bad explanation, the authors should have used “public key cryptography” because that is usually how it is referred to. In fact, Bitcoin – like most cryptocurrencies – does not use any form of encryption.

On p. 9 they write:

This time-stamped, append-only ledger is the blockchain. In 1991, computer scientists Stuart Haber and W. Scott Stornetta, building off the work of cryptographer David Chaum, figured out a way to timestamp documents so they couldn’t be altered. Each “block” contains the cryptographic hash (a short, computable summary of all the data in it) of the prior block, linking the two and creating an irreversible record, a ledger composed of blocks of data that can be added to a chain (blockchain), but never subtracted from.

This is good. In fact, one of the problems with Diehl et al.’s book is that the trio completely whiffed on the Haber & Stornetta references in the original Bitcoin whitepaper. Worth pointing out that pages later, McKenzie and Silverman reuse this archaic blockchain as a strawman, hold your breath!

On p. 9 they write:

So far so good, but one issue remained: what’s known as the double spend problem. If you remove a centralized authority from the equation, how do you make sure people aren’t gaming the system by spending money that’s already been sent somewhere else? How do you secure the network against manipulation? “Satoshi” relied on what’s called a consensus algorithm.

Pedantically Bitcoin – and its progeny – use what is called Nakamoto consensus. For comparison, Diehl et al.‘s book briefly mentioned it in passing. A future version should incorporate that.

On p. 9 they write:

The network targets a new block every ten minutes or so, by dynamically adjusting the degree of difficulty required in the winning block; the more participants, the harder the process gets, and the more energy is required to guess the next block correctly. This is the proof of work behind Bitcoin: lots and lots of computers (“miners”) performing relatively simple mathematical calculations over and over again endlessly.

This is not really accurate:

(1) There are many proof-of-work based coins. Bitcoin (and some of its clones) have a readjustment period of 2,016 blocks, roughly two weeks. Adjustment does not take place every block as the authors write above.

(2) The resources consumed in a proof-of-work network like Bitcoin rises and falls directly proportional to the coin price. If number go up, then so too does the difficulty level and vice versa. They cite him later in Chapter 5 but it would be helpful to include analysis from Alex de Vries here as well.

What this means is that more energy is not necessarily required to guess the next block correctly. In fact, in its early years, Bitcoin could be solo mined on a normal laptop. Proof-of-work coins that never see much price appreciation can be solo mined by simple computers too.

There is another issue with their statement above: it does not explain the nuance, the difference between a Bitcoin mining pool (which is the block maker) and Bitcoin hashing farms (which generate the proofs-of-work). But more on that later.

On p. 9 they write:

After about an hour, participants in the network are convinced about history six blocks deep; they know that it is extremely unlikely anyone will rewrite that history.

This is not accurate. By social convention – not code – intermediaries such as coin exchanges will allow users to trade their newly deposited bitcoins between 3-6 block confirmations. Centralized exchanges like Coinbase, may require some coins such as Ethereum Classic to have hours of blocks built in order to protect against reorgs. But in both cases, this is social convention, not code.

On p. 9 they write:

As you may be able to tell, Satoshi’s vision is both immensely clever but also cumbersome, practically speaking. As more competitors enter, the hash rate increases and more energy is expended to agree upon a block of data that remains roughly the same size. This is what’s called a Red Queen’s race, a reference to Lewis Carroll’s Alice in Wonderland.

There are a couple of problems with this:

(1) During each transition from CPUs -> GPUs -> FPGAs -> ASICs, whoever was able to access to the newest generation of equipment first has had a material advantage from an energy usage perspective.10 For instance, four pages later the authors mention what Laszlo Hanyecz did – but fail to mention who he is and how he got his bitcoins. Note: Hanyecz was one of the first (if not the first) person to scale bitcoin mining with GPUs. His hashes per watt were likely lower than anyone else up until that point in 2010.

(2) I looked in the refences but do not see the authors point to any article that mention the Red Queens’ race. I myself referred to the Red Queen’s race multiple times in papers and articles between 2014-the present day.11 Would be interesting to see who it originated from (I believe I first saw it on a /r/bitcoin post in 2013); echoes of John Gilmore?

On p. 10 they write:

Ethereum also led to the introduction of NFTs, which are basically links to receipts for JPEGs stored on blockchains (shh, don’t tell that to anyone who owns one).

This is false. Both tokenization and non-fungible token projects existed several years before Ethereum turned on. For example:

Source: ChainLeftist

It bears mentioning that even before Spells of Genesis was released on Counterparty (in 2015) several different colored coin projects attempted to tokenize off-chain assets. See my short presentation on this topic from last year.

In fact, if we are going to be really pedantic, perhaps the original idea behind “crypto art” (and NFTs) was inspired by Hal Finney in 1993?

Source: CryptoSlate

On p. 10 they write:

The number of cryptos exploded around this time, rising tenfold in five years, from less than one hundred in 2013 to more than a thousand by 2017. There are now an estimated 20,000 cryptos, most of them small and insignificant, their ownership concentrated in the hands of a few “whales,” much like penny stocks.

There could be 20,000 coins and tokens, but as mentioned earlier, it is unclear where they arrived at that specific estimate since both CoinMarketCap and CoinGecko currently show around 10,000 each.

On p. 11 they write:

Remember, blockchain is at least thirty years old and barely used by businesses outside of the crypto industry. Since at least 2016, hundreds of enterprises have tried to incorporate it into their business models, only to later scrap it because it didn’t work any better than what they were already using. Ask yourself a simple question: If blockchain is so revolutionary, after thirty years, why is its primary use case gambling? Ironically enough, the more important technology is the one that predates it: public key encryption.

Nearly every sentences in this paragraph has an inaccuracy.

(1) Yes, the “blockchain is at least thirty years old” is really how McKenzie and Silverman are going to spin things. Even if we take their claim at face value the other problem is that not every blockchain is the same.

The Haber & Stornetta “chain” is limited in functionality. What is its throughput? How decentralized is it? Were the authors aware that this archaic chain places attestations once a week in The New York Times? That’s arguably not the best security property.

Source: Twitter

(2) Since there were hundreds of enterprises that have tried to incorporate a blockchain into their business, could the authors provide one example next time?

We are beginning to see a troubling pattern from the authors, lots of strawmen and few specifics.

They could be right, in fact, I even agree with part of their statement. But as Hitchens’s razor states: that which is asserted without evidence can be dismissed without evidence.

What kind of evidence could they have provided?

Source: Twitter

Above is a line chart illustrating Stack Overflow posts per quarter for three different ecosystems: Ethereum, Corda, and Hyperledger (Fabric). The latter two were primarily targeted at enterprises. R3, the major sponsor for Corda, recently announced layoffs impacting more than 20% of the company headcount. Does the decrease in Stack Overflow activity translate to less commercial activity? Maybe.

Since we are already doing their homework for them, here’s another example they could use in a future edition: in the process of writing this review Citi announced that it is offering a pilot service that turns customer deposits into digital tokens, for use use trade finance and cash management. Is this the type of blockchain project the authors think will ultimately be scrapped? Maybe it will, but next edition the authors could give specific examples.

(3) I actually kind of agree with their comment about how popular gambling-type of activities are within the various major chains.12 But strangely, the authors do not beef up their argument by providing any stats or charts.13 Stranger: while there are a handful of graphics in the book, there are zero blockchain-related charts, some of which could have helped strengthen their arguments. A quick googling found a bunch of crypto casino stats. Are the veracity of the numbers reliable? Sounds like something the authors could include next time.

On p. 11 they write:

The original story—that Bitcoin represents a response to the devastating failures of the traditional financial system—holds significant power because we all agree on its premise: Our current financial system sucks. But is the story of Bitcoin actually true? Does it do what it purports to do, create a peer-to-peer currency free of intermediaries? Was a trustless currency relying only on computer code even possible?

I have no affinity for Bitcoin but this is a strawman argument because it uses a retconned narrative from a number of Bitcoin maximalists. Satoshi herself explained that she started coding Bitcoin 18 months prior to the release of the whitepaper, which chronologically places its origin before the financial crisis of 2008-2009. I think the initial motivation was more aligned with securing (and funding) an online poker community, which the authors discuss later in the book.

On p. 11 they write:

Bitcoin may be the most popular digital currency, but it was not the first. In a 1982 paper, cryptographer David Chaum theorized the intellectual scaffolding of blockchain, upon which cryptocurrency would emerge some quarter of a century later.

They do not talk much about “blockchains” later in the book but it is worthy pointing out that in 2023 we typically use an article such as “a” or “the” in front the word blockchain. There was a period of time (mostly around 2016-2017) where consultant-types tried to push an articleless blockchain, but the grammar pendulum has shifted once more.

On p. 11 they write:

DigiCash was a legitimate project, without the conflicts of interest and other red flags surrounding many current crypto ventures. Unfortunately, it failed to take off and in the late 1990s the company declared bankruptcy before being sold.

Who died and made these authors king? By what standard was DigiCash “legitimate” or “illegitimate”? Maybe it was both or neither? But they provide no rubric, just dictum. According to legend, at one point Microsoft considered paying $75-$100 million to acquire DigiCash and integrate into Windows but Chaum wanted $2 per license sold. Also, in 2018 Chaum announced a new blockchain platform, Elixxir. Is this legitimate? It’s a public blockchain so obviously not?

On p. 11 they write about eGold:

It lasted until the mid-2000s before being shut down by the feds for violating money transmitter laws.

Throughout the book the authors describe activities from the FBI but this is the only time they lowercase feds.

On p. 13 they write:

PayPal and other payment services existed, but they were beholden to annoying gate-keepers like the law, national borders, banks, and terms of service agreements.

PayPal provided the MSB-centric model that a couple centralized pegged coin issuers have emulated.

While they make a lot of bluster over Tether LTD, this is the type of statement that impeaches the authors credibility: because neither seems to understand how certain fintechs have skirted U.S.-specific laws they cite in the book. This is nearly identical to Diehl et al. who approvingly namechecks PayPal a couple of times too, all while trying to dunk on “stablecoin” issuers. That is not consistent.

Source: Twitter

On p. 13 they write:

Bitcoin seemed like a solution, but at first no one outside the small Bit-coin network ascribed any worth to its tokens. In a story that has become memorialized in Bitcoin lore

Why is there a hyphen/dash in the 2nd Bitcoin but no hyphen/dash in the other two?

On p. 13 they write:

on March 22, 2010, 10,000 Bitcoins were used to pay for two pizzas, worth forty dollars

Without mentioning his name, or more importantly how he got 10,000 bitcoins, the authors are describing Laszlo Hanyecz. They do cite a relevant Forbes article but I think the readers would enjoy learning how disappointed Satoshi was when she first heard about GPU mining on the Bitcoin Talk forum.

On p. 13 they write:

Sure, the stuff was nearly worthless, but it was open to all, as early adopters could mine Bitcoin with their home computers without racking up enormous hardware and electricity costs.

This is accurate. But it conflicts with a number of their comments on page 9. A future edition should reconcile these conflicting statements.

On p. 13 they write:

Until it was shut down by US law enforcement in October 2013, the Silk Road was the most successful onboarding mechanism in Bitcoin’s history.

This might be true, but how did the authors determine or quantify “the most successful on boarding mechanism”? In looking at the citations and references, there are none. Maybe they are correct but a future edition probably should include a highly cited relevant paper: A Fistful of Bitcoins: Characterizing Payments Among Men with No Names by Meiklejohn et al.

On p. 13 they write:

If it didn’t work as a currency, perhaps a new story could be told. In the coming years, coiners started talking about Bitcoin as a potential store of value (despite its wild volatility) or as the basis of a new, parallel financial system, free of state control.

There are a couple of issues with this:

(1) They include the word “coiners” without providing any definition.14 “Coiners” appears nine times altogether in this book, yet not once do the authors explain what might mean. It is only by looking at the surrounding context that we can guess they have conjured up a word to describe “the outgroup.”

And here is where the story becomes even stranger. McKenize and Silverman arrived relatively late to the coin thunderdome. For some reason, they quickly fashioned themselves as “nocoiners” a term that readers of this blog understand was intended to be a slur. Yet these two market themselves with it as a badge of honor to The New York Times. Bananas.

Recall that the etymology of “nocoiner” arose in late 2017, coined by a trio of Bitcoin maximalists who used it as a slur. I was on the receiving end of coinbros lobbing the unaffectionate smear for years.15 The fact that McKenzie, Silverman and other prominent “anti-coiners” use it as a way to identify themselves – and their “in-group” – is baffling because it is the language of an intended oppressor. Do not take my word for it, read and listen to the presentations from those who concocted it.

If there is one take away from this book: do not willingly use the term “nocoiner” to describe yourself or use the term “coiner” to describe others. It is identity politics.

(2) The authors are somewhat correct: certain Bitcoin promoters, specifically a group that often refers to themselves as “Bitcoin maximalists” did in fact shift the narrative from disintermediated payments to a store-of-value.

Samuel Patterson went through everything Satoshi ever wrote. Unsurprisingly Satoshi discussed payments significantly more than a “store of value.”

Source: Twitter

I do not have a horse in this race, especially since I have no particular affinity for Bitcoin. But I do think the authors should have been more nuanced and specific about who was pushing specific narratives. 16

On p. 14 they write:

This was the beginning of DeFi (decentralized finance), in which tokens would be routed through complex, mostly automated protocols that added leverage and risk to the system—and a chance at huge rewards.

This is the introduction chapter but readers expecting more in-depth nuance will be disappointed because this is pretty much how they describe “DeFi.” It is not really accurate but let us wait a few more chapters to discuss why.

On p. 15 they write:

In late 2020, I came down with a serious case of FOMO. The entertainment business was on ice thanks to the pandemic, and I was bored and depressed. I saw a bunch of average Joes making money in the stock markets, so I dusted off my long-neglected degree in economics and started paying attention to them for the first time in my life.

Look, 2020 sucked for a lot of people. 17 But the statement above does not really help your credibility. Wouldn’t… you want to portray yourself as an expert?

On p. 19 they write:

Cryptocurrencies didn’t do any of these things well. You couldn’t buy stuff with them—the guys at my deli would look at me like I was nuts if I tried to pay for my bagel and coffee in Bitcoin. Advocates say this is a temporary problem; if more people would just buy Bitcoin, eventually it will become a currency you can actually use.

There are at least two issues with this:

(1) Readers have probably noticed the pattern wherein the authors conflate “cryptocurrencies” (broadly) with Bitcoin (specific). This is a strawman. Also, on social media the people who frequently push this particular narrative they are criticizing are often Lightning Network aficionados. Those are a subset of the Bitcoin-specific world.

(2) A lot of cryptocurrency / cryptoasset-related projects are not attempting to tackle payments or reinvent money. According to the book, the authors sample size for “industry events” I believe was just two? SXSW and Bitcoin Miami. That’s not exactly a robust sampling. Sure, you can conduct market research remotely but their unnuanced language has room for improvement.

On p. 19 they write:

The technology behind Bitcoin sucks. It doesn’t scale. Satoshi’s solution to the double spend problem was innovative, but also clunky. The more miners who entered the competition the more energy was used, but the blocks were the same. Bitcoin is able to handle only five to seven transactions a second; it can never go above that.

There are some good criticisms of Bitcoin out there but this rant is just bad, it sounds identical to Diehl et al.

(1) Bitcoin is just one implementation of a blockchain. The authors claimed earlier in this chapter that the “original” blockchain arose thirty years ago. But they never provide any metrics on how fast that one is/was. What is the throughput of the Haber & Stornetta “chain” versus Bitcoin 0.1 in 2009?

(2) The authors conflate the limitations of Bitcoin with every blockchain, and that is intellectually dishonest. There are several different Layer 1 (L1) chains – such as Avalanche – that clearly show the world is not limited to the throughput of Bitcoin. If anything, the omission of other chains shows a lack of market research and due diligence by the authors. Yea, sifting through claims is tiresome work, that’s my day job and often isn’t fun.

(3) Nakamoto consensus (proof-of-work) is not the only game in town when it comes to solving the “double-spend problem.” For just under a decade, different teams of researchers have successfully engineered and productionized proof-of-stake-based chains which overcome some of the limitations that proof-of-work-based chains had. The authors mention “proof of stake” a couple of times later on in passing but do a disservice to readers by effectively ignoring it.

(4) As mentioned a couple of times before: just because someone attempts to mine on a proof-of-work chain does not automatically mean extra resources are immediately required to mine additional blocks. For instance, if I started a new proof-of-work chain tomorrow, a fork of Bitcoin, then a variety of older USB-mining devices could easily generate hashes while consuming relatively little amounts of electricity. Energy (or resources in general) are typically only expended if the coin value goes up. Crab price action is often not attractive miners, especially those who own warehouse facilities filled with hashing equipment.

(5) In the references they cite one paper, On Scaling Decentralized Blockchains, which was presented in February 2016. A lot has happened in the past 7+ years. In fact, the paper primarily focuses on Bitcoin which again, is no the only blockchain in the world. Surely there are more relevant technical papers exploring the challenges and limitations of other chains?

On p. 19 they write:

Visa can process 24,000. To operate, Bitcoin uses an enormous amount of energy, the equivalent in 2021 of Argentina—the entire country. Visa and Mastercard use comparatively miniscule amounts of electricity to serve a customer base orders of magnitude greater. Bitcoin’s energy consumption is enormously wasteful, and poses a massive environmental problem for the supposedly cutting-edge technology (and really, for all of us).

This type of rant is similar to the kind you would find in Diehl et al. book, where there is a kernel of truth surrounded by apples-to-oranges comparisons.

I actually agree with their criticisms of (proof-of-work) energy consumption, and have written about it many times. But their other arguments above are incorrect in at least two ways:

(1) Visa and Mastercard are centralized entities operating centralized infrastructure. In the passage above, the authors endorse and defend rent-seeking incumbents. In the U.S., Visa and Mastercard operate a duopoly that is good only for their shareholders. For instance, following news that the Federal Reserve has proposed lowering the interchange (swipe) fee, the CEO of Mastercard slammed it.18li

The next edition of this book could include a conversation about the friction-filled payment infrastructure that allows private companies to extract rents on retail users in the U.S. For instance, five months ago a bi-partisan bill was introduced in both the House and Senate: “the Credit Card Competition Act, which would require large banks and other credit card issuers with over $100 billion in assets to offer at least two network choices to process and facilitate transactions, at least one of which must not be owned by Visa or Mastercard.”

(2) A better comparison would be between proof-of-work networks (like Bitcoin) and proof-of-stake networks such as Avalanche or Cosmos. The latter two do not require enormous amounts of energy to operate. By continually conflating Bitcoin with all blockchains as a whole, weakens their credibility.

On p. 19 they write:

So if cryptocurrencies weren’t currencies, then what were they? How do they actually work in the real world? Well, you put real money into them and hope to make real money off of them through no work of your own. Under American law, that’s an investment contract. More precisely, it’s a security.

The authors – neither of whom are lawyers – throw this hand grenade towards the end of Chapter 1 and do not even provide a citation in the reference section.19 Maybe they are right, but that which is asserted without evidence can be dismissed without evidence.

Also, anyone can create a (ERC-20) token and pair it with another token on a decentralized exchange, such as an automated market maker (AMM) like Uniswap.20 You can do it without raising external capital from anyone too. That’s precisely what Colin Platt did a few years ago.

On p. 20 they write:

There were now potentially 20,000 unregistered, unlicensed securities—more than all the publicly listed securities in the major US stock markets—for sale to the general public.

You would think they would provide specific examples of coins or tokens, and the facts-and-circumstances as to how they are unregistered and/or unlicensed securities. But they do not. Maybe they are right, but that which is asserted without evidence can be dismissed without evidence.

On p. 20 they write:

Worse, these unregistered, unlicensed securities were primarily traded on crypto exchanges, which often served multiple market functions and, therefore, had massive conflicts of interest.

The first part of the sentence can be correct, but they again do not provide any citation. I whole-heartily agree with the 2nd half of the sentence. I even gave a speech a few years ago, discussing these types of conflicts of interest.

On p. 20 they write:

And perhaps most disturbing, most of the volume in crypto ran through overseas exchanges. Rather than being registered in the United States, they were often run through shell corporations in the Caribbean, apparently to avoid falling under any particular regulatory jurisdiction.

This is a partially valid argument. Although they do not provide specific examples here, anecdotally it is likely that some centralized exchanges attempt to use regulatory arbitrage to avoid specific jurisdictions. But the next edition should provide a couple here (they do a little later).

One other quibble with this passage is that traditional financial institutions do precisely the same thing. They pioneered the playbook of lobbing for regulatory changes and structures in specific jurisdictions. For instance, the entire reinsurance industry is headquartered out of Bermuda.

On p. 21 they write:

When you buy a share of Apple, you are effectively a portion of the revenue stream, as well as the brand equity, market share, intellectual property—all of that. But cryptos don’t make stuff or do stuff. There are no goods or services produced. It’s air, pure securitized air.

This could have been a stronger argument if the authors used nuance. As mentioned earlier, there are “real world assets” (RWA) which tokenize off-chain wares. Instead of making a blanket statement, they should have honed in on the self-referential nature for most other cryptocurrencies. Also, the burden-of-proof is on them when they claim each and every cryptocurrency is a security.

On p. 21 they write about “Dave”:

We came up with a side bet of our own: I bet him dinner at the restaurant of his choosing that Bitcoin would be worth $10,000 a coin or less by the end of 2021. To my mind, it was easy money.

We never find out if Dave is a real person or not but that is unimportant. What is important is that prior to the publication of this book, McKenzie had an undisclosed financial interest: a large bet.21

As another book reviewer pointed out:

In a recent Guardian profile, the actor disclosed he lost as much as $250,000 trying to short the market. Allegedly he got the timing wrong. The article doesn’t share many details, so we can only speculate but this wager could undercut much of what McKenzie has been saying over the years. In other words, the self-declared paid liar is also a hypocrite.

Is McKenzie a liar? He definitely cherry picks but I’m not sure I would use liar to describe him yet. He is definitely inconsistent for not disclosing on social media that he was actively shorting cryptocurrencies.22 Later in the book he kind of defends this behavior by saying he does not invest in public companies so perhaps he justifies it all by claiming the coin projects are private? Again, we do not know exactly what the short(s) were so it is kind of just guesswork.

On p. 23 they write:

I decided to do something. I decided to get stoned.

When I was reading the book, I did an audible chuckle. It may be authentic, but why do the authors think this adds credibility to the story? Why should we take him seriously at this point? This is not the last time we hear about his marijuana usage.

On p. 24 they write:

I needed to do something other than drink to help me cope. Pot did the trick. While high, I stumbled upon an ingenious notion: I would write a book! It would be a book about crypto, fraud, gambling, and storytelling, as told by a storyteller who was himself gambling on the outcome. To my THC-inspired brain, it all made perfect sense. I had stumbled on something profoundly original! The next day, I woke up a bit groggy and realized the obvious: I don’t know how to write a book.

This is not even the silliest thing in the book. By now readers expecting a deep-dive into the nitty gritty should temper their hopes. Easy Money is basically a self-promotion book that takes a serious set of topics and superficially touches on each while giving the authors an excuse to play blockchain tourist. It is a disappointment to those of us who actually filled out whistleblower forms and sat down with prosecutors.

Chapter 2: What Could Possibly Go Wrong?

While every book has an origin story, for some reason the authors felt the backstory for this book was compelling enough to include in the actual book. While there are some amusing parts, most of it should have been left on the cutting board. It all comes across like Entourage wannabes. A good journalist needs a team but that team – and the journalist – do not have to become part of the story. Here they force themselves onto the reader and it is pages that could have otherwise been used to describe more of what happened in El Salvador. For instance, Zeke Faux – and other journalists – show you do not have to continuously insert yourself into the story line just because you have a hot take.

On p. 27 they write:

It was August 13, 2021, and I was perspiring more than I would have liked outside my local bar. It wasn’t the sweltering heat of that summer night making me nervous; it was the stupidity of what I was doing. You know how it goes, what had seemed sensible to propose via Twitter DM after some edibles seemed somewhat less so now. I had invited a journalist I’d never met to pitch him on writing a book I didn’t know how to write about events that hadn’t happened yet. What could possibly go wrong?

If you’re keeping score at home, this is the third time in as many pages that the author mentions he is consuming some form of marijuana. Sure it is just edibles, no big deal right? It is neither classy nor does it add credibility. If anything it reinforces stereotypes of the entertainment industry.

On p. 27 they write about McKenzie’s first interactions with Silverman:

I told him about my econ degree and my interest in fraud. I talked about my friend Dave, and about our little bet that a crypto crash was imminent, and that I felt I had a duty to warn others before it was too late. And then I told him I wanted to write a book about it all.

I genuinely appreciate his sincerity on wanting to warn others but the timing – and self-serving motivations – are ridiculous. Coin prices peak about two months after this meeting. The time to warn, and act, was arguably a couple years before hand. What were you doing in 2018-2019?23

On p. 26 they write:

I could summon my own superpowers as an econ dork and mid-level celebrity and spread the gospel of “crypto is bullshit.” I could call out the liars and thieves, write it all down, and put it out there for the people to see.

This is incredulous.

Pages ago the authors explained how McKenzie had ignored finance until the fall of 2020 and needed to dust off his economics degree. Was the Netflix version of this book going to show a montage of McKenzie pouring over the works of John Nash or Keynes’ General Theory and writing equations on a chalkboard that quickly turn him into an “econ dork?”

To his credit, McKenzie does look a bit like Russell Crowe, so that scene is a possibility.

More seriously: the fact that the authors literally state spread the gospel of “crypto is bullshit” undermines their credibility. How can you be objective while oozing so much self-righteousness? If you are going to self-deputize, shouldn’t you at least go through the motions of ascertaining the facts-and-circumstances like an actual prosecutor must?

On p. 28 they write:

I tried my best to be civil but firm toward my fellow celebrities, some of whom had made a lot more money and had much bigger bills than I did. I get it: Life’s a hustle. But let’s not be gross about it, or lack any discernment or critical thinking. There’s a bridge too far and crypto is past that.

We have no idea how much money the authors made from the book advance but we already saw McKenzie mention he had FOMO and was looking for work. The solution was that he hustled “crypto is bullshit” to anyone including reporters.

For example, last year in that same interview where he wore the “no-coiner” identity as a badge of honor he says:

Trolls still tell me to “have fun staying poor” and I have yet to react by saying “look at my bank account.” That is juvenile.24 And this is not the only time the authors humblebrag.

Chapter 3: Money Printer Go Brrr

This is could have been an interesting chapter, if the authors had spent time explaining to readers how the market structure of the coin world worked. For instance, they could have explained what pegged stablecoins were.25 Who were the major issuers. What market makers were. How centralized cryptocurrency exchanges typically fold together custody, trade execution, and clearing all in one. Instead, we are introduced to a cast of characters that do not seem fully integral to the story (e.g., they are not insiders).

On p. 31 they write:

For skeptics like Jacob and me, there was one corporation that reigned supreme when it came to our suspicions about the cryptocurrency industry: the “stablecoin” company Tether and its assorted entities such as the exchange Bitfinex.

Before diving into this, one thing that was a slight (grammatical) distraction was “Jacob and me” which is used 3 times altogether in the book, versus “Jacob and I” which is used 24 times. Again, not a big deal, just a little copyediting nitpick.

Anyways, much like “coiners,” the authors never define what “skeptics” are. Are they the same as “critics” – another vacuous word they frequently use? Strangely still, they commandeer a word that has been used to describe an assortment of people the past few years.

For instance, I have also been labeled a “realist,” “critic,” “skeptic,” “nocoiner” — oh and a “gadfly.” Terms I have rejected and the authors should have rejected too. For example, on June 30, 2015, CoinTelegraph described me as:

Source: CoinTelegraph

Several years later The Financial Times labeled me as “realist”:

Zeke Faux did not attempt to co-opt a term, his loss, right?

Sure we have “food critics” and “movie critics” but neither of these practitioners deny the existence – or potential utility – of the thing they are critiquing. Over the past 24 months the terms “critics” and “skeptics” seem to be used as a way to market newsletters, podcasts, and books. For instance, David Gerard and Molly White – people the authors namecheck in the Acknowledgements – have built careers out of the “nocoiner” identity – they are fully invested in it. And it shapes their coverage on this topic.

At a minimum can we all agree that fervently marketing oneself something contrarian sometimes devolves into tribalism?

On p. 31 they write:

Founded in 2014, Tether claims to be the first stablecoin ever created. (A stablecoin is a cryptocurrency pegged to an actual currency such as the US dollar.)

Three issues with this:

(1) The authors really should have used “USDT” to describe the token itself and Tether LTD to refer to the company that issues tether tokens. It gets confusing later on.

(2) In a future edition the authors should add a nuance around what a pegged and non-pegged stabilized coin are. For instance, while centrally issued stablecoins like USDT attempt to maintain a pegged value, others such as Rai drift a bit but are relatively stable (due to a controller system and CDPs). There is a small but growing category of assets that are stabilized relative to some external value, by definition they are not pegged-coins.

(3) Back in 2012-2014 during the heyday of “colored coin” projects, there were some toy experiments that attempted to tokenize (link) USD to a discrete amount of satoshi.26 On Counterparty, there was an actual product – Digital Tangible Gold – that tokenized gold held in custody by Morgan Stanley. For history buffs, Pierre Rochard, one of the maximalists who coined the term “nocoiner,” contacted Morgan Stanley directly who then closed the custody account.

On p. 31 they write:

And if you were making huge gains or moving money between jurisdictions, Tether helped avoid the imposition of regulated banks with their pesky reporting requirements.

As previously mentioned it is unclear if the authors are referring to tether (USDT) or Tether (the company). If it is the latter, according to the company they have implemented some KYC / AML requirements. It would be interesting to know how rigorous those were. Also a future edition could explain the difference between banked and bankless exchanges and how USDT acts as a type of shadow bank for latter as well.

On p. 31 they write:

On October 19, 2021, we published “Untethered” in Slate.

At this point I had already interacted with Silverman via Twitter, sending him mining-related links. They reached out to conduct an interview for the article above, here’s what they penned:

Source: Slate

Those were indeed my words, but it does feel a bit like cherry picking for sensationalism. I pointed this out on Twitter too. I also provided a lot of other color that they did not use. Obviously it is their column but I don’t think it was a fair representation of the totality of my conversation.

On p. 31 they write:

We hadn’t cracked the company’s mysteries, but the piece, which built on past investigations by Bloomberg, the Financial Times, and writers like Cas Piancey, Bennett Tomlin, and Patrick McKenzie, was consistent with our proselytizing mission. We were here to ring alarm bells and make sure the lay public could hear them.

This is a little revisionist history and misses some important people such as J.P. Koning. Since the authors have done such a good job at self-promotion, let me give it a shot.

Back in 2017 I introduced “Bob” to reporters including Bloomberg and later the NYT. Bob later went on to speak with the CFTC (this is not to take credit for what became the CFTC lawsuit).27 The most popular post I wrote that year was Eight Things Cryptocurrency Enthusiasts Probably Won’t Tell You which identifies Bitfinex and Tether as the number one glossed over aspect of the ecosystem.

In December 2017, I was quoted in Bloomberg:

“Is there anything backing this?” said Tim Swanson, who does risk analysis for blockchain and cryptocurrency startups. Swanson, also director of research at Post Oaks Labs, said he fears problems with tether could hobble exchanges that trade it. “If these aren’t backed 1-to-1, then what is the contagion risk if one of these exchanges goes down?”

And I was far from the only person curious about Tether in 2017.

While a future edition does not need to cite me, they should at least expand the list of people who openly discussed the role Tether (USDT) played in the coin world beyond the three they mention above, starting with Koning. For bonafides, the oft-cited Money Flower Diagram from the Bank for International Settlements (BIS) specifically mentions Koning’s Fedcoin idea.

On p. 32 they write:

The second red flag for Tether was its size relative to its workforce. Twelve employees (maybe even fewer) are running a business that deals in tens of billions of dollars? Forget the absurdity and ask yourself why. If you were running a legitimate, huge business dealing in big-dollar transactions, wouldn’t you want, and need, more than a dozen people helping you run it?

This would not be a top three red flag for me. The authors are saying: managing that size of money should involve more than a dozen. But does it necessarily? What is the average size of a money manager or hedge fund? According to IBISWorld the average U.S. hedge fund has 10.7 employees.

Ah but Tether LTD is not a hedge fund, or at least should not be, right?

And this is how we arrive at what the top red flag should be and one that Rohan Grey forcefully argues thusly: a case against centrally issued pegged-USD issuers – such as Tether – should be rooted in first principles. Tether LTD intentionally operate as shadow banks and/or a shadow payment provider. Everything else – while perhaps important – is a knock-on of that.

This is why we should put aside conspiracy theories – if Tether LTD owns Evergrande commercial paper – because a first principles analysis would conclude that U.S. regulators should use the tools available to them to bring Tether LTD into compliance irrespective of what Tether LTD has as reserves. If that means Tether LTD is required to form a state or national bank, then that is one (unlikely) outcome.28

However a persistent problem in this book is that the authors spend more time discussing possible hypotheticals rather than what we can easily confirm. The CFTC and NYAG have already provided evidence that backs up the concerns academics such as Rohan Grey previously articulated. Strangely, while the authors namecheck Grey in the Acknowledgements, they do not cite any of his work. A future edition should also include a discussion on shadow banks that explores any similarities between PayPal and Tether LTD.

On p. 34 they write:

They hid that fact from the general public, only to have it revealed with the release of the Paradise Papers, a trove of confidential financial documents that were leaked to journalists in 2017.

It was Nathaniel Popper, then a reporter at The New York Times, who first connected overlapping ownership between Bitfinex and Tether LTD via the Paradise Papers. The reason I highlight this is because Jacob Silverman dunked on Popper on Twitter during the writing of the book. Then later deleted the tweets.29 Despite his stellar reporting on the topic, Popper is notably absent in the book including the reference section.

On p. 36 they write:

To pick one more bizarre factoid from an extensive list, their primary bank mentioned above, Deltec, was headquartered in the Bahamas and run by Jean Chalopin, the guy who co-created the Inspector Gadget cartoon series. If it wasn’t a giant scam, it was at least marvelously entertaining.

In November 2018, I got heckled on stage by a Tether promoter, Josh Olszewicz. Here is part of what he yelled at me from the audience:

Source: Twitter

It wasn’t even the first time I was harassed at a fintech event (John Carvalho stalked me at Consensus 2017).

Putting aside the colorful personalities this space attracts, I still do not understand the Inspector Gadget fascination. 30

On p. 36 they write:

In 2016, Tether was hacked. More than 100,000 Bitcoin (worth $71 million at the time) was stolen, and the company was in desperate straits.

As mentioned at the beginning of this review, this is incorrect. In August 2016, Bitfinex – the cryptocurrency exchange – was hacked and 119,756 bitcoins were stolen.

On p. 36 they cite a paper: Is Bitcoin Really Un-Tethered? by John Griffin and Amin Shams.

But then they wrote something kind of strange in parenthesis:

(Griffin’s blockchain forensics firm has also had contracts with a number of government agencies, indicating that he is advising on crypto investigations.)

Why speculate on what Griffin’s analytics firm may or may not be working on? Surely you could just contact them and ask? It is called Integra FEC.

On p. 36 they write:

Wash trading is the practice of buying and selling an asset back and forth among accounts you control in order to give the appearance of demand for that asset. Crypto is perfectly suited for this sort of manipulation.

To strengthen their argument they could have cited the CFTC settlement with Coinbase before its direct listing two years ago. Its senior engineer, Charlie Lee (who was the creator of Litecoin), was accused of wash trading on the GDAX platform.

On p. 38 they write:

While Tether might have been a last resort for people in need, it carried with it massive costs. Trading in crypto often means incurring heavy fees, and it’s difficult to cash out into real dollars via legal means, pushing people into relationships with unsavory characters who are, at a minimum, not motivated by charity.

How much are those heavy fees?

On p. 38 they write:

In addition, the use of Tether can be seen to further undermine already weak currencies, contributing further to their downfall.

I should be in their small-tent camp, right?

For instance, on November 2, 2018 in an op-ed for FinTech Policy, I labeled Tether (USDT) a systemically important utility for the crypotcurrency world. On March 3, 2021 I gave a presentation to the Fed’s DLT monthly meeting and ended by saying they should look into pegged-coin issuers like Tether LTD.

The authors could improve their arguments by providing specific details because they miss the entire discussion from first principles: centralized pegged-coin issuers acting as shadow banks.

For instance, in their one sentence claim above, how does using Tether (USDT) undermine weak currencies? Which currencies? Is there a nation-state that has adopted USDT? Who knows, the authors do not provide those details.

On p. 38 they write:

I couldn’t believe what I was hearing. On the other end of the line was a male voice I only knew as belonging to a pseudonymous Twitter handle calling himself Bitfinex’ed. He had been on the Tether case for years. Bitfinex’ed had long suspected the company was a fraud, and had paid the price for his obsession with harassment, ridicule, and, he claimed, an attempt to buy him off. On crypto Twitter, some hailed him as a conspiratorial crank while many others, including people in the industry and in mainstream media, had learned to trust his tips.

There are a couple of issues with this:

(1) Bitfinex’ed real name has been in the public for a few years, all you have to do is a bit of googling. It is Spencer Macdonald. How did I find this out?31 Back when I wrote long newsletters he was on my private mailing list and sent me the link to a Steemit article of a guy who “doxxed” him because Macdonald had re-used the same catchphrases “Boom. Done.” under an alias Voogru on reddit.

While the Steemit article mentions his name it is not fully accurate either. At the time, some of Tether LTD’s supporters were pretty bananas online (just look at how one heckled me IRL). For instance, Stephen Palley helped provide legal assistance when there were issues with Macdonald’s Twitter account being locked. CoinDesk ran an article about it.

The other area where that Steemit article is incorrect relates to Jeff Bandman and the CFTC. The entire bottom quarter of that post is a guilt-by-association. Maybe Bandman is bff’s with both Palley and Macdonald, maybe they play golf and tennis together each weekend. There was no evidence presented that they are all in cahoots. Either way, ~2.5 years later we learned the results from the CFTCs subpoenas: that at certain periods of time Tether LTD did not have reserves they claimed backing the USDT (among other things) and some of the executives lied both publicly and privately about that.

(2) What tips did the authors assess were right and wrong?

For instance, Macdonald and I made a bet almost two years ago. And I won. But he blocked me months ago and never sent me the scotch. Sad days.

Source: Twitter

Maybe Macdonald and the group of “Tether Truthers” (USDTQ) are correct, maybe Tether LTD still operates as a fraud today.32 If readers are expecting some kind of “smoking gun” from reading this book, they will be disappointed. Bitfinexed – and some others in his circle – act as if they have some kind of secret knowledge.

When you ask them to simply reveal it, they post to more twitter threads.33 When you ask them to file whistleblower forms, they do not.

For comparison, Zeke Faux met with Bitfinex’ed in-person and wrote the following on p. 77:

When I asked for his sources or evidence, Andrew didn’t have anything new to provide. That was where I was supposed to come in.

[Andrew is one of the nom de plume of MacDonald/Bitfinex’ed]

Nothing secret was revealed in this book which is a disappointment. For instance, Bitfinex is an investor in Blockstream and USDT was directly issued onto Liquid (a quasi permissioned chain operated by Blockstream).34 At least two of the executives, Adam Back and Samson Mow, regularly promote and defend both Tether and the current president of El Salvador. Did they really own a Gulfstream IV?35 Nary a mention of Blockstream in the book.

In my view there are two distinct phases of Tether-related criticism with the divergence before and after the settlements with the CFTC and NYAG:

Phase 1 – concluded in early 2021 where the CFTC and NYAG both proved that Tether LTD did not operate in full reserve and some of the executives lied
Phase 2 – 2021 to the present day, post-settlement Tether Truthers claim that Tether LTD still does not operate and back USDT in full (reserve).

I stand by my previous criticism of Tether LTD and Bitfinex from phase 1.

But the onus is on the Tether Truthers to provide evidence that Tether LTD is still operating as a fraud and/or scam. Maybe it is, but what we typically see on Twitter is innuendo. Are both the CFTC and NYAG missing something? I posted this question on Twitter the other day and was called low IQ. Great feedback, I’ve been called much worse!36

On p. 38 the authors write:

Bitfinex’ed, whose real identity remained a mystery to us

The first search result for googling “Bitfinexed identity” is to a five year old article that links to the Steemit article.

On p. 38 they write:

Despite attempts to dox him—and a temporary Twitter suspension—Bitfinex’ed managed to maintain his anonymity, while developing a growing audience online. His fixation on Tether has bordered on obsession.

Again, the first search result for googling “Bitfinexed identity” is to a five year old article that links to the Steemit article.

On p. 38 they write:

Crypto partisans dismissed him as being salty because he hadn’t gotten in early enough on Bitcoin. But more sober observers pointed out the fact that Bitfinex’ed had been right about many of his claims. Some just took longer to prove.

That could be true, but which specific claims was he right about? Off the top of my head, based on direct communications with him I believe he had two correct predictions:

(1) That USDT was at times not fully backed

(2) That Tether LTD and Bitfinex shared common ownership

And while not a prediction per se, at the time he also transcribed ad hoc interviews that executives, such as Phil Potter, publicly gave on issues surrounding banking access. Speaking of which, did the authors try to reach out to Potter? Because Faux gets a direct quote from Potter regarding the origins of Tether.37

On p. 38 they write:

And few people had done more to educate journalists, critics, and the larger public about the perfidy lurking underneath crypto’s wildly anarchic market activity.

How do McKenzie and Silverman know this? They did not start covering this space until just under two years ago. Did they sit down and tabulate who educated who?

On p. 38 they write:

Bitfinex’ed was the angry, roiling conscience of crypto Twitter, always ready to swoop into a conversation and expose the dark underbelly of the latest industry spin. To some that made him a threat.

Macdonald did not and does not have a monopoly on “exposing the dark underbelly.” For example, did the authors contact ZachXBT?


On p. 42 they write:

SPACs, or Special Purpose Acquisition Companies, were often nothing more than blank checks issued to aggressively self-promoting “investment gurus” who would pocket a huge fee in exchange for gambling with their investors’ money.

This is a good point.38

On p. 43 they write:

My portfolio of short bets was, to put it generously, in shambles. I started with $250,000 that summer, by November it was down to $38,931. While I had bet on other frauds, the main culprit was simple: I had wagered too much on crypto’s collapse too soon, and blinded by my certainty, I nearly lost it all. By the time I got out of my initial crypto positions, they were almost worthless. What had been a lot of money was now very little. To be blunt, it was an unmitigated disaster—the kind of thing that provokes an uncomfortable conversation with your spouse.

We learn a few more details scattered around the book. As mentioned earlier, he began this bet with a friend “Dave” but we are never told its composition. Did McKenzie attempt to short some futures contracts on CME? Also, at least he is honest about his “blinded by my certainty” — something that other book authors on this topic failed to reflect on (such as Michael Casey’s dubiously title: “The Age of Cryptocurrency” reviewed 7 years ago).

On p. 43 they write:

The financial press was practically in lockstep about the inevitable crypto-fied future of money. Politicians, their pockets brimming with donations from industry moguls like Sam Bankman-Fried of FTX, were preaching the Bitcoin gospel. They were also openly contemplating passing industry-written legislation to further legalize these rigged casinos.

This is another decent point. But later in the book, we are only provided a cursory set of examples which we will discuss later. Also, the main quibble readers should have with the 2nd sentence is that the authors conflate “Bitcoin” with “crypto” as a whole. SBF may have been many things, but he did not frequently give off maximalist vibes.

On p. 44 they write:

Since in my analysis crypto was only speculation, it would fall like a rock once the Fed raised rates. Unfortunately for me, I had been just a bit early in making that call.

As my friend Colin Platt – the richest person in the world – is wont to point out: being early is effectively the same thing as being wrong. He says this from experience (with DPactum)!

On p. 45 they write:

In the interests of objectivity—and not wishing to be a participant in the kind of market manipulation I’ve denounced—I’ve never written about the companies I’ve shorted. You don’t have to trust me on this; you can look at my work. I’ve never written about publicly traded companies, only privately held ones. I’ve never traded or owned any cryptocurrency. My bet on crypto was simpler, and bigger than any one company: I thought the whole thing—all $3 trillion of it—was a speculative bubble. That part was obvious to me. The thing I couldn’t prove yet was that it was a bubble predicated on fraud. Hence, my journey with Jacob.

As mentioned above on p. 21, another book reviewer labeled McKenzie a liar and a hypocrite for failing to disclose this bet. The disclaimer above doesn’t really absolve the lack of disclosure: he has a vested interest in seeing the coin world go kaput.

I empathize with McKenzie.

For example, during the rapid rise in coin prices in December 2017, I was quoted as a “skeptic” in The Wall Street Journal:

That was published just days before the Bitcoin price peaked. Yet as certain as I was, I still did not short the market primarily because of counterparty risk and timing. Do I get book deal with Abrams now?

One last comparison, in Number Go Up, Zeke Faux describes a multi-million dollar offer he received to provide some purported Tether-related documents to a short seller. He turned it down, reasoning:

“This book is going to be called Jay Is Wrong and Zeke Is Right: The Cryptocurrency Story,” I said. “As a writer, you don’t want to be compromising in any way, you know? You don’t want to have ulterior motives.”

Unlike Faux it’s pretty clear from the book – and tweets – that at least one author has an ulterior motive: McKenzie discusses his short selling bet a number of times.

Overall this chapter made several interesting observations (such as the abuse around SPACs) but it seems like portions of the chapter could have been removed (e.g., most of the commentary around Bitfinex’ed) and instead re-used to discuss more of the celebrities like Matt Damon who acted as a public spokesperson for crypto-related companies.

Chapter 4: Community

A portion of this chapter hones in on McKenzie’s desire to have an entourage, a crew. It comes across as sappy and cringey and not something a made-it actor or journalist would strive for.39 As mentioned at the top, in no other book on this topic (that I have reviewed) have the writers explicitly stated as much because it should not be necessary.

In fact, because of the never ending drama-per-second the coin world generates, copy-paste Twitter accounts like Web3isGoingGreat, are able to rely on continuous streams of mainstream reportage on this topic to copy-paste from. McKenzie and Silverman did not need a crew of podcasters, and the next edition of the book probably should reclaim these pages to discuss what is going on in say, El Salvador, which was interesting and novel.

On p. 49 they write:

Bitcoin maximalists proudly boast that “Bitcoin has no marketing department,” which is technically true, but in practice dead wrong. Multibillion-dollar corporations—at least on paper—spent real dough to convince people to buy crypto. Sometimes the appeals were explicitly about Bitcoin, leveraging the brand awareness of the best-known cryptocurrency.

While we are never provided a full definition of what “Bitcoin maximalism” or who specifically makes that claim, I have heard this claim before from Andreas Antonopolous during his halcyon days. And while the authors do list off a series of A-list celebrities and entertainers who shilled something coin-related, it would be great to see specific tweets of endorsements in a second edition.

On p. 50 they write:

It also felt appropriate that I found myself on the opposite side of the proverbial line of scrimmage from the Hollywood consensus, but seemingly without a squad of my own. To counter the feelings of isolation and depression in my quest for truth in crypto, I needed to finally meet some fellow skeptics in the flesh. I needed a team of my own. Crypto-skeptic nerds assemble!

You do not need a squad to be a (investigative) reporter in this space.

Sure, building up a reliable rolodex of contacts is part-and-parcel to what reporters covering a beat will accrue over time, but journalists are encouraged not to get too close to sources otherwise you compromise your objectivity.

For instance:

Source: Twitter

I have not had a chance to read Michael Lewis’s new book, but according to his 60 Minutes interview, Lewis still has some affinity for SBF.

Source: Twitter

On p. 51 they write:

HODL is hold on for dear life, meaning that you should cling to your crypto no matter the price.

I have pointed this out in several other book reviews but the etymology, the genesis of “hodl” did not originate as an acronym or portmanteau. It came from a drunk poster on the BitcoinTalk forum, there are many articles discussing this. However, what the authors describe “hodl” to mean is correct.

On p. 53 they write:

Surveying the landscape in 2022, it was hard not to notice the myriad similarities between crypto and pyramid schemes. Both depended on recruiting new believers rather than buying anything with an actual use case.

This is an adequate comparison (for many cryptocurrencies).

I currently think a decent description of Bitcoin itself is how J.P. Koning categorizes it as a game akin to a decentralized chain letter:

Source: J.P. Koning

On p. 54 they write:

Bitcoin ownership is highly concentrated in an extremely small number of whales who wield enormous power in the highly illiquid market. According to an October 2021 study conducted by finance professors Antoinette Schoar at the MIT Sloan School of Management and Igor Makarov at the London School of Economics, .01 percent of Bitcoin holders control 27 percent of all the coins in circulation. Some community.

Anecdotally this is probably true, for Bitcoin at least. Is it the case that every cryptocurrency / asset is the same way?

On p. 54 they write:

The eccentric community of crypto skeptics also fits in that category, and I was proud to call myself a member.

We are over 50 pages into the book and the authors still have not provided a succinct definition of what a “Coiner” or Skeptic” or “Maximalist” or “Critic” are. What are these tribes? What are their etymology?

On p. 56 they write:

many coiners really do feel that they are part of a like-minded community

What are coiners?

On p. 56 they write:

Practically everyone I spoke to at crypto conferences and other public events both admitted to being scammed and accepted it as if it was almost obligatory, a character-building exercise and bonding agent. Few spoke about stopping scammers in general.

This is a really good point, and I completely agree with the authors.

McKenzie’s experience reminded me of the meme from The Ballad of Buster Scruggs:

It is still unclear why this rugging behavior is perceived as a rite of passage and normalized.

On p. 57 they write:

In the case of the 20,000 cryptos other than Bitcoin, it should be simple to categorize them under the law. Most were securities made by real companies with real employees.

Maybe that is true, did the authors cite a securities lawyer? Did they quote a U.S. judge?

This is the same problem that occurred in Diehl et al., book: lots of opinions but few references. I am a certain there are U.S.-trained lawyers who share the same views as the authors, why not quote them here? For instance, later in the book they chat with John Reed Stark; this would have been a good spot to introduce him.

On p. 57 they write in parenthesis:

Ethereum also used proof of work to mine its cryptocurrency, until turning to proof of stake in September 2022. In proof of stake, owners of the crypto validate the blocks, making the system far less energy intensive, but incentivizing even more centralized ownership.

Two issues with this:

(1) As mentioned earlier, while there is some discussion of proof-of-work-based mining (the authors visit a hashing farm in Texas), the conversation or discussion around alternatives — such as proof-of-stake — are few and far between.

(2) Did the authors provide evidence that proof-of-stake systems are even more centralized? Maybe they are, but no references were provided. What can be asserted without evidence can also be dismissed without evidence.

This also reminds me of Matthew Green’s evergreen tweet:

Source: Twitter

On p. 57 they write:

What started as simple speculation and peer-to-peer exchange became a web of derivatives markets, DeFi protocols (a set of rules governing a particular asset, often using so-called smart contracts, run on blockchains), lending pools, and other newfangled features of digital finance.

What are derivatives markets? What are DeFi protocols? What are lending pools?

On p. 58 they write:

Under this arrangement, buying Dogecoin on a crypto exchange like Binance was indeed an act of trustlessness, but only in the sense that it was hard to trust any offshore crypto entity.

This is a strawman. Why? Because Binance is a centralized exchange, it is a trusted-third party. No one is arguing that Binance or other centralized exchanges are… decentralized.

On p. 58 they write:

“Not your keys, not your coins,” was the mantra thrown around by die-hard crypto fanatics, meaning you should keep your crypto in a “cold wallet” that didn’t touch an exchange—or even the internet. But that kind of advice did not reflect the reality of the markets. It defeated the primary purpose of money, which is to make buying and selling stuff convenient and fluid.

I mostly agree with their observation and have written about all of the “friction” that coin-related intermediaries often add. But there does need to be a nuance with private keys because various controllers in traditional finance also have key (recovery) management involving hardware wallets, cold wallets, an so forth. Traditional finance has incorporated the modern iteration; see Thales on slide 9.

On p. 58 they write:

Unfortunately, creating money that’s trustless is impossible in practice, for it goes against the very nature of money itself. Adopting it as a mission can only lead to disappointment.

There are a couple issues with this:

(1) This seems to be an a priori argument. By definition, a priori arguments are the opposite of empirical arguments. So no matter what evidence someone could provide, it seems like the authors have made up their mind.

(2) Not every cryptocurrency or cryptoasset project is attempting to reinvent money.

On p. 59 they write:

In the United States, the nation with the largest economy in the world—as well as the issuer of the world’s reserve currency since 1944, the US dollar—we often take this consensus for granted. Everyone wants dollars, especially in times of crisis.

What is a reserve currency?

There are several reasons why the U.S. is the issuer of the world’s reserve currency. While the authors do mention a couple of authors, experts such as professor Michael Pettis and Brad Setser, attribute the U.S. dollars current reserve status due largely to the (im)balance of trade. The U.S. runs large trade deficits. And mercantilist economies such as China are either unwilling or unable to shift to running large trade deficits. Until something dramatically changes, the U.S. dollar will continue to remain the key reserve currency.

On p. 59 they write:

In that sense, the stated goal of cryptocurrency—to create a trustless form of money—is literal nonsense. You cannot create a trustless form of money because money is trust, forged through social consensus. As Jacob Goldstein writes in Money: The True Story of a Made-Up Thing, “The thing that makes money money is trust.” Saying you want to create trustless money is like saying you want to create a governmentless government or a religionless religion. I think the words you are searching for are anarchy and cult. The bartender should cut you off and make sure you get a ride home.

This is a strawman. Not every cryptocurrency or cryptoasset project is attempting to become “money.”

There are a number of coin promoters who regularly echo comments similar to Zero Hedge, that the U.S. dollar is doomed. Maybe it is, and maybe that is who the authors are thinking about, but we are not provided specific names of people who make the argument that a specific cryptocurrency is going to become a “reserve currency” let alone “money.”

On p. 60 they write:

The failures of our current system to do so have no doubt lent the story of cryptocurrency much of its power. A severe, and very understandable, lack of trust in the financial system reflects a wider loss of faith in democratic governance. Wealth inequality is at near record highs and many working people feel that the economy is rigged against them. But that doesn’t mean the story of cryptocurrency is true, or offers a better alternative to the present situation. You cannot replace people and flawed institutions with magical bits of computer code.

There are a couple of issues with this:

(1) What are some of the failures of the current system? Are the authors referring to too big to fail banks? Systemically important financial institutions?
(2) What is the story of cryptocurrency? Which one? This is a problem with generalizing without looking at the facts-and-circumstances of each.

On p. 60 they write:

That code was written by human beings who themselves are far from perfect.

This seems like an inconsistent argument. Is the claim that “smart contracts” and/or “blockchain” projects are inherently prone to error because humans wrote the code? If so, shouldn’t we be equally concerned about all digital, automated financial infrastructure created by humans? Why single out cryptocurrency?

On p. 61 they write:

A decentralized financial system seemed less like an inherently noble pursuit than an alternative structure that, just like TradFi, further enriched those at the top.

What is TradFi? They tell us later but should have mentioned it here.

On p. 61 they write:

I will inevitably be attacked by crypto promoters as advocating for nation-state supremacy or excusing the myriad failings of this or that government, but that is missing the point entirely.

In the past I have jokingly referred to myself as a statist shill. Looks like we all could have been fellow travelers at some point!

On p. 61 they write:

Consider a familiar example: our banking system. Why do you trust that the money you put in a licensed US bank is going to be there when you want to use it? Because the federal government guarantees it in the form of the FDIC (Federal Deposit Insurance Corporation).

While true this seems a bit of cherry-picking because we also have too big to fail banks that are regularly penalized for screwing their customers. I think there are better arguments to describe the utility of trust that has been created by public institutions like the U.S. Mint or the Federal Reserve without having to describe prudential regulators such as the FDIC.

For instance, earlier this year Bank of America agreed to pay $250 million in fines and compensation to cover “junk fees” it had levied on customers. Last December, the Consumer Financial Protection Bureau (CFPB) fined WellsFargo $3.7 billion for rampant mismanagement and abuse of customer accounts.

On p. 61 they write:

Is our financial system perfect? Of course not! In fact, it is deeply, deeply flawed. It cries out for more reform and democratic accountability. But it at least includes guardrails that protect consumers and a legal framework that acknowledges the role of trust in binding people together, whether in social life or commerce.

There has got to be a better way of defending “trust” and “consumer protections” than defending private incumbents.

That passage also sounds strikingly similar to what Diehl et al., wrote in their own book:

While our existing financial system is undeniably profoundly flawed, not optimally inclusive, and sometimes highly rigged in favor of the already wealthy; crypto offers no solution to its problems other than to create an even worse system subject to unquantifiable software risk, profound conflicts of interest, and an incentives structure that would exasperate wealthy inequality to levels not seen since the Dark Ages. Put simply, Wall Street is bad, but crypto is far worse.

When I tried to explain to friends that this book unnecessarily carries water for incumbents, this is the reoccurring meme that came to mind.

There is no reason the authors have to defend incumbents or the a cartel that regularly is fined for the very activities that the authors abhor. Guess who invented all of these criminogenic concepts in the first place?

Rather, it is possible to critique both the coin world and the traditional financial world. You do not have to join one camp or the other.

On p. 62 they write:

But nonetheless, the private banking era was not a success, and eventually central banks were created to better manage the franchisee banks and ensure the safety of customer deposits.

Agreed, and there is a long line of commentators, researchers, and academics who favor policies allowing retail to directly gain access to central bank money (bypassing commercial banks). 40 There is no technical reason, in 2023, for retail to be intermediated from central bank money. If this comes in the form of a central bank digital account and/or digital currency is a separate discussion and one worth having.41

On p. 62 they write:

Among the many butcherings of language in cryptocurrency, historians may find this the cruelest cut of all. The purported “future of money” is in fact the past of money, a failed experiment and one we revisit at our collective peril.

At least two problems with this:

(1) It generalizes all cryptocurrencies as attempting to build a “future of money” when this is not the case.
(2) It is an a priori based argument so by definition it is not evidence-based.

On p. 62 they write:

I have to address one last false story that Bitcoin maxis—the people with the laser eyes who aren’t Tom Brady—have been spreading.

That is a shallow explanation of a Bitcoin maximalist. While some prominent maximalists may have added laser eyes to their profile pictures, that’s more of a degen meme than anything else. Many of the original Bitcoin maximalists – the guys and gals who coined the term – hate me and made it abundantly clear on Twitter each quarter from mid-2014 until the present day. They did not have laser eyes until the past couple of years.

On p. 63 they write:

In economics, supply does not determine scarcity. Supply is simply the amount of something available to be bought or sold. Scarcity occurs only when the demand for that thing exceeds the supply at the price of zero.

I whole heartily agree! This is a good point.

On p. 63 they write:

Imagine I own the rights to all the dogshit in Brooklyn. I have approached each and every dog owner in the fair borough, and they have agreed to sell me their dog’s poop. I do not own the dogs, mind you, merely the rights to their fecal matter. Now, there are only so many dogs in Brooklyn, and there is only so much they can defecate. The supply fluctuates by the number of dogs—despite how it may appear, there is an upper limit here on the number of dogs, certainly lower than twenty-one million—and the amount of times they poo. But is dogshit scarce? Are people clamoring for it because it is prized and useful? Will my cornering the market make me a rich man? Unfortunately for my empire of shit, the answer to all those questions is no.

Much like smoking pot and consuming edibles earlier in the book, is it really classy to use this specific example? Surely there are less crude ways of explaining supply and demand?

On p. 64 they write:

By now, more than 90 percent of the Bitcoins that can ever exist have already been mined. That makes Bitcoin’s supply almost perfectly inelastic, a fancy word meaning it can’t grow or shrink in response to changes in price.

The fact that over 90% of bitcoins total supply has been mined is not why bitcoin is perfectly inelastic. What makes it perfectly inelastic – a topic I have written on a few times before – is that fact that irrespective of the labor force applied, no extra units of bitcoins can be extracted. With proof-of-work networks like Bitcoin, the marginal productivity of labor is zero. It does not matter how many more units of labor are added to the income generation (mining) process as the network will always produce the same amount of economic output. In contrast with traditional commodity extraction, deploying more equipment or a larger labor force, could result in large production of say, a precious metal.

There is one caveat: Bitcoin mining may be considered perfectly inelastic due to the code that prevents extra units from being extracted, but the way block propagation works in practice, block makers (mining pools) have accelerated halvenings.42 That is to say, when Bitcoin was first released, the halvenings were expected to coincide roughly every four years. However because of how mining works in practice, the next halvening is expected April 2024, about 8 months ahead of schedule.

On p. 64 they write:

It’s basically fixed. This makes the price of Bitcoin even more susceptible to changes in demand.

Agreed! I – and several others – have written about this before.

On p. 65 they write:

The problem with the Bitcoin-as-digital-gold argument runs even deeper when we examine economic history. Bitcoin maxis are often “gold bugs,” meaning they want us to return to the gold standard, when you could exchange paper money for a certain amount of gold.

Anecdotally this seems to be true, many maximalists I have met and/or interacted with often are some form of goldbug.

On p. 65 they write:

But elasticity is crucially important in times of crisis.

Agreed!

On p. 66 they write:

But that does not mean returning to the gold standard would be any better.

Agreed!

On p. 66 they write:

The day after the Super Bowl, I finally met in the flesh my first fellow crypto skeptic not named Jacob Silverman. Cas Piancey and Bennett Tomlin host a podcast called Crypto Critics’ Corner that proved a lifeline when I first stumbled into the seemingly lonely world of crypto skepticism in the spring of 2021. Sensing something was off about the industry but hoping to educate myself, I searched for decent podcasts on the subject.

(1) I am not going to say do not listen to their podcast, but McKenzie is correct: it was (is!) hard to find a good podcast that isn’t 100% shilling the listener something. Can recommend Epicenter which regularly hosts technical-focused guests. And despite my disagreements with her in the past, I think Laura Shin’s Unchained is often quite good too. For instance, here is her recent interview with Zeke Faux.

(2) How did McKenzie conduct a “literature review” or due diligence during 2021? Although tough to navigate, there were plenty of active “skeptics” or “critics” that the authors never even mention, such as Mark Williams, Yakov Kofner, Angela Walch, and J.P. Koning.43 We will discuss this again later.

On p. 68 they write:

Appearing on Crypto Critics’ Corner alongside Jacob, who joined remotely from Brooklyn, would mark my first long-form interview in my bizarre career pivot. Cas, a sideways-baseball-cap-wearing SoCal native, welcomed me generously, showing me around the studio owned by an artist friend whose elaborate wood carvings decorated the walls.

It is unclear why the authors are using this nom de plume when Cas Piancey revealed his identity last year. His real name is Orson Krupnick Newstat.44

On p. 69 they write:

Leaving Cas’s studio, I realized I had found my community. It had nothing to do with a coin we were pumping, a company we believed in, or some utopian technological vision that, in practice, came with a heavy side of dystopia. We wanted to understand this crazy new financial system, especially its dark side. And it helped that we liked each other.

This book seems like it is veering into auto-biography territory, was that the intent?45

On p. 69 they write:

The crypto skeptic community that Bitfinex’ed, Cas, Bennett, Jacob, and others brought me into became my team, friends, and trusted colleagues. A few of them I regarded as heroes—or at least the closest thing to it in an industry in which it seemed most people would sell a Ponzi scheme to their mother if it would help pump their bags. Bitfinex’ed—whoever he was!—was our initial ambassador to this new community, but he was soon joined by other pseudonymous online sleuths, as well as economists, computer scientists, indie journalists, cynical former bankers, straight-laced former regulators, stoner podcasters, Scandinavian businessmen, and a few untrustworthy cranks.

Maybe this is one “crypto skeptic community” but certainly not the only one. Also, for years I have been referred to as a “crypto skeptic” — a title I thought was shallow and one I never adopted. Does this make me a crypto skeptic, skeptic? Crypto skeptic skeptics, assemble!

On pgs. 69-70 they write:

To say I learned a lot from them would be a vast understatement, and it quickly became apparent to me why a community like this was valuable. The world didn’t need just one crypto critic, it needed a thousand of them, of diverse backgrounds, interests, and motivations, spelunking through the industry’s darker corners and sharing what they found. When everyone was selling something, we needed a few people to say, “I’m not buying, but I’m curious how you do it.”

Apart from the fact that the authors still do not define what a “critic” is or is not, I agree with nearly everything in this statement. With one major caveat: let’s try to forego purity tests, especially if you just became interested in this space. See for instance, this clique of “no-coiners” acting as if there wasn’t a wider universe of coin “skepticism” or “criticism.” Let’s be Big Tent and include actual technical experts, not just people we may agree with.

On p. 70 they write:

At least now, with Cas, Bennett, and a delightful crew of eccentrics behind me, I had a corner of my own to retreat to in between rounds. Admittedly, it was a David and Goliath battle—a random group of skeptics up against a multi-trillion-dollar industry. But I came back from Los Angeles with more pep in my step. Maybe it was just the gambler in me, but I liked my chances.

Repeating it over and over does not make it sound more objective. Readers might ask: are you moonlighting as a reporter or as a social club manager? Can’t be both. Plus, there are a number of investigative reporters operating at this point, did you reach out to any of them for potential collaboration?

Chapter 5: SXSW, the CIA, and the $1.5 trillion that wasn’t there

This chapter should have been split into two, with the visit to the Bitcoin mining facility pulled out. Also, because of the uneven tone of the book up until this point, it wasn’t clear who the authors felt would narrate this in the movie adaptation. You might think think this is facetious but the entire conversation with the alleged CIA agents does not give a reader any sense of conclusion, there is no bowtie on it. What purpose do the agents fill besides page filler?

But let’s start with one of the two events they attended.

On p. 71 they write:

In early 2022, South by Southwest (SXSW), a big tech and music conference in my hometown of Austin, Texas, invited me to organize a panel of crypto skeptics. I was pretty fired up. SXSW would mark our first venture into the real world; everything Jacob and I had done thus far was online or remote. We recruited Edward Ongweso Jr., a razor-sharp journalist for Motherboard, Vice’s technology site, to join us on stage. I decided to record the whole thing, hiring a local director of photography, Ryan Youngblood, to film whatever hijinks might transpire.

What are crypto skeptics? Are they the same thing as critics or realists? Why did they choose Ongweso?

On p. 72 they write:

“Well, there’s another DAO that helps with that,” he said. His dream was to move to Portugal, a burgeoning crypto tax haven.

That was probably true while the book was being written, however in October 2022, the Portuguese government said it will start taxing short term gains on digital assets. It is unclear if this has reduced the desirability or appeal for crypto-related projects from domiciling.

On p. 73 they write:

Bad actors are everywhere—certainly in so-called TradFi, or traditional finance—so why should crypto be different?

Ah, gotta love the “so-called” modifier. While the authors do interview a number of coin promoters and coin “skeptics” they don’t make much room for anyone who works in traditional finance. Strange because there are credible people within the world of “tradfi” that probably agree with their views. A second edition should interview experts at the DTCC (the largest CSD in the world) or say, Tony McLaughlin from Citi, he’s no coin shill.4647

On p. 75 they write:

The guy who had approached us, whom I will call Charles, led us over to a group of six people with SXSW name tags that read USG in the spot reserved for their employer. Most of them were unassuming: close-cropped hair, dress shirts, fleece vests—the typical uniform of law enforcement people playing at casual dress.

For approximately four pages the authors describe a strange interaction they have with a couple of alleged spooks.

For example they write on p. 76:

Charles was a couple years from early retirement. “I can’t wait to smoke weed!” he said. “It’s great,” we assured him.

Yet more weed smoking by the authors. Why is this in the book?

On p. 78 they write:

“You need to be a borderline sociopath to do this work,” Charles said. “Ryan is probably too normal,” he added, referring to our local cameraman, who said he had been rejected years earlier from the CIA. Ryan smiled uncomfortably.

It was never fully clear why the authors hired a cameraman for many of their interviews. Are they planning on releasing a video as well? For instance, last year Alex Gladstein asked the authors to release the video interview of SBF, which they declined.48

On p. 78 they write:

It went like this all night, Jacob and I exchanging occasional looks that indicated our mutual disbelief. At one point, Jacob gawked as Charles explained that the NSA had found “a small bug” in Signal—the encrypted messaging app used by journalists, activists, and millions of other people, including the spies at our dinner table—but if you restart your phone once a week or so, it wasn’t a problem. It was hardly a sophisticated technical explanation, and maybe it was all bullshit braggadocio, but a Signal exploit would be incredibly valuable—easily seven figures on the open market—and a closely held secret by any intelligence agency.

In my typed notes on Kindle I wrote “Isn’t this burying the lede?” Surely a big story here is that a U.S. intelligence agency used an exploit in Signal?

The only reason I can think of not to include this earlier is because we never learn if these two people – Charles and Paul – actually were spooks. I’ve met people at conferences who claimed to work for a branch of the government and I would google them afterwards and often it was true. What did the authors find out about these two?

On p. 82 they write:

There are more than 20,000 cryptocurrencies out there, sophisticated exchanges, decentralized finance protocols that allow billions of dollars of crypto to change hands without human intermediaries, and financial products that resemble less regulated, riskier versions of their Wall Street equivalents.

What are sophisticated exchanges? What type of decentralized finance protocols? What are human intermediaries? Which financial products resemble less regulated, riskier version of their Wall Street equivalents? It is unclear.

On p. 82 they write:

At least in the gambling-like realm of financial speculation, there’s a lot you can do with crypto. With few guardrails in place, it’s easy to borrow money and add leverage in order to increase one’s odds of winning big or losing everything. Many of these financial products and transactions are extremely complicated, and difficult for the average investor to navigate. Nearly all of them are extraordinarily risky.

I agree with the majority of these comments apart from the leverage element. At the time it was written leverage in the coin world was primarily procured by going through a centralized intermediary like an exchange (Binance) or lender (Celsius).49

On p. 82 they write:

By some measures, Celsius was a successful going concern, but with investment backing from Tether (they loaned Celsius over $1 billion), strange lending activities, sky-high interest rates on offer, and some murky movement of its tokens, it was an object of extreme speculation and rumor within the crypto-skeptic world.

If there is a second edition the authors must cite Maya Zehavi for being the first “Celsius skeptic.” Among other firsts, she was the first person to publicly put a magnifying glass on Hogeg before and after he was removed as CFO. Is she a “skeptic”? She was often labeled as one before the term was co-opted.

On p. 83 they wrote:

I took a breath, told myself that I wasn’t hungover from a night of drinking with CIA operatives, and, trailed by my cameraman, did my most confident walk over to Mashinsky and his confederates.

But were they actual spooks? Is the reason Charles and Paul were in this book just so the authors could say they drank with some alleged spooks?50

On p. 84 they wrote:

We got it on camera. There were moments that astonished me. Talking about scams, he took the usual tack and said people needed to educate themselves.

So are you going to release the video too? Seems spicy no?

On p. 84 they wrote:

Toward the end of our conversation, when the video was off but with audio still rolling, Mashinsky told me something that made my blood run cold. I asked him how much “real money” he thought was in the crypto system. I didn’t think he would actually answer the question, but he did.

Is that common? To turn off the video but keep the audio rolling? I have no affinity for Mashinsky but was that an accident?

On p. 84 they wrote:

“Ten to fifteen percent,” Mashinsky said. That’s real money—genuine government-backed currency—that’s entered the system. “Everything else is just bubble.” The number seemed straightforward and eminently believable. But it was still shocking to hear it from a high-level crypto executive, who seemed totally unconcerned about it all. Mashinsky acknowledged that a huge speculative bubble had formed. If the overall crypto market cap was about $1.8 trillion at the time we spoke, that meant that one and a half trillion or more of that supposed value didn’t exist.

Everyone new to this space is entitled to be shocked, that the “market cap” is probably not an actual “market cap.”

For instance, five years ago, I cited an estimate from Nikolaos Panigirtzoglou at JP Morgan entitled “Flows & Liquidity: The emergence of cryptocurrencies.”  According to his analysis:

The net flow into cryptocurrencies is very much a function of coin creation which is controlled by computer algorithms and in the case of bitcoin is diminishing over time. Figure 6 shows the net amount of money invested every year since 2009. The cumulative amount has totaled around $6bn since 2009, well below the current market cap of $300bn.

Panigirtzoglou illustrates this over time with the bar chart below:

Around the same time Citi published a note with similar estimates:

In 2017, cryptocurrencies grew from a market cap of less than $20bn to around $500bn. We estimate this surge was driven by net inflows of less than $10bn.

What was the estimate five years later?

That’s a good question and something the authors do not readily provide an answer for apart from citing Mashinsky and later SBF. Maybe the two operators are/were correct but definitely a missed opportunity and one that should be included in another edition.

Graph 1 (above) comes from Project Atlas, a new initiative coordinated by the BIS in partnership with several other central banks. Figure C is likely something the authors would find of interest.

On p. 84 they write:

And given the general lack of liquidity in crypto markets—that a billion dollars’ worth of Ethereum isn’t redeemable for a billion dollars of cash without tanking the market—that meant that the crypto economy was dancing on a knife’s edge. One bad move by a major player might tip the industry into freefall. An illiquid market based on irrational speculation, it was all essentially vapor.

Well that could be true, what references did they cite? Nothing in the works cited at the end. That which is asserted without evidence can be dismissed without evidence.

On p. 85 they write:

Crypto critics call it “hopium,” and it’s a powerful drug.

What is a crypto critic? Who was the first crypto critic to call it hopium? It might actually be difficult to identify because there is a French automobile brand called “Hopium” founded in 2019. I believe the first time I heard the term “hopium” as it related to coins – was after the 2017 bubble imploded. People were making memes of “copium” and “hopium” but perhaps I am misremembering and it was more recent.

On p. 85 they write:

As OG crypto critic David Gerard would say, “You lost your money when you bought the tokens.”

Gerard may have said that and he might be right but let’s not hand over trophies to people who market themselves as “crypto critics” or call someone an “OG” when they are not.51

Whose shoulders did Gerard and others stand on? In addition to J.P. Koning and Angela Walch (mentioned before) there was Ray Dillinger. If we were to make a chronological argument, then a “godfather” of ‘crypto critics’ (in the English-speaking world) is professor Mark Williams. Who is Williams?

Williams’ op-ed appeared about 6 days after the price of bitcoin peaked. Despite arcuately describing its volatility, some Bitcoin promoters labeled him “Professor Bitcorn.” Why wasn’t he mentioned in this book?

In April 2014 Williams even provided public testimony at a U.S. House committee. Definitely worth referencing in the next edition.

And since we are being very specific, if the authors really wanted to label something “OG” then we might want to hand a trophy over to the annual Financial Cryptography and Data Security conference whose attendees include a crossover from the cryptocurrency and blockchain world (remember, “crypto” used to mean “cryptography.”) What kind of crossover? Just look at the 2023 program.

Inexplicably the authors continue this chapter and include an unrelated topic: a visit to a Bitcoin mining facility.

You know what is a tad weird? The authors are about to visit the largest U.S. based Bitcoin mining facility – operated by Riot Blockchain – and they miss the opportunity to speak with Pierre Rochard. Yes, that Rochard – the co-creator (popularizer?) of the “no-coiner” pejorative works for Riot. In fact, Rochard hasn’t missed a beat, pushing out nonsense that is indistinguishable from satire (he’s the one walking in a field with a hard hat).

On p. 85 they write:

If you drive for about an hour northeast from Austin, past the scrub brush and the quota-driven traffic cops, you reach a former Alcoa aluminum smelting plant on the outskirts of the tiny town of Rockdale (pop 5,323). It was the kind of old-school corporate holding that’s so big they built a lake to service it (Alcoa Lake). The facility, sold in 2021 for $240 million to an obscure real estate firm, had mostly gone fallow. But its mere existence—the mothballed warehouses, silent smokestacks, miles of fencing, the power substation on site—was a reminder of a not-so-bygone era when large industries operated in the United States and factories, perhaps even staffed by decently compensated union workers, actually made stuff.

This is good prose, this part of the chapter is pretty good. Readers deserve an entire chapter – heck, a whole book – discussing the zaniness of the mining world. For instance, Riot earned $31 million in energy credits from ERCOT (the energy regulator in Texas) in the month of August. That is right, a Bitcoin mining company got paid not to mine. This isn’t a brand new subsidy either and it deserves (ridicule!) mention in the next edition.52

Continuing on p. 86 they write:

Money was coming in, ambitious building projects were planned, people were getting steady construction work—all the supposed hallmarks of basic economic progress. But to what end and at what cost? I had come to Whinstone to find out, accompanied by Jacob and David Yaffe-Bellany, a reporter from the New York Times who wanted to write a piece on me.

We never did find out to “what end” or “what cost” — we are left wondering. We have seen a widely circulated video inside one of the Riot’s facilities so that gives us some idea of how large, but the authors should have provided an answer to these. Also, was that a humblebrag?

On p. 87 they wrote:

We wanted to hear their pitch: how Bitcoin mining brought jobs, stimulated development, and would be an asset for the whole community. To hear that pitch, they asked us to sign what amounted to nondisclosure agreements. David, the Times reporter, assured us that he couldn’t, his job wouldn’t allow it. None of us felt comfortable. What was the point of signing something that might limit our ability to write and report on what we might see? It made no sense to do so when we were going in with cameras—if they were going to let us in with cameras.

Oddly enough, we as readers, never did get to hear that pitch described in words even after the authors did not sign the NDAs. What are the jobs numbers?

On p. 87 they wrote:

Eventually we confronted a more urgent reality: Jacob really had to pee. Standing practically cross-legged outside the car, his face radiated the barely withheld anxiety that comes after a long car ride after a morning guzzling coffee. I was a bit out of sorts, too. We were supposed to be featured in the New York Times as intrepid crypto critics, and here we were unable to get into our featured location while self-urination seemed to be a non-zero possibility.

Look I was born and raised in Texas, spent about 25 years there. And I fail to see how this passage is interesting. It’s like the marijuana consumption, probably should cut it out.

On p. 87 they wrote in parenthesis:

We’d met a lot of strident Bitcoin critics but not anyone interested in attacking a Bitcoin mine.

Well at least this time the authors provided a little nuance “Bitcoin critics” and not just “critics.” And if we were to guess why the site has the security measures described it is likely because Riot doesn’t want someone to come in and steal the mining (hashing) gear. Those are effectively money printers. The golden goose as it were.

On p. 88 they wrote:

We chopped it up for a few more minutes, and then, after the typical alchemy of bureaucratic authority parceling out permissions, we were told that we could go in the gates and drive to the main office. “I left my NDA in the bathroom,” said David as soon as we piled into the car. Jacob announced his paper was under his foot. Others had disposed of theirs quietly in their pockets. Either some Whinstone official had forgotten about the agreement during our time in the office or perhaps had been overruled. It didn’t matter. We weren’t signing anything. They waved us through the gate and we drove in.

I am not a huge fan of NDAs but I have signed my share of them, and/or my bosses have which made me bound by them (at time of employment). Readers have no idea what was in this specific NDA either. Maybe it was all just theater?

Either way how does it help the authors credibility to show that they will wiggle around to avoid signing an NDA? Just tell them you won’t sign an NDA and see what happens.

Pages earlier you mentioned turning off the video but keeping the audio on in the Mashinsky interview. Are you guys trying to do “gotcha” interviews in an industry filled with people (criminals) making cringy music videos?53

On p. 89 they write:

While I agreed that, everything else being equal, employment was a good thing, I couldn’t help but notice the flimsy underpinnings of this otherwise sturdy mining operation. This company was using enormous amounts of electricity to mine speculative digital assets to keep a zero-sum game of chance going. Texas’ notoriously over-worked electric grid, also known as ERCOT, had gone down after a winter storm in February 2021, contributing to the deaths of 246 people. Mining Bitcoin hardly seemed worth the potential harm to the population.

While I agree with much of this statement, I don’t think it is completely fair to connect Bitcoin mining with mismanagement by ERCOT in February 2021. Maybe that argument is stronger in November 2023 but 30 months ago this large facility was not fully operational.

Also, the authors should be clearer: Riot currently only contributes proof-of-work hashing for one specific chain, Bitcoin. Digital assets should probably be singular, not plural, in the next edition.

On p. 90 they write:

What benefit did any of this produce for the rest of us? Was it worth the cost? In 2021, the greenhouse gasses released to produce the energy consumed by Bitcoin and fellow networks more than offset the amount saved by electric vehicles globally.

This is a good point muddied by “fellow networks.” What are the fellow networks? For example, in my February 2021 paper I provided estimates not just for Bitcoin but also for Ethereum (pre-Merge), Litecoin, Bitcoin Cash, Monero, BSV, ZEC, and Dogecoin. Are these what the authors had in mind when they mentioned “fellow networks”?

On p. 90 they write:

It was all ridiculous, but I kept coming back to the same thing. Economically, the parabolic rise and fall of bubbles was well established. But what would crypto’s downfall do to this community?

This is a great question that is never answered. How many jobs does Riot contribute to Rockdale? How many jobs do Bitcoin mining (hashing) operations contribute to across the U.S.? It’s probably negligible but the authors raised these questions and never answered them.

Despite the issues with the nuances of mining, I still think this particular section could be the foundation for a good future chapter focused on proof-of-work mining in the U.S. To date no one outside the coin industry has written a long-form non-hagiographic explanation of how large hashing operators hone in on specific regions due to subsidies and/or acquisition of say, a retired coal power plant that becomes unretired. For instance, how Stronghold Digital Mining bought two languishing coal-fueled generating facilities in Pennsylvania and ramped up their production.

We have seen organized greenwashing from coin lobbyists such as Coin Center but only piecemeal pushback from investigative journalists. For instance, here’s one of the all-time greatest (leaked) RFPs:

Source: Twitter

The second edition has a lot of potential when they dig into what the lobbyists have tried to whitewash and greenwash. Environmentalist Ketan Joshi has documented some of these attempts.

Chapter 6: The Business of Show

This chapter had some interesting potential, to discuss the ‘Brock Chain’ (Brock Pierce)! The authors visited Bitcoin Miami, albeit the 2022 edition and not the arguably more-coke-filled 2021 edition. Alas, while they do discuss El Salvador at the end there is no mention of former Russia Today host, Max Keiser and his wife (Stacy Herbert), who are official advisors to Bukele… and was a bit bananas at Bitcoin Miami 2021.

Anyways, let’s start off with a humblebrag on p. 91:

On April 1, 2022, our months-long investigation into the world’s largest crypto exchange, Binance, was published in the Washington Post.

Their Washington Post article was good albeit a little short, clocking in at around 2800 words. And most of that Washington Post story is reused – word for word – in the first part of chapter 6 (specifically the bits about Francis Kim and Fawaz Ahmed). That’s perfectly fine and common by the way (I myself reused portions of articles and papers in one book). Readers looking for some more depth might be interested in reporting by Tom Wilson from Reuters who was actively investigating the same topics at the same time.

On p. 92 they write:

The second, and perhaps more important, reason crypto took off in China was to avoid capital controls. The official limit of $50,000 in overseas foreign exchange per year is an attempt by the state to restrict wealthy Chinese from moving their money out of the country. If you are a Chinese billionaire, there are numerous ways to get around this, but one of the less expensive ones is crypto. Either buy crypto with yuan and cash out into dollars or other currencies overseas, or perhaps better yet, invest in Bitcoin mines (often using electricity stolen from the grid) and then move the mined Bitcoin via crypto trading elsewhere.

They reference a 2020 article from South China Morning Post, but I think it is a bit of a stretch to make a couple of the specific inferences that McKenzie and Silverman do. For instance, the article does not mention billionaires at all or that Bitcoin mines “often use electricity stolen from the grid.” Maybe both of those are true, but neither are mentioned in the article. Scrolling through my archives, I quickly found one example in Hunan province.

In fact, the article specifically mentions how USDT became popular in China:

Ironically, Beijing’s ban actually fuelled the adoption of Tether in China. Chinese users started replacing the yuan with Tether as the de facto currency in cryptocurrency trades, purchasing it under the table from unregulated “over-the-counter” brokers.

I have no affinity for Tether LTD but that detail wasn’t mentioned in the chapter. Wonder why?

On p. 93 they write:

Binance allows its customers to employ enormous leverage—at one point up to 125-to-1 (now down to 20-to-1 for most customers, comparable to other exchanges). That means retail traders can gamble with far more chips than they actually bought. The upside is large, but so is the downside: At 125-to-1, for every 1 percent move, your one-hundred-dollar bet could net you a fortune, or wipe you out instantaneously. Kim was trading with 30-to-1 leverage. In mainstream financial markets, offering extreme amounts of leverage to retail traders—not accredited investors who must prove they have the funds to withstand a margin call—is not allowed

That is mostly accurate and fair but with one nuance: foreign exchange (FX) trading platforms do offer – and advertise – high leverage, even beyond 125x. For instance, according to Benzinga, at least three FX platforms allow higher than 125x leverage.  Whether cryptocurrencies / assets like bitcoin are the same as FX is a different matter, but Diehl et al., made the same error.

As of this writing, the global FX market is the largest most liquid market in aggregate (and filled with oodles of retail punters).54 This is not a defense of Binance rather it is to highlight how wording and nuance are important. High leverage is allowed in certain “mainstream financial markets.”

On p. 94 they write:

If that weren’t enough, Binance itself trades on its own exchange. In traditional markets, this kind of arrangement would never be allowed, as the conflicts of interest—and potential for market manipulation—are glaring.

This is a good point, and I agree with it. However contrary to the authors conviction, this kind of arrangement has been allowed at various eras in traditional markets: Glass-Steagall (which the authors briefly mention later) separated commercial banking from investment banking in 1933. Fast forward sixty six years later, in 1999, most of it was repealed. Some economists such as Joseph Stiglitz and Paul Krugman opined that this set the stage for the 2007-2008 financial crisis. And guess what, even after the financial crisis and a myriad of debates, Glass-Steagall was still not restored. Yes, even today, too big to fail banks still have these “glaring” conflicts of interest.

On p. 94 they write:

Imagine the New York Stock Exchange or Nasdaq taking positions on different sides of trades it facilitates. No financial regulator would allow it, for obvious reasons.

I agree with the thrust of their argument, even though it is not really accurate.55

What is incorrect? While the NYSE and Nasdaq do not custody user funds and in theory – only provide order matching – the parent companies of both are equity holders of a handful of clearinghouses in the U.S. 56

What would have been helpful in this book (and others post-FTX collapse) would be to describe the similarities and differences in clearing and settlement (C&S).57 These socially useful activities (C&S) are operated by systemically important financial institutions (SIFIs), which in the U.S. are overseen by the Fed Board of Governors. And at an international level, the Financial Stability Board (FSB). Post GFC, post-Dodd Frank we actually have a more concentrated set of SIFIs with conflicts of interest throughout the entire trade life cycle because of how interconnected ownership has become.58 One of the best articles that concisely describes this convoluted relationship is How a Lone Norwegian Trader Shook the World’s Financial System.

Again, I agree with the point the authors are trying to make, but they could have used a better example.

On p. 96 they write:

At one point, according to a screenshot of a chat with a Binance customer service representative that Kim shared, he was offered a voucher for $60,000 in Tether and another $60,000 in trading credits as an inducement to keep him on the very platform that he felt had robbed him.

Perhaps it is just me, but I do think the authors to describe “Tether” as both the unit-of-account and the issuer is confusing. USDT would have sufficed.

On p. 97 they write:

Liti staked $5 million to support the suit, which was being led by international law firm White & Case. Binance’s user agreement requires litigious customers to submit to arbitration at the Hong Kong International Arbitration Centre. With a minimum cost of $50,000 for the services of the court and a qualified arbiter, this clause in the agreement creates a prohibitive barrier for traders who lost a few hundred or thousand dollars seeking restitution. By pooling millionaire day traders with mom-and-pop claimants, and using the backing of Liti Capital, White & Case got around that hurdle.

What is the status update for this? The official website of the Steering Committee for the Binance Claim does not seem to have been updated for a couple of years. The last tweet from the account was September 18, 2021.

On p. 98 they write:

According to their analysis, Binance has become the perfect playground for professional trading firms to clean up against unsophisticated retail traders. Using state-of-the-art algorithmic trading programs and access to the latest market-moving information, these firms are both faster and more powerful than the regular Joes they compete against.

This is probably true, professional high frequent trading (HFT) operations have an edge versus retail in traditional finance so maybe the same odds (or worse?) in the coin world?

On p. 98 they write:

Ranger compared what was happening on crypto exchanges to the online poker craze of the mid-2000s. Back then, you had a sense of the stakes and could see who was beating you at the virtual table. “At least poker’s kind of honest,” said Ranger. “You’re losing to this guy named, like, Penis420, and he bluffed you out of your cash, and you’re here.” But for average crypto investors/gamblers trading on Binance, there was no such clarity. Across the table could sit an advanced computer trading program. Regular traders don’t stand a chance; when the professional firms easily outmaneuver them, they can get wiped out in seconds.

This passage is a little confusing. The poker analogy makes sense in poker but what persona are the authors describing in the last sentence? Day traders? Leveraged traders? How to “regular traders” who buy and hold and do not have leverage get wiped out in seconds? Maybe they gobbled up some junk coins?

On p. 99 they write in parenthesis:

Zhao himself said that Binance may eventually lose out to more nimble and harder-to-regulate DeFi, or decentralized finance, exchanges.

We are nearly a hundred pages in and still no cohesive explanation of what “DeFi” is or what examples of a decentralized exchange is.

On p. 99 they write:

It was hard to see how this “democratization of finance” was going to lead to a fairer economy rather than a more chaotic one, with a vast gulf between winners and losers. The liberatory rhetoric and experimental economics of crypto could be alluring, but they amplified many of the worst qualities of our existing capitalist system while privileging a minority group of early adopters and well-connected insiders.

This is a really good point, I agree with it. The one caveat I would make is that not every intermediary operator claims to be trying to “democratize finance” so a future edition should provide a specific name.

On p. 100 they write:

Surprisingly, the press passes actually came through. We received an official invitation to make a pilgrimage with the true believers.

Why was that a surprise? How many events / venues / interviews rejected press pass requests while writing this book?

On p. 100 they write:

Peter Thiel, the arch-capitalist fifty-four-year-old cofounder of PayPal, was throwing one-hundred-dollar bills from the main stage, trying to signify their unimportance. When members of the crowd rushed to grab them, Thiel appeared shocked. “I thought you guys were supposed to be Bitcoin maximalists!”

Welp, I chuckled at something Thiel said, time to call it a day.

On p. 101 they write:

But first, I wanted some merch. Across the sprawling Miami Beach Convention Center, the product and sales pitches ranged from free NFTs to getting in on the ground floor of the next ICO that seemed a lot like the last ICOs. A DAO promised an investment scheme to “democratize yachting.” Crypto mining machines sold for thousands of dollars each.

This chapter would have been solid if it simply described the crazy claims made by the kiosk participants. One nitpick though: which crypto mining machines sold for thousands of dollars each? Because Bitmain has sold hashing equipment for years that cost roughly that. Is that a lot or a little money?

On p. 101 they write:

If you ignored the formal hysterics and instead talked to regular folks milling about the conference, Bitcoin Miami sometimes felt like just another trade show. Big and energetic, full of boozy salesmen talking about how Bitcoin had changed their lives, with sponsorships adorning every surface, it was a Potemkin village of American consumerism and gambling addiction masquerading, in typically humble crypto fashion, as the future of the entire financial system.

Excellent prose!

On p. 102 they write:

“In Miami we have big balls,” said Francis Suarez, Miami’s Bitcoin bro mayor, who has toyed with the idea of abolishing taxes and funding the city through a nearly worthless token known as MiamiCoin.

The authors missed a golden opportunity to dunk on MiamiCoin, which lost more than 95% of its value in the span of 9 months and Suarez himself lost $2,500 on it.  

On p. 102 they write:

The local faithful, while zealous, were peaceful. No one yelled at me at the Bitcoin Conference or denounced me as a nonbeliever. Some people overflowed with solicitous generosity—there was at least one strip club invitation that I believe wasn’t a covert marketing stunt. The lack of open conflict was almost a letdown—and an indicator of my own latent narcissism, perhaps. Everyone was just excited to talk to some guy from TV that had cameras following him around.

You all should come with me sometime because I’ve had plenty of threats made against myself both online and offline! Someone even called my wife a chink. Classy! Also, why was McKenzie expecting open conflict?

On p. 103 they write:

There are many different ways one could define the crypto community, but the cynic in me would say there were none, not really. The majority of the people in Miami seemed only loosely tied to one another through commerce. They had few other bonds to speak of besides a utopian vision of financial freedom. To me, they were a projection of the timeless American fantasy: getting rich for free as quickly as possible. They flew to Miami to perform the rituals of multi-level marketing-style salesmanship and gladhanding. Also, there were parties.

Excellent writing.

On p. 103 they write:

From his home base in tax-friendly Puerto Rico, Brock maintained numerous crypto business interests and had become one of the industry’s most colorful spokespeople. I hadn’t expected to stumble upon him like that, but Brock—an insider with a sketchy past—was an ideal interview subject.

On the topic of crypto colonialism and Brock Pierce, readers might also be interested in an article five years ago: Making a Crypto Utopia in Puerto Rico. A new paper from Olivier Jutel, “Blockchain financialization, neo-colonialism, and Binance” is also a must-read.

On p. 104 they write:

The goal of interviewing Brock was to talk about Tether, the company he cofounded in 2014. While Brock had no current involvement with the company, we had heard from a source that he had at one point tried to buy back into Tether’s ownership group for the laughably low amount of $50,000. A source had also told us Brock dangled his political connections to the Trump White House in the hopes of getting back into the good graces of Tether executives like CFO Giancarlo Devasini.

Strangely, at least in the subsequent dialogue provided in the book: neither of those rumors were confirmed or denied. Did the authors ask him about buying back into Tether LTD in the video?

On p. 105 they write:

“I talk to more world leaders, probably, than our secretary of state,” he said. “I’m talking to forty-plus governments.” These statements seemed absurd, the kinds of exaggerations told by a particularly imaginative friend in grade school, but I smiled and nodded. It would take a little forbearance to eventually steer the conversation toward Tether.

Isn’t another logical follow-up: what are you talking to these world leaders about? Are these dialogues with other governments set up by Pierce’s team or solicited by the governments themselves?

On p. 105 they write:

“Why hasn’t Tether been audited?” I asked. His response was telling: He simultaneously claimed that they “probably” were working with a major accounting firm while bemoaning that they had tried and failed “hundreds” of times to get an audit. His reasoning was that no firm would touch them because of the lack of “regulatory clarity” around crypto, invoking a common industry complaint. For us crypto skeptics, this didn’t even rise to the level of cliché. There was plenty of clarity. It was just that companies like Tether tended to operate offshore and outside the ambit of American law. Tether’s executives, who never stepped foot in the United States, were reportedly being investigated by the Department of Justice for bank fraud.

I think it is a fair question that should be asked.59 But what did the authors expect Pierce to respond with? He’s no longer an insider, right? And while I mostly agree with the authors commentary, none of us are lawyers so maybe next edition a reference or quote from a lawyer would be better? Oddly, there is nothing in the reference section even though there are probably are a number of U.S. trained lawyers who would say something similar on the record.

Lastly, during his interview with Laura Shin, Zeke Faux provides an answer on the auditing question too, one that McKenzie or Silverman would probably disagree with. Can investigative reporters agree to disagree?

On p. 105 they write:

Given their role as essentially crypto’s unacknowledged central bank, with a few multimillion-dollar settlements already behind them, the company’s behavior potentially violated all manner of security, banking, and financial laws and regulations. Some even argued that by minting a dollar-denominated digital token, Tether was engaged in counterfeiting. As Jacob liked to joke, one sign that Tether was a fraud was that the company had never sued anyone for calling it a fraud. (As Tether’s leadership surely knows, the discovery process goes both ways.)

Maybe all of this is true, and maybe they are finally hammered by a series of law enforcement actions, but the question I ask Tether Truthers (USDTQ) is: why doesn’t the NY AG re-sue Tether LTD/Bitfinex?

Recall that there was a two year monitoring period after the settlement; the authors are alleging that Tether LTD continues to operate in a fraudulent manner during this time. Maybe that company is indeed up to no good. But the onus is on the authors to provide evidence in this book, and they don’t.

Matt Levine sorta does. If anyone claims to have direct evidence, shouldn’t the logical question be: have you submitted it to law enforcement and/or informed the CFTC and NY AG of possible violation of settlement terms? What about the fact that there is no major price discrepancy between CEXs that do not allow pegged coin trading versus those that do?

Also, why would Tether LTD sue Spencer Macdonald (Bitfinexed) or myself, for having publicly asked what the reserves were prior the settlement agreements with both the CFTC and NYAG? What would they get from either of us? BitPay never sued me after a couple of analytics-based posts. I don’t think a lack of lawsuits is necessarily a strong argument. 60

On p. 107 they write:

“Of innovation in general. I can’t really share the conversations I’ve had . . . National Security Council and things . . .” I may have involuntarily laughed at that point. Obviously Brock Pierce would not have attended an NSC meeting!

Great line, why would Pierce brag about something that didn’t happen? Bananas.

On p. 107 they write:

Risk-tolerant crypto traders and exchanges owners were stacking leverage on leverage (or fake dollars on top of fake dollars) to extract returns—in real dollars—on their investments.

The bigger story probably was undisclosed / unknown rehypothecation occurring at centralized lenders. But they only touched on Celsius so far. Also, what is a fake dollar? If the authors mean that collateral backing loans wasn’t there then that’s probably true, if so, would that be undisclosed rehypothecation?

Source: Twitter

The tweet above (Barry Silbert is the founder of DCG) did not age well. During the process of writing this review, the NYAG sued Genesis, DCG, and Gemini for allegedly defrauding investors.61

On p. 107 they write:

Tethers were being printed by the billions and issued to a very small group of important players like crypto mogul Justin Sun, who issued a token called TRON, along with sophisticated trading firms like Cumberland and Alameda Research, the Bahamas-based outfit owned by Sam Bankman-Fried, known in the crypto world (and now beyond) as SBF.

Would be helpful to have a diagram explaining the USDT minting / redemption process and who allegedly participates.

For example:

Source: OfNumbers

Above is a rough stab at a flow of funds of user behavior in April 2015. What do those flows look like in 2023?

On p. 107 they write:

Those players then gambled with the Tethers. The supposedly democratizing, decentralizing currency of the future had come full circle: a way to enrich the few at the expense of the many, in opaque games of chance the public couldn’t hope to understand.

This is a strawman. You don’t have to like cryptocurrencies or blockchains but portraying USDT – which is centrally issued – and Tether LTD as “democratizing and decentralized” is disingenuous.

The final few pages of this chapter are great, the authors interviewed two exiled Salvadorans in Miami: Mario Gomez and Carmen Valeria Escobar. Rather than quoting portions here, I do recommend grabbing a copy of the book for those final interactions plus the next chapter.

Overall this chapter had some good gems, such as the interview with Brock Pierce and the Salvadorians. But the authors also made some unforced errors that were a real distraction, such as not knowing that there are existing conflicts of interest within U.S. banks that regulators continue to allow (post Glass-Steagall).

Chapter 7: The World’s Coolest Dictator

This was the best chapter in the book and unfortunately it was also one of its shortest, clocking in at just 12 pages. While it weaves some good prose in with first-hand reporting, the authors still use terms like “coiners” without providing a definition.

Let’s start off with the obligatory reminder that one of the authors was/is a TV star. On p. 113 they write:

He was easy to spot. He held a placard with the alias I use when traveling, Don Drysdale, and wore a Batman T-shirt. Napoleon turned out to be a fan of Gotham, the Batman prequel TV show I starred in that centered on a young police lieutenant (and future commissioner) named Jim Gordon.

Most of the remaining part of the chapter is significantly less cringy and the description of Bukele and how he rose to power is pretty solid.

For instance, on p. 119 they write:

Unfortunately for his people, the young leader refused to accept defeat, instead doubling down on his Bitcoin wager. Bukele changed his Twitter handle to “world’s coolest dictator,” and his profile picture sported laser eyes favored by Bitcoin maximalists, or maxis, who believed that Bitcoin was the one true cryptocurrency and the rest imposters, mere shitcoins. Bukele bragged that he bought Bitcoin, using the state treasury, on his phone while sitting on the toilet.

This is the closest we get to a working definition of a “Bitcoin maximalist,” it is not horrible but does not really encompass the nuances that one the first maximalist extolled.62

Pages 120-122 have some solid interviews with Salvadorians who ended up on the wrong side of Bukele, including a family who lived in a house that unfortunately would be demolished to make way for the new airport for Bitcoin City. What is Bitcoin City and why does it need an airport? Read the book.

One nitpick (timing wise) has to do with one of their comments on the bottom of p. 122:

By the time we visited in May 2022, the issuance of the bond had been delayed, seemingly indefinitely. Despite the ill-conceived scheme, there were still consequences for the local population.

To be fair, if I were in their shoes, I probably would have written the same thing. However following the book’s publication there was a 180% rally in El Salvadorian government bonds. The following month, in August, Bloomberg ran a headline Bitcoin-Touting Bukele’s Bond Rally Draws JPMorgan, Eaton Vance. And as of this writing, the rally has not cooled off.

On p. 123 they write:

Despite the tense environment, Wilfredo welcomed us to his home with open arms. I immediately noticed what I would come to understand as his signature expression: a broad, easy smile revealing several gold-capped upper teeth. As we fumbled to communicate, first through my poor Spanish and then by way of Nelson translating, he was patient and wry with his replies. Here was a famous Hollywood actor who wanted to film and interview him, to tell his story, yet no one in his own country could tell him when he would be kicked off his land or where he might go.

As mentioned in the beginning of this review, McKenzie’s remark comes across as a little tone deaf. Why not use your notoriety to stop Wilfredo’s home from being demolished? The purpose of the book – according to the Author’s Note – is to condemn those who committed fraud. And what about helping the victims too?

Overall a decent chapter and one that could be expanded in a future edition or even used as a standalone spinoff.

Chapter 8: Rats in a Sack

This is one of the weaker chapters because it relies almost entirely on repeating news from other sources. And unlike the previous chapter, nothing really knew is revealed that we couldn’t learn from other books or mainstream news sources.

There is also an introduction to some important concepts that once again, are not explained.

For instance on p. 128 they write:

The two were bound together via an arbitrage system designed to keep Terra, a so-called algorithmic stablecoin, at one dollar.

What is an algorithmic stablecoin? Are all algorithmic stablecoins the same are are there differences?

On p. 128 they write:

Or so went the plan. There was also a “staking pool” called Anchor, which was also created by Do Kwon and his company, Terraform Labs.

What is a staking pool? Is that the same thing as a validating pool used by some proof-of-stake networks? Or are there differences, like a whitelist maintained by a 3rd party?

On p. 128 they write:

Sure, there was the occasional bit of criticism. The economics of Terra, Luna, and Anchor were clearly Ponzi-like, involving the circular flow of money common to such schemes. Where was the 20 percent return on Anchor coming from?

Strangely, with so much written on Anchor from other sources, they never answer their own question. The short answer is the 19.5% – 20% yield marketed for Anchor was an unsustainable subsidy based on a combination of ANC (the governance token for Anchor) and bLUNA staking yield. Here’s my long form explanation of what happened to Terra last year: Not all algorithmic stabilization mechanisms are the same.

On p. 129 they write:

That the whole thing smelled like a Ponzi was no secret, but rather a fact discussed by some big industry names on Twitter, podcasts, and in other media.

Probably the most prominent Terra critic during that time was a trader, Kevin Zhou, who publicly described the fundamental issues of UST (and ANC) with just about anyone willing to listen. A second edition should include him or at least refer to his interviews.

On p. 129 they write:

But on Mirror, people weren’t trading real stocks in a regulated market. They were trading synthetic copies of real stocks on a market overseen by, well, Do Kwon.

Even the SEC lawsuit does not use this as an argument, because it is not true. Mirror was many things but it was not “overseen by Do Kwon.”

On p. 129 they write:

Can you imagine the gall it takes to set up a fake copy of the New York Stock Exchange, one that, given its shaky underpinnings and nonexistent oversight, might attract who knows what kind of shady players? And then to refuse to even account for it?

Again, this is not the argument the SEC made when it (1) subpoenaed Terraform Labs and Do Kwon and (2) sued them.

This is important because it hurts the credibility of the authors: right now there are more than a dozen stock exchanges operating in the U.S. These stock exchanges are not all the same, some offer traders different functions and different products. Some purposefully attempt to mitigate the advantages of HFTs. Some process significantly more volume than others.

But a key similarity is that say for equities, a share of Apple stock, none of these exchanges has a monopoly as the trading venue for that stock.

In contrast, some exchanges, like the commodities-focused ones, have a monopoly on specific futures contracts: you can only trade it on one exchange. For example, the WTI Crude futures contract that is frequently quoted in financial press is only tradable at the New York Mercantile Exchange (NYMEX).

The SEC sued Terraform Labs for selling unregistered securities. Not for making a new trading venue.

And in June 2022, a U.S. court rejected Do Kwon’s appeal:

The court stated that business arrangements with U.S. companies to trade assets from the Mirror Protocol justified the SEC’s investigation, where “a $200,000 deal with one U.S.-based trading platform” was made. Furthermore, the Terraform Labs “indicated that 15% of users of its Mirror Protocol are within the U.S.” during negotiations.

It’s unclear why the authors thought the appropriate analogy was a “fake copy of the New York Stock Exchange” when that type of example does not appear in the complaint. 63

On p. 130 they write:

Almost a year later, one LUNC was worth about one thousandth of a cent, but the token’s overall market cap was still in the top fifty of all crypto tokens. That signaled two things: Crypto was dominated by what were essentially penny stocks, and even in a disaster like TerraLuna, a lot of people hadn’t given up hope. They were holding on.

To be fair to the coin world: penny stocks originated the pejorative, penny stocks. Maybe the next edition can use “Lunatics” as a coin-specific pejorative?

On p. 132 they write:

In the midst of all this, Terraform Labs’ entire legal team quit at once.

The authors missed the opportunity to find specific tweets to dunk on, such as one lawyer who mentioned how they lost everything including their significant-other… just weeks after bragging about how wealthy they now were.

On p. 132 they write about the cascading collapse of centralized lenders in the wake of Three Arrows Capital (3AC) insolvency:

Blockchain.com, a crypto exchange, was due $270 million. The contagion had spread.

The authors were pretty miserly when it came to graphics and images, one they should include in the next edition is this whammy:

Source: Twitter

It is a self-attestation from Kylie Davies, co-founder of 3AC to Blockchain.com. This was basically all the due diligence the lender did. Check out my March presentation for more doozies.

On p. 134 they write:

After devouring tech talent the previous year, big exchanges like Crypto.com (usurpers of the naming rights to Staples Center) and the Winklevoss twins’ Gemini conducted multiple rounds of layoffs, sometimes without any public announcement, in just a few months.

Usurpers? They are naming rights not a birth right and Staples had a 20 year deal beginning in 1999. What should the stadium be called?

On p. 134 they write:

One of them was BlockFi, another crypto lender that offered huge, and unsustainable, interest rates on customer deposits.

Pretty easy to say after the collapse of the bubble. For what it is worth, I publicly questioned BlockFi’s yield in 2019 and got lampooned by Andrew Kang, Nic Carter and Rob Paone.

Source: Twitter

Deep analysis!

Spongebobbed!

What were the books authors doing in March 2019?

It is all too easy to come after the bubble and publish a mostly second hand account about “huge and unsustainable interest rates” after the lender filed for bankruptcy, the harder part was publicly discussing where the yield comes from prior to the bubble.

Source: Bloomberg

On p. 134 they write:

The curtain was being slowly peeled back through a steady diet of leaks, bankruptcy filings, and the first wave of lawsuits. Important revelations were emerging, some of which confirmed earlier criticisms from skeptics.

What specific criticism? Which “skeptics”? Please provide the receipts.

On p. 135 they write:

The entire crypto economy depended on Tether’s stablecoin—it was by far the most traded token each day. But its murky operations, uncertain financial backing, and bloviating executives—to say nothing of those executives, like CEO Jean-Louis van der Velde, who were almost never heard from—didn’t seem like the makings of an organization that could weather a major industry downturn. At some point, I believed, the bill would come due for Tether, and it would be one it couldn’t afford to pay.

The first sentence is probably true for some (most?) spot exchanges, but not necessarily for on-chain trading.

For instance:

Source: The Block

The color-coded bar chart (above) visualizes the different on-chain volumes of USD-denominated pegged coins. While USDT-based volume is large, USDC is often much larger. Strangely the book doesn’t discuss other centrally issued pegged coins at all.

On p. 137 they write:

And all the while, scams, rug-pulls, hacks, and Potemkin crypto projects proliferated, adding billions more to the toll that comes with being part of the web3 community.

Since “web3” is never formally defined in the book, this dunk doesn’t really bite. Are readers supposed to assume anything blockchain-related suffered from billion dollar scams and hacks during this time frame? Or did the damage primarily impact intermediaries? Where’s the shade for Certik?

On p. 137 they write:

Perhaps the most disturbing part of the crypto crash of the spring of 2022, which wiped out more than $2 trillion in notional value and wrecked the nest eggs of everyday traders all over the world, was the utter lack of humility shown by the industry’s leading figures. Materially, most of them were fine: Their predictions might have been ludicrous, and perhaps they lost oodles of money—but it was usually someone else’s money, and they had made enough insider profits along the way to simply hop over to the next project, should the current one fail. Many had also bought in early to Bitcoin, which still held some value, even if it was 60 percent or more below its peak.

There is a lot to unpack here. I agree with the authors, that a lot of the shills and prominent promoters lacked humility. Coinesia writ large.

But the authors are playing fast and lose with the word “most.” How many were fine? How many bought bitcoin early? How many had made “enough insider profits”? I’m sure some coinfluencers check all of those boxes, but readers are never given even a ballpark estimate.

On p. 138 they write:

As trillions of dollars of wealth evaporated

If we take “market cap” at face value, the aggregate coin market cap peaked just north of $3 trillion in November 2021 and dropped to around $1 trillion where it currently gyrates. Saying “trillions” seems like an embellishment.

On p. 139 they write:

The truth is that most of the scammers and con men were tolerated—or even encouraged—by the wider crypto industry because there was no economic incentive to do otherwise.

This is a fair point. Though not everyone encouraged or tolerated these bad actors. Some even publicly called them out.

On p. 139 they write:

While I had been shouting to the Twitter rafters trying to warn people of the impending financial disaster I sensed looming, seasoned academics were articulating a more nuanced version of the same.

Buddy, you didn’t start tweeting about any of this until after the bubble peaked in 2021. The time to warn people was in 2018-2019.

On p. 139 they write:

Hilary Allen, professor of law at American University, wrote a paper in February 2022, just three months before the crash, referring to cryptocurrency and its assorted DeFi products as effectively a new form of shadow banking.

Allen’s paper, while sincere in its concerns, made several major errors.64 A number of people, including myself, attempted to explain some nuances that she missed. For instance, she claimed that lending protocols effectively provide unlimited leverage. However, in practice not only do all of the major lending protocols implement a form of whitelisted assets but each of those assets has a loan-to-value cap.

For instance, p. 938 of her paper is factually incorrect in a couple of areas, she did not incorporate the suggestions from experts. That part of the paper should not have passed peer review. Empirically, while many centralized lenders collapsed in 2022, none of her predictions she made came to pass specifically regarding DeFi lending protocols. 65

On p. 139 they write:

Broadly speaking, shadow banking refers to a company offering banking services while avoiding banking regulations.

The authors are finally discussing what a shadow bank is. If you recall, in the first chapter they mention PayPal but fail to mention it was one of the first prominent fintech “shadowbanks.” A number of centrally-issued pegged coins issuers (like Tether LTD) have modeled their operations after the path pioneered by PayPal, as a shadow payment and shadow bank provider. None of that is mentioned by the authors (or Allen).

On p. 140 they write:

We know this happened during subprime, but as Professor Allen points out, the leverage in crypto, especially DeFi, is far higher. “The amount of leverage in the system can also be increased by simply multiplying the number of assets available to borrow against,” she writes. “That is a significant concern with DeFi, where financial assets in the form of tokens can be created out of thin air by anyone with computer programming knowledge, then used as collateral for loans that can then be used to acquire yet more assets.”

Allen and the authors are not only incorrect but they do not even provide a number, what is the leverage? That which is asserted without evidence can be dismissed without evidence.

Specifically the part where Allen is wrong is claiming that any amount of tokens can be created out of thin air and used as collateral for loans.66 In practice, only about thirty different coins and tokens have been whitelisted on DeFi lending protocols such as Aave or Compound.

Fun fact: the authors never mention specific lending protocols in the entire book.

On p. 140 they write:

The people behind crypto coins can create endless amounts of fake money. Crucially, the exchanges themselves can also do so, in the case of coins like FTT (FTX) and BNB (Binance). If folks can use that fake money to borrow real money, that’s a problem, as the leverage is potentially unlimited.

This is absurd.

If the authors were right, then none of the centralized lenders would have gone bankrupt last year because they would have just created endless amounts of fake money and continue to lever up and up. They could not because there is no such thing as unlimited leverage in either DeFi or centralized lending.

Why make this up? There was real provable criminal activity taking place, why resort to exaggerating like this?

This again reminds me of another evergreen tweet from Matthew Green:

Source: Tweet

On p. 142 they write:

Crashes happen in regulated markets, but at least there is some flexibility built into the system—whether it be negotiations between the parties, court cases, or even government bailout—that can mitigate the damage. At the end of the day, licensed banks in the United States are backstopped by a trusted third party, the US government. Cryptos are famously trustless, so no such third party exists. Not only that, but rigidity lies at the very foundation of crypto itself in the form of so-called smart contracts.

This is a pretty shallow explanation of how the U.S. financial industry is overseen and regulated by different state and federal regulatory bodies. Sure due to time and space constraints the authors need to be brief, but there is no delineation between state-chartered and nationally chartered banks. Or the role that the FDIC or OCC play. Or how in times of crisis the Federal Reserve acts as the lender-of-last resort. Or what role international bodies, such as the Financial Stability Board, play “at the end of the day.”

Also cryptos, which by now is the catch-all term the authors use to capture all cryptocurrencies / cryptoassets, are only “trustless” in the on-chain realm (assuming the chain is actually decentralized). Most of the criticism in this book, so far, seems to be around activities of off-chain intermediaries such as centralized lenders.

On p. 142 they write:

Smart contracts are basically small computer programs designed to execute their functions immediately, without the interference of a financial intermediary, a regulator, a court, or the parties themselves. The irreversibility of the blockchain—it’s an immutable ledger that can only be added to, never subtracted from—and the smart contracts built around it means DeFi is far more rigid than TradFi. Most actions, once performed, cannot be undone. When an interconnected system falls apart, this is not a good thing.

I wrote an entire (outdated!) book in March 2014 on this topic and the definition above is superficial at best. For instance, smart contracts do not have to execute all of their functions immediately. On permissioned chains – or even permissionless chains – intermediaries can even play a role. In fact, that’s precisely what real world asset (RWA) issuers due via black listing and white listing of addresses such as Aave Arc.

When the authors say “DeFi is far more rigid than TradFi” that could be true but they do not follow-up with any evidence. That which is asserted without evidence can be dismissed without evidence.

For instance, you would think an easy slam dunk example they could provide is the fallout from The DAO hack in 2016, such as a hard fork. But that famous hack is not mentioned anywhere in the book. Are the authors aware of what happened? If so, surely that would be a good way to steelman their view in the next edition.

On p. 142 they write:

Complexity leads to fragility. The more complicated the financial mousetrap you build, the more likely it is to fail.

What evidence or source do they cite to back up these claims? Nothing. They are just opinions. That which is asserted without evidence can be dismissed without evidence.

On p. 142 they write:

Blockchain, consensus algorithms, smart contracts, and cryptographic signatures are all real human creations whose value we can debate. As individual components, they may all have positive attributes, but combining them together in a more or less unregulated marketplace has become self-evidently problematic. Unless, of course, you were just trying to use that complexity as a smokescreen to commit fraud.

If a large commercial bank, such as J.P. Morgan were to start using smart contracts for a blockchain-based project, does that a priori mean that JPM is “using that complexity as a smokescreen to commit fraud”? That is how weak the authors arguments have become in this book.

Onyx may fail, but it serves as a counterfactual to the a priori arguments used by the authors. Launched in 2020, this blockchain-based project from J.P. Morgan exists. Is the bank using it to commit fraud? Who knows, maybe the authors could weigh in.

On p. 143 they write:

Remember my initial thesis: When a bubble pops, the most speculative things fall fastest. Since crypto was entirely speculative, the investment equivalent of gambling, it was bound to go poof when the Fed started raising interest rates.

Perhaps he tweeted it but it is unclear when McKenzie publicly stated this thesis. I actually partially agree with it. But without receipts, he can’t really do a victory lap.

On p. 143 they write:

On March 17, 2022, seeking to counteract inflation, the Fed raised interest rates by a quarter point (or 25 basis points if you want to sound fancy). On May 5, they raised half a point and the carnage began. On May 8, crypto had a nominal market cap of $1.8 trillion. By June 18, it was $800 billion. A trillion dollars evaporated in less than six weeks. The joke was the lie that it had ever been there in the first place.

The whiplash is strong here. Just 13 pages earlier the authors chronicled the collapse of Terra which led to a cascading collapse of centralized trading entities (like 3AC) and lenders (such as Celsius). No one, including the authors, have connected the collapse of Terra with the rise in interest rates. This is a spurious correlation.

Now I would agree with part of the authors arguments that in November 2023, with rates at 5.25%, it is likely that “risk free” investments (such as U.S. Treasuries) are attracting some speculative funds that would otherwise go into riskier assets like cryptocurrencies. But the implosion of Terra – and the subsequent unwind and cascading domino effect onto centralized lenders was mostly self-imposed due to poor risk management (e.g., rampant rehypothecation). In other words: Jay Powell and the Board didn’t pop the bubble, the Board just has stymied that spate of exuberance for now.

On p. 144 they write:

Democratic politicians were taking huge donations from the crypto industry—most notably, from Sam Bankman-Fried—and spending far too much time with industry lobbyists. (We saw the photos on Twitter before you deleted them, guys.)

This is one of just a small handful of times the authors mention coin lobbyists which is a little strange considering how much air cover the coin lobbying industry provides.

Not only did the authors not name names, they did not even reference the Tweet or the date, here it is:

Source: Twitter

Mark Wetjen never registered as a lobbyist for FTX which he is required by law to do (see the Lobbying Disclosure Act). This is considered a big no-no. Wetjen was also on the advisory board of Coin Center as of ~3 years ago (unclear when the lobbying org changed it). Following the collapse of FTX, Pham deleted the picture and Wetjen deleted his Twitter account.

On p. 144 they write:

But crypto, in practice, was nearly always the opposite of what it claimed to be, so of course it ended up becoming a tool for political influence. And because crypto was foremost a way to get rich, crypto investors celebrated the billionaires, like SBF, who were showering politicians with donations in order to legitimize crypto and shape its regulatory future.

This is a great point.

On p. 144 they write:

The previous fall, Bitfinex’ed told us the crypto industry was vanishingly small, controlled by only a handful of players. At the time it seemed far-fetched, but the more bankruptcy filings forced the opaque sector into the light, the more he was proven right.

Unless Macdonald named names, this is just a he-said-she-said. For instance, on October 16, 2021 Macdonald DM’ed me that “Even disclosure of reserves can be catastrophic” and nine days later that “Get ready to buy me that scotch don’t worry I’ll share.”

I have no affinity for Tether LTD or Bitfinex but Macdonald’s predictions above were wrong. And he didn’t even buy me the scotch he wagered.

A couple of times he was, that’s why I stayed in touch with him. But he ended up blocking me for holding him to the same standard we all hold promoters: verify don’t trust. Maybe Tether LTD’s attestations are bogus, maybe they operate in the same fraudulent manner as they did in 2016-2018, but the onus is on Macdonald and others to provide that evidence. And right now, none of the “disclosure of reserves” has been catastrophic.

On p. 145 they write:

Crypto critics and good governance advocates worried about Bankman-Fried’s growing political influence.

Specific examples before 2022? Such as?

On p. 146 they write:

“Help you avoid things that won’t age as well.” It wasn’t the first time a powerful person had tried to shape our reporting, but few were higher on the food chain than SBF. As in all relationships like this, the important thing was to not succumb to that influence, however it might be exerted. As a newly minted journalist, I had begun to realize that competing agendas were all around me, that sometimes we had to mingle with some unsavory people in order to find the truth while still keeping our ethics intact.

This is hard to buy because one of the things readers (at least U.S.-based readers) are aware of is Hollywood entertainers are represented by an agent(s) and have connections with PR firms whose goal is to help promote the entertainer in a flattering light in order to land the next big gig. Competing opinions and agendas are all around Tinseltown, they make movies about it.

On p. 146 they write:

At the same time, I realized something: If these crypto bros were really as cocky as they appeared to be, maybe stirring some shit up on Crypto Twitter would yield results. To use a poker analogy, why not splash the pot a bit, piss some people off? On May 14, I fired off a tweet egging them on: “Anyone in the crypto industry wants to come at me, feel free. Fwiw, I have spent 20 years in showbiz, I can take a punch. Just a couple words of advice: don’t miss.”

It’s nearly impossible to McKenzie seriously since he openly admits to shitposting on social media to trawl for engagement. That is what Instagram influencers do for more attention, not a serious investigative reporter. Zeke Faux didn’t, that’s your peer.

All in all this was one of the worst chapters in the book primarily because it relies on and amplifies Hilary Allen’s false predictions. And also because the authors continue to make a priori arguments instead of evidence-based ones.

Chapter 9: The Emperor is Butt-ass Naked

Despite the adolescent chapter title, the chapter is one of the better ones. Unlike most chapters, this one involved some first-hand reporting on FTX and Sam Bankman-Fried. For readers unfamiliar with SBF, the chapter does a decent job of painting the scene. But for those already steeped in the lore surrounding SBF, nothing new is really revealed.

But there were still a number of unforced errors made by the authors who used unnuanced language.

For instance, on p. 151 they write:

Hong Kong benefited from being close to mainland China, where cryptocurrency had exploded in popularity, due in no small part to the desire of wealthy Chinese to avoid state capital controls.

This may be true, but what is the reference or citation for this? Nothing in the back of the book. If the authors are relying on the South China Morning Post article from earlier, recall it did not specifically mention wealthy people (millionaires or billionaires). Again, anecdotally I think it could be true, but the burden of proof rests with the authors.

On p. 152 they write:

The first was potential conflicts of interest. Sam owned an exchange and a trading firm that operated on that exchange. Imagine if J.P. Morgan owned an unregulated version of the Nasdaq. What was stopping him from manipulating the value of assets on his exchange via Alameda and pocketing the proceeds?

I agree with the thrust of what the authors are saying, but it is not a particularly good example. Recall earlier the discussion around revoking Glass-Steagall. Today J.P. Morgan operates the largest commercial bank in the U.S. which is fused with an investment bank.67

In 2015, J.P. Morgan paid a combined $307 million fine to settle cases with the SEC and CFTC, admitting wrongdoing in part because certain banking units failed to tell clients it favored in-house funds, clear conflicts of interest. In 2020, J.P. Morgan paid $920 million to settle DOJ, SEC and CFTC charges of illegal market manipulation or “spoofing” in the precious metals and Treasury markets.

If the authors were looking for a large unblemished regulated financial institution, there probably is none. So the next edition could just describe why these “conflicts of interest” are abused by CEX operators.

On p. 152 they write:

The second was his company’s deep ties to Tether. In November 2021, Protos, a crypto media company renowned for its skepticism, revealed that Alameda Research was one of the largest (perhaps even the largest) customers of Tether.

Strangely there is no link or reference to the Protos article. Also Protos is sometimes hit-and-miss. While I have found myself nodding in agreement with a couple of their op-eds, they also have a notable few duds.

(1) This past summer they published a byline-free xenophobic article: Uncovering Ethereum’s close ties to Chinese money.68 One of the shadowy reasons is because Vitalik Buterin’s interest in speaking Chinese! Since I worked in China for five years and my wife is Chinese just waiting for a xenophobic hitpiece to drop.

(2) A year ago, Protos published the “Tether Papers” which they billed as being as important – and revealing – as the Paradise Papers. Upon closer inspection it was a dud because the authors – some of the same people that McKenzie and Silverman put on a pedestal in this book – did not reveal anything about market makers you couldn’t already get from a subscription of The Block Pro or Messari or The Tie Terminal. In other words, the investigation was standard market research wrapped in a cloak-and-dagger marketing foil.

On p. 152 they write:

The notoriously shady stablecoin company had printed $36.7 billion for Alameda. We’re supposed to believe Alameda gave over $36 billion to buy thirty-six billion Tether? Where would Alameda have gotten $36 billion from? According to public reporting, they had raised a few billion from VC firms and others, but nothing like what Protos found. If Alameda didn’t give Tether the full amount up front, how did the arrangement work?

These are good questions, none of which are answered anywhere.69 The next edition should explore how this arrangement worked.

The line chart (above) visualizes Alameda’s balance on FTX for the duration of 2022.70 It is negative for all but one day. A second edition should include these types of charts to help readers understand the magnitude of loses.

On p. 152 they write:

The ties between Tether and FTX/Alameda went even deeper. Daniel Friedberg was the former general counsel of FTX, and now its chief regulatory officer. He once worked alongside Stuart Hoegner, the general counsel of Tether, at Excapsa. Recall that Excapsa was the holding company of Ultimate Bet, the online poker site that had a secret “god mode” where insiders could see other players’ cards. So FTX/Alameda’s top lawyer worked with Tether’s top lawyer at the parent company of the card cheating website. Huh.

This is guilt by association and is lazy. I have no affinity for Stuart Hoegner, have even publicly stated so. I’m not going to carry water for Friedberg, but it is disingenuous to slam him without at least referencing his side of the drama.

On p. 152 they write:

Sam posed for a picture with CFTC Commissioner Caroline Pham and was a regular at CFTC offices.

What is the context for that photo? The authors do not provide a reference or link. Scroll up to page 144.

On p. 153 they write:

But banks in the Caribbean were often more willing to engage. And whether coincidentally or not, Tether’s bank happened to be nearby. Deltec Bank, the one run by the cocreator of the Inspector Gadget cartoon series Jean Chalopin, was based in Nassau. Chalopin boasted of assisting the Bahamian government in drafting the DARE Act.

This is an interesting point. I had not heard the part about Chalopin boasting before. Is there a reference or a citation I can learn more about this? Not in the back section unfortunately.

Also, when the authors say “banks in the Caribbean were often more willing to engage” how much easier is it to open an account in an Caribbean bank? Are there some stats to quanitfy this engagement level?

On p. 154 they write:

Still, I was glad he was there, as we quickly realized the room I had rented was too small to fit much more than the five of us in addition to the two cameras. But that also gave me an idea.

It’s never really addressed in the book but: why did the authors need to video tape every interview? There is no separate web page for Easy Money where readers are directed to for additional content, like video interviews. In fact, to the chagrin of SEO, there are at least two films with the same name (released in 1983 and 2010). Did the authors think it adds more weight or seriousness to the F2F interview? Also, as mentioned earlier, last year Alex Gladstein asked the authors to release the video interview of SBF, which they declined.

On p. 156 they write:

I pointed out that Sam himself had publicly stated that most cryptos were in fact securities. He tried to duck it, saying he hadn’t done a “thorough review of tokens 10,000 to 20,000.” This was a common talking point from crypto evangelists; they all knew (or should have known) the bottom 10,000 coins were the functional equivalent of penny stocks, with ownership of the coins heavily concentrated in the hands of a few whales who could manipulate the market for them. Nonetheless, Sam conceded that “the majority are maybe securities by count.”

Pigs flew past my window: I actually agree with SBF on his point. In the U.S., prosecutors conduct an investigation based on the facts-and-circumstances of a coin or token. At a minimum the authors should include a citation or quote from a U.S.-trained securities attorney, which SBF is not. It is unclear why the authors do not cite any attorney in this chapter when there are more than a handful of U.S. trained and practicing attorneys who likely agree with the authors position on the matter.

On p. 157 they write:

Sam pointed out that Bitcoin can only process 5–7 transactions per second. By his own admission, Bitcoin was “four orders of magnitude” away from accomplishing this. It was never going to happen. Finally we agreed on something! But then Sam pivoted. He argued that other blockchains were faster.

Why set up a strawman for the readers? This is not a secret. Historically it was Mike Hearn, the Bitcoin Core developer, who initially came up with that calculation. Subsequently, Hearn wanted to conduct a hard fork to increase the Bitcoin block size so that there could be more transaction throughput. Disagreement with other developers led to the famous blocksize “civil war” in 2015-2017.

And twice in two pages: SBF is right, there are other blockchains on this planet, some that are significantly faster than Bitcoin.

On p. 159 they write:

The Solana blockchain suffered numerous outages since its launch in 2020, with fourteen in 2022 alone. It also had an unfortunate tendency to be hacked, including a hack that would occur just weeks after our interview that cost users at least $5 million.

This is untrue. While there have been outages, as of this writing, the Solana blockchain itself has never been hacked. Since they did not provide a citation, a quick googling found that several thousand wallets were indeed compromised. But conflating wallets with the blockchain hurts their credibility.

On p. 159 they write:

I asked Sam what percentage of crypto was being used for payments. He agreed the “majority of people today are not using it as a payment method” but instead as a “financial asset.” He guessed “$4 billion” of crypto was being used as payments. Crypto’s market cap was roughly $1 trillion on July 20, 2022. Four billion would represent 0.4 percent of that number. Seemed pretty insignificant to me, but then again, could you even trust that Sam’s number—or the market cap number—was real? That gave me an idea.

That estimate could be correct. But of all the things to drill into with the SBF, why burn any oil on this? Central banks and universities researchers regularly publish surveys on the motivations of coin ownership.

For instance, in the process of writing this review:

Source: Twitter

But Tim, this survey was published after the book was done. Yes, but there are similar surveys published each year by different central banks, this wasn’t the first.71

Or more to the point, if the authors wanted to improve their argument, at a minimum they should have sliced some data: asked some analytics providers for flows into payment providers.

For example, in January 2015 I published a paper that included this line chart (below):

Source: Slicing Data

The dataset above came from the WalletExplorer dataset. Because BitPay reuses addresses, it is a visual of what BitPay has received over a two year time frame (2013-2015). It clearly shows that at the time, retail activity was not seeing huge growth that certain promoters claimed.

On p. 160 they write:

Sam expressed cautious optimism that eventually customers in Celsius and Voyager would get some of their money back. I was skeptical but I wasn’t there to argue bankruptcy law.

Fair point, but why argue about securities laws when he isn’t a lawyer either?

On p. 160 they write:

Eventually, Sam got back to the original question. He estimated that there were $100 billion of stablecoins left and that they were “roughly backed” 1:1. (No, I don’t know what “roughly backed” means either.)

Since he is actively responding to your DMs, why didn’t you ask him a follow-up question later?

On p. 161 they write:

“You could say the same of stocks,” Sam said. I pointed out I can go in and out of stocks in seconds via an app on my phone.

This is not particularly good argument because it implies to readers that McKenzie is talking about market orders, which over the past decade are not necessarily good for retail on any type of trading platform. This connects with payment-for-order-flow (PFOF), a controversial business practice implemented by Robinhood (and other fintechs) with its high-frequency trading partners such as Citadel. Robinhood earns the majority of its revenue from PFOF which isn’t necessarily good for the users. Is this the app that McKenzie is referring to?

On p. 161 they write:

We moved on to stablecoins. SEC Chair Gary Gensler called stablecoins the “poker chips at the casino,” I said. Tether was the biggest stablecoin in terms of trading volume by a country mile. “Your company Alameda is one of Tether’s biggest clients.” “Alameda does create and redeem Tether. We’re one of the larger ones doing so.”“Okay, so there was an article from Protos, the crypto publication, from last year that said that Alameda and Cumberland, another trading firm, received $60 billion of USDT (Tether) over the time period they analyzed, which is equal to 55 percent of all outbound volume ever.” “Yep.” “Does that sound right to you?” “Sounds ballpark correct.”

The insinuations and innuendo are getting a bit long in the tooth at this point. The authors should either introduce the “smoking gun” or try a different angle. Because even in the current SBF court case (jury just convicted as of this writing), Tether LTD does not seem to play a major role in the collapse of FTX.

Maybe Tether (USDT) is a key enabler and systemically important infrastructure, I would agree with that. I think there is sufficient on-chain data to show it is a key lubricant to trading in several ecosystems (via Mastercoin, ERC-20, and TRC-20). But readers are not even presented charts or stats that illustrate these points.

On p. 167 they write:

Most people who had ever purchased crypto entered the market in 2020 and 2021, and most of those people had lost money. Sam argued that the people who invested before then had made money, which didn’t refute my point.

This could be true but the authors do not provide any reference or citation. That which is asserted without evidence can be dismissed without evidence.

On p. 168 they write:

Sure, a minority of people who got in early did well. He tried to pivot away from a discussion of price and toward an “ultimate use case.” I was fine with that. One of my biggest problems with crypto was that it didn’t actually do anything anything productive. To that end, I repeated my ask from earlier: Give me one use case for crypto.

Anyone asked this question by the authors should be aware the authors are a priori anti-blockchain. Throughout this book they repeatedly use the same evidence-free approach that Diehl et al., used. McKenzie literally states his view in the paragraph.

So it is hard to have a good faith discussion when they do not seem to recognize the existence of RWAs.72 Also, SBF should have had a better answer considering all of the pitches he had heard.

On p. 169 they write:

In a roundabout way, Sam had gotten to the heart of the matter. While getting a wire transfer can be a major pain in the ass, and I agreed we could improve our payments system and our broader financial system, one of the reasons a wire transfer is cumbersome is that it runs through our banking system, which has safeguards in place: anti–money laundering laws, know-your-customer laws, the ability to protect against fraud. These regulations exist for a reason. We can and should argue over how to improve our system and amend those regulations when necessary, but claiming crypto was better simply because it was “cleaner” and moved faster was either disingenuous or deeply ignorant. Sure, it moved fast, but at enormous cost. Crypto opened the door to facilitating all sorts of criminal activity, and “trusting the code” often meant having to live with hacks, scams, and fraud as a cost of doing business. Plus, the irreversibility of the blockchain meant you couldn’t correct an honest mistake. You lose money? DYOR, man.

This strawman is similar to the type found in Diehl et. al., book. Not every cryptocurrency or blockchain project is attempting to create a bank, or a payment system, or “money.” The next edition needs to be more specific about which projects the authors are referring to here. Or what existing infrastructure they are comparing the strawman with.

For instance, how does McKenzie propose “we could improve our payments system”? Does a wire transfer take three days to move because of KYC and AML processes? FedNow flipped on a couple of months ago, it introduced another real-time payments (RTP) system in the U.S.

Does FedNow cut through the 3-day wire by removing or ignoring regulations? No. The poorly named “The Clearing House”, which operates the other RTP, must be super fast because it bypasses these KYC and AML processes, right?73 No.

The authors inexplicably defend the status quo – including slow incumbent intermediaries – without explaining why it takes a specific unit of time for funds to transfer. Saying that “crypto moved fast but opened the door to all sorts of criminal activity” is sensationalistic writing and not serious investigative reporting.

On p. 170 they write:

I was searching for some semblance of heartfelt contrition on his part, some gesture of sympathy toward the naive crypto-buying masses, but mostly I came up empty. Sam reiterated a generic need for federal oversight. I expressed a hope that, at a minimum, we skeptics could find common ground with industry players like him and work toward eliminating the myriad scams and pervasive fraud in crypto. Sam nodded, his head hanging low.

What are skeptics? Does McKenzie speak on their behalf? Is there a card membership form?

On p. 171 they write:

We said our perfunctory thank-yous. But Sam kept talking. “And always if you guys have any thoughts or questions about the ecosystem. Feel free. And Tether, there’s a lot more I could say off-the-record.” (Off-the-record is by mutual agreement; we never agreed to it.) “Frankly, they’re emotional guys. And I don’t want to piss them off. Weird fucking dudes. Like really fucking weird. They’re honestly not scammers, but they are difficult people. And I think the FT article on Giancarlo is an amazing article . . .”

This is the third time the authors have shown a lack of compunction towards off-the-record conversations. It all sounds like “gotcha” journalism, not investigative journalism. The ends do not justify the means. Worse for the authors, the hot mic does not reveal anything new.

It also reminds me of that same tweet from Matthew Green:

Source: Tweet

On p. 172 they write:

Jacob asked if USDD, a new stablecoin, could be an eventual replacement for Tether. Recently Alameda had announced a financial partnership with Justin Sun, the entrepreneur behind USDD. Sam responded as if he had never heard of USDD. “USD what?” “USDD.” “Which is DD?” “The new Justin Sun algorithmic stablecoin.” “No, no. I don’t know where on the scale from DAI (another algorithmic stablecoin) to LUNA it is, but I think it might be on the bad end of that spectrum.”

What is an algorithmic stablecoin? Still no definition or description or categories. Also, like most of Justin Sun’s projects, USDD did not take off. For example, a year ago its “marketcap” was about 10% higher than it is today.74 Speaking of which, the paragraphs on Sun were pretty solid, a second edition could mention the SEC lawsuit announced in March 2023.

On p. 176 they write:

But if there was one thing that everyone could agree on, it was that Sam Bankman-Fried had it all figured out. Even among the most die-hard crypto skeptics, it was broadly assumed that Sam was making money hand over fist, and whatever shenanigans he might be up to, he would most likely get away with it.

That’s why the victory laps – by anyone – after the demise of FTX, make no sense. As Faux and these authors pointed out, no one knew besides 4-5 people.75

On p. 177 they write:

For example, “every year there was a 25 percent chance that [Terra] was going to crash to less than 50 percent.” Where did that number come from? Interviewing Sam was like punching against air. If this was the king of crypto, was it a kingdom made of sand?

That’s a good question. The next edition should try to track down the answer.

All-in-all this chapter does not provide any crazy revelations. Based on the questions in the SBF interview, the authors revealed they too had no idea what was happening between Alameda and FTX. For instance, if the authors knew what the inner circle knew, then one of the questions that would have been asked is: is Alameda exempt from liquidations on FTX? Instead it was a lot of innuendo around Tether LTD which as of this writing, does not appear to been a major culprit in the downfall of FTX.

Lastly, based on theirs actions, it appears the authors are willing to not only use the content of a hot mic, but also publish content that the interviewer said was off-the-record. The ends justify the means? In this case, the hot mic didn’t reveal anything interesting, so why include it?

Chapter 10: Who’s In Charge Here?

A future version of this chapter has the potential to be very interesting at it could discuss how the coin lobbying world works. Instead, the current chapter is pretty shallow. While one piece of specific legislation is mentioned, readers are not informed of who’s-who in the coin lobbying world, or what spin doctoring they have achieved.

On p. 179 they write:

But to skeptics, and to people unlucky enough to have invested more than they could afford to, the implosion represented something more severe. Crypto was on life support. A market worth $3 trillion in November of 2021 had been reduced to less than $1 trillion—and even that number seemed aspirational at best. As some bankrupt crypto companies stopped allowing customer withdrawals, it was hard to know how much real money was left to back the fake stuff. When I spoke to him in March, Alex Mashinsky of Celsius had estimated that number at less than 15 percent—and that guy was allegedly running a Ponzi scheme that soon went bankrupt. He might have been exaggerating; it was probably even less.

What is a skeptic? The authors still have not provided a concrete definition. Also, the authors state “it was probably even less.” How much less? They never provide a ball park estimate of what they think the “real money” inside the coin world is.

On p. 179 they write:

Michael Saylor, CEO of MicroStrategy, and the guy who encouraged people to mortgage their houses to buy Bitcoin, resigned his position in August.

Inexplicably the authors missed a key event. Michael Saylor resigned on August 2, 2022. On August 31, the Attorney General for DC announced it was suing Saylor for evading more than $25 million in taxes. Surely readers would find that interesting?76

On p. 180 they write:

What was clear was just how widely the crypto virus had infected the general public. Most Americans who bought into crypto did so in 2020 and 2021, when the market was at its peak, having been lured by promises of mind-boggling profits in the crooked casinos. That same majority, on average, lost money as the price of virtually all of these cryptocurrencies had crashed, most by 70 percent or more from their all-time highs.

They could be right but there are no references or citations in the back. That which is asserted without evidence can be dismissed without evidence.

On p. 181 they write:

How in the world was this massive speculative bubble in an industry rife with fraud—and built upon an incredibly shaky economic foundation—allowed to metastasize to such a degree?

Because in part, actual whistleblowers were ignored? And the prosecutors left the government and joined the counsel for the defense? There is a world worth looking into circa 2017-2019 that the authors missed.

On p. 181 they wrote:

In the midst of all this, crypto lobbying expenditures were at an all-time high, and politicians from both parties were touting pro-industry legislation.

What is an estimate for how much these expenditures were in the U.S.? How much was spent lobbying in other developed countries?

One notable example that comes to mind was an intense effort to lobby specific senators, such as Kyrsten Sinema, during the debate around the Infrastructure Investment and Jobs Act in 2021:

Source: Twitter

A future edition should include specific examples.

On p. 182 they write:

The stateless, peer-to-peer currency that would avoid all intermediaries and democratize and decentralize the future of money now needed to kiss Washington’s ass in the present and throw some of the real stuff around. It was either that, or watch their industry go bye-bye.

This is a strawman, not every public blockchain project is attempting to build “the future of money.” But with the second sentence, I fully agree.

Here are a couple times I lampooned the phenomenon specifically with Bitcoin:

Source: Twitter
Source: Twitter

On p. 182 they write:

Ironically, even Michael Lewis, author of Liar’s Poker and The Big Short, was in thrall with the boy wonder, according to reporter Zeke Faux of Bloomberg.

Oh a trifecta of streams almost crossed! Three books published within four months of one another on the same topic.

On p. 184 they write:

Toomey spun his ownership of Bitcoin and the potential conflict of interest as a source of important “expertise” when deciding on regulatory policy. He argued that Washington needed to offer “respect for consumers” to make their own investment choices, despite the fact that the very lack of disclosures inherent in cryptos not being classified as securities kept investors in the dark as to how they might be getting swindled.

I partly agree with the authors view point here. But – and to be clear I am not a lawyer – I do not think the “lack of disclosures inherent in cryptos” is why some might not be classified as securities. The entire facts-and-circumstances exercise that a U.S. prosecutor conducts involves several prongs that the authors mention a couple of times. Disclosures – or lackthereof – is tangential.

On p. 184 they write:

A representative example was Brian Brooks, who was chief legal officer of exchange Coinbase before he became Acting Comptroller of the Currency, only to leave that governmental position to become the head of Binance’s US division. He lasted all of three months at that job, before resigning due to “differences over strategic direction.”

It is worse than that. Brooks was never confirmed by the Senate, he served as an Acting Comptroller and days before leaving he unilaterally published guidance – which he did not request public comments on – that has since been partially rescinded. His next gig was as the CEO of Bitfury, a notorious mining company whose machines at one point consumed 10% of the electricity in the Republic of Georgia.

On p. 186 they write:

Unfortunately, like the majority of crypto investors, most people of color entered the market near its peak in the bull run of 2020/2021 and were now among the ones left holding the bag.

This could be true but what is their source? There is no reference in the back either. That which is asserted without evidence can be dismissed without evidence.

On p. 186 they write:

Many of these issues were known to them, in some form, even if they hadn’t been publicly acknowledged, much less acted upon.

It could be worth the authors time for them to investigate which non-lobbyists spoke to policy makers and regulators in the 2017-2019 time frame. I know I was not the only one.

On p. 187 they write:

The United States of America is unique in the way it separates its regulation of securities from its regulation of commodities. It’s basically a historical fluke.

Actually if the authors had looked into it, they would have discovered it is nearly all political. There have been multiple attempts to merge the SEC and CFTC, including shortly after the 2008 Financial Crisis. The most recent attempts always hit the same road blocks: powerful lobbying forces from the banking industry and their interlocutors: the members of the House and Senate Banking Committees and the House Agriculture Committee. For instance, in 2012 a bill was introduced in the House to merge the two and in 2017 the Treasury department – then led by Mnuchin – weighed in on a proposed merger.

On p. 190 they write:

For many coiners, it was taken as good news, a way of legitimizing the first cryptocurrency by enshrining it under the existing regulatory regime.

What is a coiner?

On p. 190 they write:

There was no fine or criminal prosecution. CFTC Commissioner Wetjen, in the grand revolving door tradition, later entered the crypto industry. In 2021, FTX US hired Wetjen to be its head of policy and regulatory strategy—the mirror to his former governmental position. To recap, the first derivatives exchange in crypto to be classified as such under American law was later found to have engaged in illegal activity, got off the hook, and then later another exchange hired the regulator who oversaw that decision to help guide their maneuverings on Capitol Hill. You can’t make this stuff up.

In the next edition the authors should include the part mentioned above on page 144 that Wetjen did not register as a lobbyist (like he was supposed to) and was also an advisor to Coin Center, another coin lobbying organization. To be fair, the revolving door crosses both ways: probably worth mentioning that after leaving the CFTC, Wetjen joined the DTCC as head of public policy and later the Miami International Holdings which is a holding company that owns several exchanges.

On p. 190 they write:

But the reality is that Bitcoin’s ownership is actually extraordinarily centralized, concentrated in a tiny group of whales and mining pools. In fact, just two mining pools account for 51 percent of its global hash rate, meaning just two large groups control the majority of new Bitcoin created.

This is not a good argument, as it lacks two things: (1) references and (2) nuance. Without references it can be dismissed out of hand as just another opinion; there are some ways to verify the claims but why should I keep doing their homework for them?

In terms of nuance: while mining pools have become important for proof-of-work chains, it takes two to tango. I agree with the thrust of the point, I have made it myself about GHash voluntarily “self-limiting” in 2014. But unlike GHash (which provided a hosted mining service too), the largest pools do not usually run the hashing equipment, those are typically operated by 3rd parties (such as Riot who the authors visited). Thus, it is not technically sound to say that two mining pools control the majority of the new Bitcoin created, because they need the hashing equipment (that generates the proofs-of-work) in order to build a correct block.

On p. 190 they write:

Whoever Satoshi Nakamoto is, it’s a real person or real people. Once again, code does not fall from the sky. One day we may well find out who started this whole nonsense. If so, break out the popcorn, law nerds.

It’s not clear from the rest of the chapter what the authors are implying. Do they mean Nakamoto would be liable for something and therefore sued or charged by a government? If so, why not just say that?

In fact, while I doubt she agrees with the authors modus operandi, Angela Walch authored a paper that they might want to cite in the next edition: In Code(rs) We Trust: Software Developers as Fiduciaries in Public Blockchains. 77

On p. 190 they write:

One meeting included one of Pham’s former colleagues who had gone over to the crypto industry and now was publicly lobbying her.

Who? Name names next time.

On p. 191 they write:

That’s not to overlook the efforts of SEC Commissioner Hester Peirce, whose enthusiasm for the industry is legendary.

The authors missed the opportunity to use the “subprime mom” and “subprime dad” analogy from Lee Reiners:

Source: Twitter

Curiously, while the authors namecheck Lee Reiners in the Acknowledgments, they misspell his name and worse, they don’t actually cite any of his work. Notably, Reiners was the first person to write a long form discussion on the revolving door as it relates to the coin world. In fact, five years ago he wrote a widely circulated article entitled: The Revolving Door Comes to Cryptocurrency. It is a strange omission, credit where credit is due.

On p. 194 they write:

“There really is no legitimate side to crypto,” said Stark. To him, crypto had simply repackaged the traditional get-rich-quick scheme in a shiny, fraudulent wrapper.

While Stark might be correct, what evidence did he provide? If it is asserted without evidence it can be dismissed without evidence.

On p. 195 they write:

“For me it’s all so obvious,” said Stark. “When you ask anybody, ‘Give me one legitimate use for crypto. Give me one thing you can use crypto for?’ I just don’t see it, and nobody can ever tell me anything.”

Why is Stark the final arbiter for what is and is not a legitimate use for crypto? Who died and made him king? If you have already predetermined there are no legitimate use cases, what can someone tell you?

For instance, in the process of writing this review J.P. Morgan announced its Tokenized Collateral Network. They weren’t the first organization to deploy a new chain with “enterprise” customers.

In any case, the authors need to be more consistent in the next edition: are they a priori handwaving all blockchain-related projects out of hand? Or are they going to conduct market research and lots of interviews to drill into say, 100 dapps (categories) from DeFi Llama? Cannot simultaneously be evidence-based and use an a priori cudgel.

On p. 195 they write:

What I found most refreshing about Stark was his concern for people who got caught up in crypto. “You can blame the victim if you want. But the reality is, it’s really not the victim’s fault. They’re being taken in by really sophisticated hustlers.”

What victims has Stark helped? Which hustlers did he bring to justice?

On p. 195 they write:

It was up to critics like Stark—who had no skin in the game, who didn’t make money off of his crypto criticism—to put forward that argument.

What are critics? Are they the same as skeptics?

How do the authors know Stark hasn’t made any money off of his notoriety? Is that really the litmus test? Are the only people worth talking to those who write long LinkedIn posts? If the authors are willing to entertain the idea that “critics” and “skeptics” come in all shapes and sizes, they’d find that there are a ton of industry folks who are quite openly critical and probably even agree with some of the authors views. There is no reason to be insular or have some kind of purity test on these topics.7879

On p. 197 they write:

In combating a false economic narrative, it is crucial to put forth an alternate true one, to reveal the hucksters and con men for who they really are. But Kardashian and her fellow celebs were, at least for the most part, not those fraudsters. They were just a tool, a megaphone used to spread the lies of crypto more effectively.

I agree with this view, whole heartily. But in the next edition could the authors use more precise language? For instance, Kim Kardashian was sued by the SEC and fined $1.26 million in penalties for failing to disclose she had been paid to advertise EthereumMax (EMAX). It was unlawfully touting, not fraud that she was charged with. This is sloppy polemics just like the Diehl et al., book.

Overall this chapter was a wasted opportunity: the authors could have dug into specific coin lobbying organizations, an idea I encouraged them to do. Instead readers are not informed of who’s-who in the coin lobbying world and are twice referred to a Tweet that is never provided (which Pham deleted but others saved). While we are given an overview of specific piece of legislation, the DCCPA, we aren’t informed that an industry insider – Gabriel Shapiro, a lawyer – leaked a draft that put SBF on damage containment mode and contributed to ending its legislative hopes.

As a consequence, readers are not informed of who’s actually in charge here.

Chapter 11: Unbankrupt Yourself

This is one of the better chapters, largely because it involves a bit of first-hand reporting. We learn about Dr. James Block (aka DirtyBubbleMedia) who used Etherscan to identify suspicious transactions. Yet one oversight was not including Maya Zehavi anywhere in the discussion of Celsius. She is an Israeli-based blockchain-focused entrepreneur who was the first person to publicly sound the alarm on Celsius and Hogeg in particular. She should be interviewed in the next edition.

There is not much to nitpick in this chapter. For instance on p. 206 they write:

At the time, before many industry players turned on one another, there was a collective omertà against bad-mouthing competitors.

Omertà is a great word and I want to agree with the authors here. But tribalism is still quite common irrespective of market conditions, especially the uno coin maximalism variety. Heck, I got yelled at last year for talking about the etymology of “nocoiner” tribalism. Talk about social media wasting your time!

On p. 207 they write:

Soon, James discovered that Chain.com, a murky startup with a lot of crypto but seemingly only one employee, may have been behind it. James and Jacob had been looking into Chain, and James wrote a piece about the CEO’s extravagant purchases of multimillion-dollar NFTs. It turned out that after James published his Dirty Bubble Media article about Chain, someone had created similar, competing articles that, while containing much of the same content, painted Chain in a more positive light.

I previously mentioned this to Jacob Silverman: Chain.com today is not the same entity (or people) that ran Chain.com ten years ago. For the bulk of the 2010s, Chain.com attempted to play its hand in the “enterprise” blockchain world and eventually was acquired by Stellar. Someone else bought the domain name a couple years ago. But that’s not clear from the the language in the passage above. For example, is Adam Ludwin still involved? Seems unlikely.

On p. 209 they write:

Jacob confronted Chain’s CEO via Telegram. He denied ever having heard of Mevrex or hiring them. Eventually, after a fair amount of badgering and pleading with communications people at the respective companies, James’s Twitter and Substack accounts were restored.

What did Jacob say? What did James say?

On p. 210 they write:

They also treated their critics—some of them simply well-meaning customers who wanted to know how their assets were being handled—with utter derision.

This is a good point. One notable example was Mashinsky responding to Mike Dudas.

Source: Twitter

On p. 210 they write:

Every time Mashinsky accused his evil critics of spreading FUD, I assumed that DBM was probably on the right track. The proof was often in the block-chain data, waiting to be interpreted.

Why is there a hyphen in blockchain?

The discussion on KeyFi’s revelations on p. 211 was good, seems like everyone was happy when NGU but when it doesn’t, they spill the beans on social media.

On p. 214 they write:

As for James Block, who eventually revealed his name after journalists began peppering him with requests for tips and commentary, he was offered a job by a hedge fund shorting crypto. He decided to stick to medicine.

Out of curiosity was the hedge fund Hindenburg Research? The same ones who announced a $1 million bounty on Tether that as of this writing no one has claimed? Or was it Citron Research, the fund that announced it was shorting Ethereum and then days later deleted their thread?

I’ve often wanted to short a variety of coins and tokens but the counterparty risk was one of the main reasons I haven’t.80 Perhaps this is part of the reason why Perpetuals are popular?81

On p. 216 they write:

James sounded the alarm on Celsius, but few wanted to listen.

I think James Block did a great job highlighting numerous red flag as Celsius. And there were others, including Maya Zehavi, who publicly questioned Celsius’s model. Nearly two years ago Protos even highlighted one of Zehavi’s tweets.

And one on Hogeg that could be in the book:

Source: Twitter

Zehavi has at least a dozen Hogeg-related tweets pre-2020. A second edition should give her a well deserved podium.

What would have made this chapter in particular stand out is if it included some diagrams showing the flow of funds that James Block and others identified. The prose was decent too. Definitely seems like the chapter with the fewest errors or mistakes.

Chapter 12: Chapter 11

Source: Kindle

There was a minor technical glitch in the Kindle version, it is missing the subtitle.

Overall this chapter is a bit dry in large part because it relies almost entirely on second-hand reporting. They do have a few new original quotes from SBF but none of those seemed particularly incriminating.

The authors also missed a couple of comparisons when it comes to evaluating intermediaries.

For instance, on p. 217 they write:

Accounts on FTX US were of course not FDIC-insured, as FTX US is not a licensed US bank but rather a money services business, which doesn’t offer customers the same protections.

This is a good point. A similar (misleading) claim was made by Robinhood five years ago. In December 2018 the CEO publicly claimed that user deposits in new checking accounts were insured by the SIPC only to have to walk back the claims after the head of the SIPC (and others) pointing out that this was not technically true.

On p. 217 they write:

Like so many interactions in crypto, it was a messy and unsatisfying affair. However, it did reinforce one thing: Sam was desperate to stage-manage his public image. The dark arts of PR were part of any actor’s Hollywood education, and Sam clearly needed more lessons.

What are the dark arts of PR? Is McKenzie saying he too was involved in the “dark arts of PR”?

On p. 219 they write:

Over Twitter DM, Sam spoke darkly to me of a coming conflict dividing the industry. Binance was pushing its customers to convert their stablecoins into BUSD, Binance’s own dollar-pegged token. “It’s the beginnings of the second great stablecoin war,” he messaged me on September 5. “All the stables are gearing up for it. Taking this as a declaration of war.”

This is interesting. For illustrative purposes a timeline could be helpful to readers to understand when the first, second, third, etc. “stablecoin wars” supposedly took place. Also, when SBF said “all the stables are gearing up for it” did he provide any evidence for this? For instance, was TUSD or Dai backers involved?

On p. 220 they write:

That financial perpetual motion machine looked a lot like the Celsius “flywheel” concept that James had previously investigated, and that Professor Hilary Allen had warned about in February of that year.

It bears repeating: Celsius was a centralized lender. Connecting that with what Allen wrote about (“DeFi”) last year is disingenuous.

In contrast, here’s what I had to say in June 2022:

There’s not need to cite me, but if you are going to critique the coin world, at least try to accurately describe what is and is not centralized.

On p. 220 they write:

According to bankruptcy filings, FTX/Alameda lost $3.7 billion before 2022. Quite impressive to lose that much in a bull market!

This is a good point.

On p. 227 they write:

As last month’s scammers came in from the cold to yuk it up on social media, the post-SBF positioning became frantic—who was to blame, who supported him, who failed to warn the public. Even us crypto skeptics got our turn in the dock—apparently our frequently repeated claims that the entire industry was built on bad economics, bad incentives, and outright fraud wasn’t enough.

What is a “crypto skeptic”? Do the authors speak on all of their behalf?

On p. 228 they write:

Some claimed to have held back for fear of angering a powerful industry player. Bitcoin maximalists blamed Sam for all their problems, rightfully pointing out SBF’s cozy relationship with mainstream media publications, regulators, and lawmakers (some of which he gave large sums of money). But then, as maxis are wont to do, they wandered off into wackadoodle land, painting conspiracy theories that Sam was working with Biden to send money to Ukraine via crypto.

What are Bitcoin maximalists? What are maxis? I have seen it but in the next edition can the authors provide a reference for the conspiracy theory?

On p. 229 they write:

Rep. Emmer was hopeful that further discussions might let them proceed with legislation that would allow for a “light touch” when it came to crypto regulation. The Blockchain Eight encapsulated so much of what was wrong when it came to Washington’s cozy ties to the industry. Evenly divided between Democrats and Republicans, five of the eight members received campaign donations from FTX employees.

I mostly agree with this. But I think there is arguably an even more damning example: a couple of the “Blockchain Eight” attempted to overturn the results of the 2020 presidential election. To use blockchain parlance, those would be Byzantine actors.

On p. 230 they write:

Legitimate technology companies like Microsoft belatedly summoned the bravery to admit that actually, when you really think about it, blockchain sorta sucked. It had no substantive use case. All the money spent to explore how maybe crypto might actually do something in the future had been wasted. Numerous other blockchain “pilot projects” quietly folded, including one by the Australian Securities Exchange.

There is a kernel of truth in this paragraph. For instance, in May, ASX said it would not use a blockchain for its CHESS-replacement endeavor (which was spearhead by Digital Asset). And there have been quite a few pilots and experiments that tried and failed to gain product-market fit or infrastructure-market fit. I’ve written about several of these cases (including the Chain.com of the 2010s).

But the rest of it is just polemical in the same vein as Diehl et. al. When did Microsoft belatedly say “blockchain sorta sucked”? As of this writing, their Azure department has an entire Web3 team still actively involved in the blockchain world.

But let’s take the authors unreferenced claim at face value, that there is no substantiative use case discovered by Microsoft or other “legitimate technology companies.” So is that the end of the blockchain story?

Putting aside for the moment that the authors have shown an affinity for incumbents, why should readers be led to believe those are the only participants allowed to have opinions on the matter? One of the key weaknesses of this chapter, and book, in general is that the authors attempt to have it both ways: they sometimes attempt to use evidence when it helps their argument but then resort to an a priori cudgel in other instances. The next edition needs to have consistency (e.g., remove the a priori arguments).

A better argument would have been to reach out to the “head of blockchain” at Microsoft (currently Yorke Rhodes) and do some first hand reporting about what that organization has done and why they apparently think “blockchain sorta sucks.” Maybe it does! But let’s at least be methodical about dressing it down.

On p. 233 they write:

The chairman of FBH was none other than Jean Chalopin, the chairman of Deltec Bank, whose most infamous client was Tether. As the New York Times noted, “Farmington’s deposits had been steady at about $10 million for a decade. But in the third quarter this year [2022], the bank’s deposits jumped nearly 600 percent to $84 million.” The bank was renamed Moonstone. Its digital director was Janvier Chalopin, son of Jean.

So what exactly is the crime? That there is nepotism at a bank called FBH (Moonstone)? Should sons or daughters be able to run banks their parents previously ran? If not, should the Rockefeller and Morgan families be looking over their shoulders? Insinuation and innuendo is all the authors have here?

On p. 235 they write:

On December 16, just over one week after releasing its report on Binance’s holdings, Mazars announced—via Binance—that it was exiting the business of auditing crypto companies “due to concerns regarding the way these reports are understood by the public.” The company deleted its website with its reports on Binance and other crypto firms.

Oof, that’s a good point. I think one of my favorite audit-related stories was shortly after Bitfinex was hacked (the 2nd time) Michael Perklin was brought in to conduct an audit. But then he quietly left and joined Shapeshift. No audit was made available to the public.82

On p. 237 they write:

The Trump NFT collection—45,000 silly cartoonish portraits of the former prez looking cool and badass—sold out in a day at ninety-nine dollars apiece, likely netting him millions.

“Likely”? Perhaps Donald Trump lied in his filings, but according to a CoinDesk story in April 2023, he earned between $500,001-$1 million on NFT sales. Is that a lot or a little?

On p. 237 they write:

That system eventually became an engine of economic inequality and political alienation. Crypto was right about that. But their solution—to create a private, trustless financial system based on code, unstable digital assets, and a new class of intermediaries—fell apart under its own contradictions, including rampant opportunities for fraud. Crypto had indeed produced something no one could trust, and Sam Bankman-Fried, their knockoff J. P. Morgan, would be remembered as one of its architects.

This is not a strong argument. For example, what happens if incumbents end up using blockchains in the future? Are intermediaries okay so as long as they are incumbents?

It’s also unclear why the authors keep using a false dichotomy. Investigative journalists don’t have to carry water for anyone. And in this instance, it is perfectly fine to critique both the cryptocurrency world and traditional finance.83

This could have been a good chapter. For example, they did do a decent job concisely chronicling some of the drama (and beef) between Binance and FTX. But the tone of it all feels like self-promotional “told ya so” which is strange because neither author was actively investigating this space until late 2021, after the alleged crimes began at the various centralized intermediaries. A future edition could fold this together with the outcome of the current SBF criminal case.

Chapter 13: Preacher’s Father

This chapter probably should have come much earlier because it told a really interesting, sad story that the authors did some first-hand reporting on. The problem is that its somber tone is polar opposite of the stoner tone of the first few chapters. While the authors were quite glib about discussing McKenzie’s pot smoking/edible habit, at the end of the book the readers get some whiplash with McKenzie sitting in church listening to a sermon from a son of a fraud victim. Although to be fair, I’m not religious so maybe I’m being overly sensitive relative to other readers.

A future edition could probably keep the entire chapter intact, as it was well-written and involved a relatively unknown (alleged) fraudulent operator: Stallion Wings.

With that said, there are a few nit picks.

On p. 246 they write:

They come in wanting to limit their downside, but end up doing the exact opposite—they chase their losses until the money is gone. The vast majority end up losing money because the forex market, just like a casino, has a negative expected value.”

This could be true – and anecdotally I think they could be right – but the authors do not provide any references (in fact, there are only 2 references for the whole chapter). That which is asserted without evidence can be dismissed without evidence. Also, as mentioned earlier, some trading platforms in the forex (FX) market also allow high leverage to retail (beyond 125x).

On p. 247 they write:

The volatility of crypto and the high leverage offered to retail customers add to its addictiveness. With wild swings in price, a well-placed crypto bet can be intoxicating, euphoric. Add to that leverage—essentially the ability to borrow large sums to bet with—and the highs get even higher. Recall that Binance offered regular customers 125-to-1 leverage, a ratio unheard of in regulated markets.

A future edition should include the meme of Mark Karpelès, former ex-CEO of Mt. Gox:

Again, there are regulated markets (FX) that allow for that type of ratio, just google: Forex leverage. MultiBank Group immediately pops out, are they legit? Should FX markets be more tightly regulated?

On p. 252 they write:

The original computer code that would become Bitcoin included a poker lobby, a framework from which a virtual poker game could be built. Whoever Satoshi Nakamoto was, in early 2007 they were clearly interested in methods of creating non-confiscatable digital money and how they might be used in online poker.

I agree with this point. And over the years, there are at least five cryptocurrency developers who have publicly said something similar, albeit for different reasons: Matt Corallo, Greg Maxwell, Jeff Garzik, Alex Waters, and Jackson Palmer. There are a number of threads on reddit and Bitcoin Talk that also discuss this scenario.

Their concluding paragraph of the chapter, on p. 255 reads:

Each generation of tech and financial “innovators” promise their own form of utopia, and crypto advocates have had their turn to demonstrate theirs, with all of its attendant failings. Like so many of its Silicon Valley venture capitalist forebears, the crypto industry’s vision is fundamentally a selfish one, divorced from any real sense of how the world works and what is required to bring us together rather than pull us further apart. We cannot eradicate the need for trust, and it is not just wrongheaded, but fundamentally nihilistic to aspire to do so. In the end, we have only ourselves and each other on whom we can rely.

I agree with the first sentence and have written about “Innovation Theater” before. But it is a strawman and inaccurate to portray “the crypto industry vision” as a unified something. Sure there are a variety of camps that sometimes lobby together, but they can’t claim to speak “on behalf of crypto” anymore than the authors can claim to “speak on behalf of critics.” It’s disingenuous and happens throughout the book.

Ironically while the authors attempt to hammer home the importance of “trust,” throughout the book they do not cite sources for a number of their claims. Verify, not trust.

Overall it was an okay chapter, albeit a bit preachy which is sort of fine considering it partially takes place in a church. Perhaps the biggest drawback from this chapter and the book altogether at this point is that the authors do not provide any solutions to prevent fraud or restore those who have been defrauded. That is a missed opportunity.

Epilogue

This epilogue is pretty self-serving, it is basically describes McKenzie as some kind of maverick who tells truth to power. It’s cliché and does not really cover new ground. It makes sense to have an epilogue for this type of book but its tone seems out of touch with the victims described in the previous chapters.

On p. 257 they write:

It was December 14, 2022. I was testifying before the Senate Banking Committee on the collapse of FTX/Alameda and what it meant for crypto, and for the millions of investors who had lost money in the process. On the other end of the panel was Professor Hilary Allen, whose February paper had anticipated crypto’s collapse.

How many millions of investors lost money from the collapse of FTX and Alameda? Did they mean to write customers?

Also, Allen’s paper did not anticipate “crypto’s collapse.” She incorrectly predicted DeFi lending protocols would collapse, and they did not whereas centralized lenders did. Maybe Aave and Compound will eventually face some kind of existential cataclysm, but as of this writing they have not.

On p. 257 they write:

Professor Allen and I had been invited to describe the myriad ways in which crypto’s epic collapse was entirely predictable and why the time for such shenanigans is long past.

I think the readers would be interested to know who invited McKenzie and Allen, just like we would like to know who invited Schulp and O’Leary. There are an endless amount of folks who probably want to testify to a Congressional committee. There are also a number of experts worth adding to the dais that have unimpeachable on this topic, including J. P. Koning and David Andolfatto.

On p. 258 they write:

“Mr. Wang created this back door by inserting a single number into millions of lines of code for the exchange, creating a line of credit from FTX to Alameda, to which customers did not consent,” claimed FTX lawyer Andrew Dietderich. The innovative wonders of “trustlessness” and “decentralization” were on full display.

This is a strawman. FTX and Alameda were centralized intermediaries, by definition neither were decentralized.

On p. 258 they write:

Add a single number to millions of lines of code, and voilà, one can siphon billions in “loans” from accounts held by regular folks oblivious to the swindle. Trust the code, indeed. Dietderich continued: “And we know the size of that line of credit. It was $65 billion.” Bernie Madoff’s Ponzi was $64.8 billion.

Another strawman. The code that ran this part of FTX was written for the intermediary, not a blockchain, and it was managed on github. And again, both Alameda and FTX are centralized intermediaries. Neither was a blockchain nor a smart contract. The authors are insinuating that the code that runs DeFi protocols, such as Aave, have some kind of giant exploitable whole on par with Madoff’s Ponzi or FTX. Maybe they do, but the authors need to be specific next edition. That which is asserted without evidence can be dismissed without evidence.

On p. 259 they write:

I’d gotten into several public Twitter spats with journalists at The Block who questioned my understanding of the industry they supposedly covered honestly. They were less voluble now.

Is it possible that both are true? That certain coin reporters are shills and that the authors do not have a good understanding of the subject matter?84 For instance, in all but one chapter the authors conflate Bitcoin with “crypto” (broadly) and do not provide definitions or examples of “DeFi.”

On p. 263 they write:

While the speed of the failures was alarming, I couldn’t help but notice that two of the three collapsed banks had significant exposure to the volatile world of cryptocurrency, and the third (SVB) counted as clients the crypto companies Ripple, BlockFi, Circle, Avalanche, and Yuga Labs, among others.

Steven Kelly and Todd Phillips are academics that should be included in a future edition as they discussed these bank failures in real-time.85

Readers may be interested in the Appendix of my March 2023 presentation on the topic as well.

On p. 264 they write:

The other major player left standing was Tether. The stablecoin company, valued at $71 billion as of March 1, 2023, had miraculously survived while the industry around it bit the dust.

As mentioned at the beginning of this review, this is not the correct valuation of the company. The authors mistakenly conflate the aggregate amount of USDT issued with the book value of equity of the issuing company (Tether LTD). Tether LTD is worth a fraction, in the low billions

On p. 264 they write:

Per Bloomberg, “Bitfinex Chief Technology Officer Paolo Ardoino said in an interview he sees enough demand for El Salvador to issue the full $1 billion it is seeking.” Where this demand would come from was anyone’s guess.

I am skeptical of that claim too but the authors are reporters: they are supposed to find out where that demand is. For example, in Chapter 7 I noted that following the book’s publication there was a 180% rally in El Salvadorian government bonds. The following month, in August, Bloomberg ran a headline Bitcoin-Touting Bukele’s Bond Rally Draws JPMorgan, Eaton Vance.

On p. 265 they write:

The issuance of the Bitcoin Bond was itself fraught with consequences for the local population. Wilfredo Claros, the fisherman I visited the previous spring who lived in the hills above La Unión, would soon be forced to abandon his home and his land so the airport servicing Bitcoin City could be built. According to Wilfredo, the government offered him one-tenth the amount he had requested in exchange for his property.

This is probably what the epilogue should have centered around: the victims. The people who got screwed by the SBF and Mashinsky.

A future edition of the Epilogue could focus more on “where are they now” — the stories of the El Salvadorians are interesting!

Acknowledgements

Even at the end, we still do not have a precise definition of a “critic” or “skeptic.”

On p. 269 they write:

To the members of the crypto skeptic community, I want to thank you for your friendship, tutelage, and guidance along the way. Unfortunately, it would be impossible to list all the skeptics who have helped me over the past two years, but I do want to thank a few of them specifically.

Is there a formal organization for supposed “crypto skeptics”? Or the “cryptos skeptic skeptics”?

The authors then list off eight names, none of whom are blockchain technical experts (although one worked for a smart contract-related company, which he removed from his LinkedIn). Did the authors reach out to any of hundreds of engineers that eagerly respond to social media questions on this topic? If not, why eschew actual experts?

Why interview actual experts when you can chat with social media influencers!

On p. 269 they write:

Thank you to Hilary Allen, Lee Reneirs, Rohan Grey, Eswar Prasad, and John Reed Stark for helping me understand American law as it relates to cryptocurrency, as well as the history of financial regulations in the US.

As mentioned in Chapter 10, they misspelled Reiners last name and didn’t cite any of his work. Strangely, even though they name check Rohan Grey, they don’t cite any of his work either, despite having co-authored the STABLE Act and opined on centrally-issued pegged coins on numerous occasions.

Appendix

This is a copy/paste from the SEC website.

Conclusion

In retrospect, seeing as how much it has been used as a marketing term, perhaps I should have trademarked both “crypto critic” and “crypto skeptic” back when I was first called them.

This was not a good book. It should have been, as it had a good publisher and the market clearly needs a book exploring what went wrong during the bubble years. But the authors made a lot of unforced errors, including getting too close to their sources, that could have been fixed through independent fact-checking.

What’s one example?

Let’s start with the Author’s Note at the very beginning:

What follows is my opinion of the events as I perceived them over the nearly two years I spent down the crypto rabbit hole. Throughout the book I use terms like “fraudsters,” “conmen,” “swindlers,” and “scammers” in reference to various actors in the crypto industry. These descriptors are nothing more than shorthand for my opinion. I don’t mean to imply that any particular person, in fact, broke a law or violated a regulation. In a similar vein, not everyone who works in cryptocurrency has poor intentions. While we may disagree wildly as to crypto’s usefulness, they have not committed fraud. It is my hope they will join me in condemning those who have.

Despite this disclaimer, the authors regularly claim – without facts – that such and such is a security or some entity broke a law. Sure everyone is entitled to an opinion, but using nuance-free language, and strident certainties is at odds with this Author’s Note.

There was no substantive technical criticism.86

For example, the authors missed the opportunity to discuss the critical role Lido currently plays in the Ethereum universe. What role is that? That’s what the authors should have figured out.

Or how centralized and dependent L2s currently are on sequencers. What’s a sequencer?

Or how MEV has evolved overtime. What is MEV? How do frequent batch auctions (such as those used in CoW Swap) reduce the impact of MEV?

Source: Threads

I mostly agree with Benedict Evans observation above. It seems clear from this book that the authors misunderstand the subject matter, otherwise they wouldn’t have made as many mistakes. This includes conflating all “crypto” with Bitcoin or failing to provide a single example of a DeFi dapp or not explaining what staking is or what a block maker is or not knowing that PayPal operates as a shadow bank (now with two types of “dollars”).8788

Furthermore, by endorsing Hilary Allen’s thesis, this also dings their credibility. Recall Allen predicted that DeFi lending protocols would collapse during a crisis. Aave and Compound did not collapse like she predicted. In fact, it was the centralized lenders that blew up last year. Perhaps these DeFi lending protocols will face a day of reckoning, but they do not suffer from the rehypothecation problem in part because all of the collateral is locked on-chain.

The authors routinely impeach their credibility by purposefully crumbling up NDAs and intentionally keeping the audio recording after an interview is done. This smells more like gotcha journalism which is lazy especially since nothing new was revealed in the process.

As a consequence, the book should probably be renamed: Blockchain Tourists. Is that unfair?

The jaunt down to Rockdale Texas seems to have resulted in little more than a photo-op for the authors. Did they help close down Riot’s Bitcoin mining facility?  Have they subsequently attended any of the local hearings or spoken with anyone during the “week of action” like Peter Howson did?89 Note: Howson is the author of the newly released: Let Them Eat Crypto

And while you can’t always time the publish date of the book, Easy Money had the misfortune of being released just before Zeke Faux’s Number Go Up, which was superior in all dimensions. 90 If you have to choose between the two, I can definitely recommend Faux’s version of events. See my review of that book here.

Endnotes

  1. In Number Go Up, Zeke Faux also writes his book in first-person, but doesn’t make the story about him. []
  2. For example, were the authors aware that one of the events McKenzie attended was a front for BSV? []
  3. By the end of Q3 2023, tokenized U.S. Treasuries hovered around $665 million. []
  4. In contrast, Zeke Faux noted this episode on p. 212:

    If you’re having trouble following this, that’s actually a good sign about your investing instincts. Comedian John Oliver later summarized Do Kwon’s nonsensical business plan: “One blorp is always worth one dollar. And the reason I can guarantee that is I’ll sell as many fleezels as it takes to make that happen. Also, I make the fleezels.”

    Strangely the authors did not include any history – abridged or otherwise – on the zany world of ICOs. This is puzzling because the infrastructure enabling Tether (USDT) was Mastercoin, one of the first projects to use the ICO model to kickstart itself. In contrast, Zeke Faux discusses it at length on page 49. []

  5. Fun fact: in January 2018 I spoke with one of the producers of that John Oliver episode and provided some fact-checking and clarification. []
  6. CMC also has a little 2m+ figure in the top left, that clearly is larger than the figure the authors use. []
  7. Hayden Adams, co-creator of Uniswap, has previously mentioned that on an average day 5-10 new coin pairs are added to Uniswap by random developers. []
  8. For instance, Meltem Demiror’s appeared on CNBC in a now deleted segment mentioning XRP. All of that was memoryholed, promoters ended up with coinesia. []
  9. Speaking of which, does everyone remember when Anthony Pompliano stopped using “The Virus is Spreading” as his catch phrase circa March 2020? []
  10. Jeff Garzik got on an airplane in order to receive one of the first Avalon ASIC miners. []
  11. For instance, Chapter 4 of my 2014 book literally is titled: The Red Queen of Mining. In Chapter 6 of “The Age of Cryptocurrency,” Michael Casey made a similar mistake. []
  12. In 2014, during a now deleted podcast episode (#116), I had a chance to debate co-hosts Stephanie Murphy and Adam B. Levine regarding on-chain activity, including gambling from Satoshi Dice. See: A Marginal Economy versus a Growth Economy []
  13. The authors could have easily dunked on garbage metrics such as cumulative addresses or wallets, two figures that only goes up no matter what. For instance, over eight years ago I published: A brief history of Bitcoin “wallet” growth. A few days later, an employee at BitGo contacted me for help to identify which wallets were “real” versus one-time burners. That was a job for an analytics company. []
  14. For comparison in Number Go Up, Zeke Faux uses the term “crypto bro” (15 times) which is a term I and other writers have used to describe specific coin promoters. []
  15. Marc Hochstein unfortunately normalized its mainstream usage. []
  16. For instance, during the block size civil war in 2015-2017, a number of the the Bitcoin Cash/XT developers wanted to significantly increase the block size in order to pursue a payments-focused roadmap. Who was right or wrong? Well empirically we have seen Bitcoin Cash successfully upgrade to 32 MB blocks, but these are mostly empty blocks because in practice, most BCH holders seem to want to hoard their coins instead of use them for payments. []
  17. We moved three times in the span of ten months, all with a one-year old in tow. []
  18. The Fed proposed cutting the current cap from 21 cents per transaction to 14.4 cents per transaction. []
  19. Readers may enjoy: Everything Everywhere Is Securities Fraud by Matt Levine. []
  20. In theory, AMMs could be used in traditional finance too. See: Automated Market-Making for Fiat Currencies by Alex Lipton and Artur Sepp. []
  21. It is likely that the authors of several other books I reviewed also had some undisclosed investments. One that comes to mind was Chris Burniske in Cryptoassets. []
  22. For what it is worth, there have been dozens of times where I wanted to short a specific coin or token, but it was hard to trust the counterparty (the CEX), so I never did. I empathize with his motivation, but he should have disclosed the bet(s). []
  23. I wrote long newsletters outlining the antics and shadiness of parts of the coin industry. []
  24. This past summer, McKenzie trolled the birdapp by saying “have fun staying poor” as well. []
  25. See also: Will the real stablecoin please stand up? by Anneke Kosse, Marc Glowka, Ilaria Mattei and Tara Rice []
  26. Tokenization attempts have expanded beyond precious gems and metals. In 2021, Poolin, at the time one of the largest multi-cryptocurrency mining pools, released a “hashrate token” which as the name suggests, attempts to tokenize a discrete amount of hashrate generated by mining hardware. At the beginning of the year, Navier, a Bitcoin hosted mining services company, announced a similar effort for “qualified investors.” []
  27. On p. 96 the authors mention White & Case. Coincidentally, this was the law firm Bob – a U.S. trained lawyer – worked at prior to joining the coin world. []
  28. The STABLE Act, co-authored by Rohan Grey, provides legislative latitude for the erection of a narrow bank-like structure that currently does not exist but likely best fits the needs of an entity like a pegged-coin issuer. []
  29. For some reason Silverman has deleted every tweet he ever engaged with me on as well. Unclear when this occurred; is this common for reporters at The New Republic to do? []
  30. For instance, two months ago, the U.S. Secret Service seized around $58 million belonging to Deltec from MUFJ. Why does it matter if the creator of Inspector Gadget founded Deltec? Is there only a specific category of people who are allowed to create banks? It is a distraction for readers who should have been informed more pertinent details like what Forbes reported in January. Perhaps this is a little unfair, as the authors had to ship a book and missed some news (they were still updating this book in January and the Epilogue appears to be written in March). Either way, the book was light on details for Deltec which does seem like an interesting bank to look into and Zeke Faux did so in Number Go Up. []
  31. I previously mentioned his real name back in February 2022 in section 5. []
  32. I am not sure who first coined the term “Tether Truther” but I have used it in the past to describe people who still claim – post-CFTC settlement – that Tether LTD is still acting in a fraudulent manner. The “Truther” modifier is similar to the scheming intrigue of other “Truther” movements. USDTQ is a riff on the conspiratorial TSLAQ. []
  33. “Cut to the chase” is an apt expression here. In contrast to Faux’s book (which does discuss Tether at length), McKenzie and Silverman linger and beat around the bush. Part of the issue likely stems from the fact that they have cultivated sources, such as Bitfinex’ed, who have no insider information. []
  34. It seems USDT-related development is about the only thing active on Liquid at the moment. []
  35. See 40 cointroversies to look into over the summer []
  36. Gee, I wonder what cowardly “Boston Celtics” fan who loves to setup alt accounts saying the same thing “This You?” to the same exact people, could be. []
  37. On p. 50 Faux writes: Phil Potter, an executive at an offshore Bitcoin exchange, Bitfinex, was developing a similar idea. They teamed up and adopted Potter’s name for it: Tether. (Potter told me he was actually the one to first approach Sellars with the idea. “I’m sure Brock will tell you he came down from Mount Sinai with it all written on stone tablets,” he said.) []
  38. Many SPACs deserve scorn because in part, some screwed over retail and it was odd that Diehl et al. treatment on this topic did not mention SPACs at all. []
  39. One response could be that Zeke Faux, on p. 199 of Number Go Up, mentioned being part of the “crew” for The Mutant Cartel, but it was clear to readers that the mutant ape he purchased was to be temporarily used as a guest admission ticket, not some permanent band-of-brotherhood. []
  40. For instance, I have publicly stated many times that I am in favor for allowing anyone that wants to opt-in to have an account with the central bank. See section 2 in Was 2021 the year the coin world went from edgy to banal? []
  41. It is worth looking at the E-Cash Act too. []
  42. According to Bowden et al., actual block propagation (arrivals) do not follow the (theoretical) homogenous Poisson process that was expected upon its release in 2009. []
  43. Kofner is the author of the widely cited comparison between transferring funds with Bitcoin versus several “traditional” wiring services. It debuted in 2014 and is still updated on a regular basis. []
  44. Newstat tweeted out his identity and then did a “reveal” podcast with Tomlinson wherein he made a number of false statements about myself. Unfortunately neither McKenzie nor Silverman reached out to verify if any of the claims that Newstat had made were valid (or not). And subsequently McKenzie falsely accused me of harassment. Then he blocked me. It would be a massive distraction to this book review if we were to litigate all the finer points of this drama. In reading this book it is clear that they were all pals, so closing ranks makes sense, but that is not what a reporter is supposed to do. Verify, not trust. []
  45. I recall a DC-based reporter recently tweeting that if a reporter feels the need to befriend their sources, they should probably just get a pet instead. []
  46. An interesting post-trade infrastructure story – about the DTCC and Cede and Co. – was written more than six years ago: Dole Food Had Too Many Shares by Matt Levine. []
  47. Coincidentally, in the process of writing this review the DTCC acquired Securency, to help with their tokenization efforts. []
  48. Note: I strongly disagree with Gladstein on many things but do find it strange that the SBF segment wasn’t released, surely it would be good promo material? []
  49. While it is possible to lever up with white-listed collateral on DeFi lending protocols such as Aave and Compound, the amount thus far is magnitudes less in part because of capped LTV ratios. []
  50. Between 2014-2019 I met a whole sundry of people claiming to work for some kind of agency including the FBI and InQTel. Didn’t drink with them though. []
  51. Seems like this purity contest over who is the most OG “critic” is stolen valor. And the supposed award nominations? Jumping the shark. []
  52. Dozens of U.S.-based Bitcoin mining companies recently visited Washington D.C. to lobby and spin the narratives away from P-o-W being an environmental blight. A second edition could look at these types of efforts. []
  53. The authors could have highlighted that some bad actors never leave the coin world. For instance, Michael Patryn – co-founder of defunct exchange Quadriga – was revealed to be Sifu. Patryn/Sifu were in the news last year for forking Aave. []
  54. Coincidentally, in the process of writing this review, FX retail trading in Japan – which accounts for the largest market share globally – hit a record high. []
  55. Not an endorsement but there are attempts to build self-custodial exchanges in the DeFi world, such as C3. []
  56. Look no further than the Board of Directors at registered clearing agents to illustrate possible synergies and conflicts. []
  57. Derivative liquidations in traditional finance is now less brazen in how it screws end users. For instance, in the UK, retail traders of spread-betting and CFD products often lose all capital in 3-6 months. As a consequence the FCA has honed in on changes to advertising CFDs the past four years which includes restricting the sale and how they are marketed. []
  58. Coincidentally, I co-authored a peer-reviewed paper that intersects with this topic: Decentralized Financial Market Infrastructures: Evolution from Intermediated Structures to Decentralized Structures for Financial Agreements []
  59. I have publicly asked it as well, for instance, on November 30, 2017. []
  60. Also, doesn’t the former Chief Strategy Officer – Phil Potter – live in New York City? []
  61. Laura Shin recently interviewed two creditors of Genesis who deposited more money following assurances from Genesis. []
  62. See Tribes of maximalism []
  63. To hammer this point home, nearly two years ago, BSTX, a joint venture between tZero and Boston Options Exchange (BOX) Digital Markets, received approval from the SEC to operate a blockchain-based securities exchange. Maybe BSTX fails to gain traction, maybe the market doesn’t care about blockchain-related exchanges. But the issue at the heart of Mirror wasn’t “the exchange” existed; the problem was the fraud, not the existence of a new trading venue. []
  64. Allen also made a number of incorrect claims regarding Ethereum’s “Merge” last year. []
  65. Allen was wrong in part because according to her acknowledgements she seems to rely on Stephen Diehl for technical assistance. Here is a my book review on Diehl’s book, the most inaccurate blockchain book I have ever read. []
  66. I sent an email to Hilary Allen on February 20, 2022 that included a number of comments in her draft, it does not appear that she incorporated any of the suggestions including the correction to the false claims about new tokens being used as collateral for loans. []
  67. Over the past 15 years it acquired Lehman Brothers, Washington Mutual, and WePay. The former two during the duress of the financial crisis. J.P. Morgan is also a partial owner in Maxex, a mortgage clearinghouse; payments consortium “The Clearing House”; Cboe Clear (in Europe); and other infrastructure that might meet the criteria of “conflicts of interest” albeit at arms length. []
  68. Lack of by-lines: one of the reoccurring themes within the Protos world is to dunk on anonymous Tether promoters and shell companies, yet the publication allows anonymous contributions. This is a double-standard, having your cake and eating it too. []
  69. According to its Chapter 11 bankruptcy filing last year, Alameda had outstanding liabilities of $5.1 billion. But putting aside those loses, I could conjure several explanations. []
  70. One interesting nugget the public learned during the SBF criminal trial is that Caroline Ellison testified that she produced multiple different balance sheets, all of which were false. The one that was leaked to CoinDesk in 2022 was one of the rosier balance sheets, yet was itself fudged too. []
  71. See also Crypto adoption in America by J.P. Koning []
  72. This is not an endorsement of RWAs. At least one lawyer has argued: that the point of blockchain is to reduce trust assumptions/requirements and in almost all current cases, “tokenizing RWA” increases trust assumptions far above those even required for normal off-chain ownership. As a researcher this is why I have found it strange that some DeFi dapps parasitically rely on off-chain collateral (centrally issued pegged coins). Readers may be interested in this relevant thread from Andrea Tosato. []
  73. Zelle is operated by Early Warning who partnered with The Clearing House a couple of years ago. []
  74. On October 10, 2022 the USDD “marketcap” was about $795 million, a year later it was roughly $728 million. In contrast, according to ChainArgos, “Overall USD stablecoin market cap on ethereum down roughly $4 billion on ethereum and up more than $5 billion on Tron over the last 90 days.” []
  75. Some of the people the authors cited in this book did some grave stomping when FTX collapsed. But as we have seen in the criminal court case of SBF, apart from a handful of insiders no one actually knew what was going on. []
  76. The case has not gone to trial yet, but Saylor did lose a bid to quickly quash the suit. []
  77. Having spoken to Walch about the current batch of “skeptics” and “critics” – which she has been labeled in the past – it is pretty clear why neither of us amplify people who market themselves as such on social media. []
  78. Following the Hamas terrorist attacks, Stark dinged his credibility in a pair of sensationalistic tweets. He states that “crypto is not traceable” yet relies on ChainArgos which uses analytics to link addresses. Contra Stark, in this case, something is indeed traceable. Two chain analytics companies wrote rebuttals to this specific sensationalism: Chainalysis and Elliptic. Also, the authors of The Wall Street Journal article Stark cites mistakenly counted an entire exchanges’ trading volume (~$82 million) for a terrorist group’s address. Even the U.S. Deputy Treasury Secretary Wally Adeyemo weighed in on the topic. []
  79. One example of the “Horseshoe theory” in practice — the observation that some Bitcoin maximalists and anti-coiners both use an anti-empirical, a priori cudgel — is to look at say, Stephan Livera’s list of guests. At one point the running joke was that his dozen repeat guests each had podcasts whereby the only invited one another, because that was the size of their maximalist clique. In some ways we see that form of insular “in-group” dynamic in this book wherein the majority of “critics” or “skeptics” are the ones who pass one another’s purity tests. []
  80. In Number Go Up, Zeke Faux spoke with several hedge funds that wanted to short USDT. On p. 92 he writes: “I’m betting a shit-ton of money on them being a crook,” Fraser Perring, co-founder of Viceroy Research, told me. “Worst case is, I can’t lose hardly anything. I’m already rich, but I’m going to be fucking rich when Tether collapses.” []
  81. Perpetuals has become a catch-all term for a category of futures. These products often have higher daily trading volume that spot trading on centralized exchanges. Cam Harvey put together a quick primer on the topic. The original idea dates back three decades, from a paper by Robert Shiller. []
  82. As I mentioned at the time: For instance, on August 17, 2016, Bitfinex announced that they had hired Ledger Labs who, “is undertaking an analysis of our systems to determine exactly how the security breach occurred and to make our system’s design better going forward.” According to one post, Michael Perklin was the Head of Security and Investigative Services at Ledger Labs and part of the team leading this investigation. However in January 2017 a press release announced that Perklin was joining ShapeShift as the Chief Information Security Officer; his profile no longer exists at Ledger Labs. 18 Thus the question, what happened to the promise of a public audit? []
  83. The authors point out that during highly volatile periods, some CEXs suffer delays and/or shutdown entirely. They highlight a couple of possible reasons, including exchange operators being up to no good, which historically is a real possibility. To be even handed, even mature exchanges in traditional finance have (partial) shutdowns. For instance, in the process of writing this review the London Stock Exchange had a major technical incident which impacted (trading delays) small cap stocks for around 80 minutes. []
  84. Will certain crypto reporters from The Financial Times be held to the same standard they often criticize coin reporters of not reaching? []
  85. Coincidentally, during the process of writing this review, Phillips published a new paper directly related to the “securities” issue the authors referred to: Crypto Skeptics’ Supreme Risk. []
  86. Another missed opportunity was a discussion around privacy and confidentiality. For instance, the Zcash Foundation had its implementation of a threshold signature system reviewed by security professionals. Throwing the baby with the bath water, as this books authors frequently do, seems short-sighted. And this germane topic is not just relevant in the blockchain world either. For instance, Plaid normalized man-in-the-middle attacks. Will Akoyab continue this MITM normalization process? []
  87. A low-hanging point they could have made with proof-of-work mining: the block rewards are often value leaking from the ecosystem, to the benefit of state-owned energy grids and semiconductor companies. []
  88. Speaking of PayPal: is PYUSD just a marketing stunt? Which of the two different PayPal dollars is safer than the other? Will the frequency of the audit of the assets backing their other PayPal dollar be increased? []
  89. See also: Texans versus bitcoin: Jackie Sawicky and the Texas Coalition Against Cryptomining []
  90. For instance, while both books discuss Tether at length, Faux reached out to and received direct quotes from: Phil Potter (former CSO of Bitfinex) and from J.R. Willet (who created Mastercoin which is the infrastructure the USDT used on Bitcoin). Faux even corresponded with Arthur Budovsky, the creator of e-gold, who wrote back from prison. Did McKenzie and Silverman attempt to speak with these sources? []

Not all algorithmic stabilization mechanisms are the same

We (the ‘royal we’) have previously discussed various flavors of pegged coins, “stablecoins,” as well as CBDC proposals. This short, non-comprehensive post will look into the rise and rapid fall of the Luna and UST, two cryptocurrencies native to the Terra blockchain.1

What are the separate categories that the “stablecoin” idea can be bucketed into?

Figure 1 Source: Robert Sams based on the model by Klages-Mundt et al.

Above is a helpful taxonomy created by Klages-Mundt et al. and adapted by Robert Sams.2 One of the commonalities among all of these efforts above is that they are intended to administer an elastic money supply (as opposed to fixed, deterministic, or inelastic supplies used in many cryptocurrencies such as bitcoin).

Most analysis on this topic lacks the important nuances separating custodial and non-custodial “stablecoins” as well as those that depend on exogenous collateral versus endogenous collateral.

We are not going to dive into each one of the projects above. Furthermore, the usage of a name or logo is not an endorsement of a particular company or project.

So what happened to Luna and the UST this past week?

To answer that we need to quickly explain what the Terra blockchain is and how and why there are more than one layer 1 token such as Luna, UST, KRT (Korean Won) and SDT (an SDR token). 3

Brief history

Launched just over two years ago – in April 2019 – the Terra blockchain incorporated elements of the “Seigniorage Shares” idea with a couple of twists. Whereas several other projects attempted to collateralize (back stop) a single stabilized asset through a mint/burn mechanism, Terra enabled arbitrageurs to burn Luna (the volatile, staking token) and mint one of several different pegged coins, the most prominent of which is UST. UST was marketed as being stable relative to the USD. That is to say, through an automated on-chain program, a trader could burn $1 worth of Luna (at Luna’s prevailing market price) and receive 1 unit of UST (irrespective of the prevailing market price of UST), and vice versa: a trader could exchange 1 unit of UST and receive $1 worth of Luna.4 In theory.

You might be asking yourself, what guarantees that traders will be able to redeem $1 of either at any point in time? Terraform Labs (TFL) is the main developer behind the the Terra blockchain. One of the ways TFL attempted to architect guaranteed redemption and simultaneously mitigate a “death spiral” (an existential crisis that multiple “algo stablecoins” have crashed into), was by capping the daily minting of UST.5 The exact amount has changed over time but the goal was to help throttle the unbounded risk of an oversupply of UST (or some other pegged coin).

Why is this important?

Because as mentioned above: UST (and the other pegged coins that can be minted) were explicitly uncollateralized — although there has been an implicit acknowledgement that the aggregate UST (and other minted currencies) needs to remain below the marketcap of Luna which is the key conduit for redemptions. An imbalance, or “flippening,” could (and did) result in a crisis of confidence and collapse.

Figure 2 Source: Coinmarketcap

The chart (above) shows the aggregate market caps of both UST and Luna over the past 12 months. At their height last month, they together represented almost $60 billion in (paper) value. Today that has dropped to just over $1 billion.6

Why did things go wrong?

Before we answer that, let us look at when “the flippening” occurred.

The chart (above) shows the aggregate UST marketcap relative to Luna’s marketcap over the course of a single day. At around 1am SGT on May 10th, UST’s marketcap overtook Luna for good.

What is another way to visualize this?

The chart (above) shows the same aggregates but over the course of the past 6 weeks.

What does this mean? Due to the “macro” bear market in cryptocurrencies (the aggregate coin market is more than 50% off its all-time high from last year), Luna’s market cap saw a rapid decline that quickly became a vicious cycle due to the Why.

While there are a bunch of mostly cliché conspiracy theories as to which traders took advantage of the knowledge and conditions to short Luna (and UST), the conditions that led to UST’s rapid ascent (relative to Luna) seen in Figure 2, are pretty pedestrian.

What was the key reason for this ascent starting in November? The popular Anchor dapp on the Terra blockchain. What is Anchor?

Launched in March 2021, Anchor is an all-in-one asset management dapp that allowed traders to deposit their Luna as collateral and borrow UST against it. Often traders would go to an exchange and convert the UST into Luna, depositing the Luna into Anchor and lever up several more times. Its ease of use led to rapid growth, with total-value-locked (TVL) growing from zero to $6 billion within six months. The loan-to-value (LTV) ratio shifted over time but was northward of 70% when UST overtook Luna this past week.

Why did TVL grow so fast on Anchor?

The main reason was the dapp subsidized both lenders and borrowers through the emission of a governance token called ANC. For over 6 months, Anchor marketed itself as being able to provide 19.5% APY on all UST deposits via a blended combination of Luna staking emission and reoccurring ANC airdrops.7 Both sophisticated and unsophisticated investors, believing that $1 UST was redeemable at par with $1 USD, deposited large quantities of $UST (which others could then borrow as well). Anecdotally we have heard of startups at incubators and seasoned fintechs in emerging markets offering retail users access to this high yield product. The yield was unsustainable and developers knew it so various interest groups (including several high profile investors) proposed ways to reduce the ANC yield each month depending on economic indicators.

But by the time the downward adjustment was implemented it was too late. This relatively high yield had turned UST into a “hodl asset,” a “store of value” — something that the uncollateralized system was not properly designed to absorb.8

Prior to the collapse of Luna and UST, the development teams behind Terra and Anchor recognized this shortcoming and this past February announced the Luna Foundation Guard (LFG) and organization that would accumulate exogenous collateral to defend the $1 USD peg.

Recall that at the very top in Figure 1, Terra was categorized as using endogenous collateral, that is capital native to the protocol itself (e.g., Luna, UST). As part of the initial LFG announcement, the organization aspired to accumulate large quantities of exogenous coins starting with bitcoin and later others (such as AVAX, and even both USDC and USDT). At its height, LFG’s reserves tallied over $3.5 billion and as of this writing it has shrunk to around $80 million (sans some squirrelly BTC).

Anchor aweigh

Even without Anchor the fundamental problem is that the underlying collateral is volatile, so what is over-collateralized can become under-collateralized very quickly (whether it is endogenous or exogenous).9

Those who argue that the solution for decentralized stablecoins is to be “fully backed” are still kind of missing the point. If these protocols are all using the same 3-5 major coins as collateral, you can get the same ‘death spiral’ scenario materializing if the stablecoin supply grows large vis-à-vis the collateral marketcap. After all, even LFG’s liquidation of $1.6 billion BTC moved the largest coin cap.

So who is the buyer-of-last resort? If it is actually decentralized, it can only be the parties who can liquidate or redeem the collateral. CDP systems like Maker have the incentives for this behavior, but suffer from the coin supply side being driven by lending and no mechanism to equilibrate that supply to the demand side (the mechanism is the stability fee and savings rate, but that is set by governance, not the market)

The root problem for UST and Luna, (as Kevin Zhou, Matt Levine, and others have mentioned), was that neither had any source of value independent of the other. If the market decided to sell both, there was nothing to give you confidence that they would recover. UST was built on Luna and for the past 6 months Luna was built on essentially Anchor yield savings. Even a large “stabilization fund” – with a transparent and automated mechanism for how it would be deployed – would not prevent the Luna/UST market cap from growing to dwarf the LFG backstop, thus a sequence like this past week was always a risk.

We could spend pages describing alternate plans and paths the development teams, users, traders, and other interest groups could have taken to stymie the collapse. Instead we wanted to highlight one final chart that we found interesting.

Divergence

The chart (above) shows the intraday prices each day over the course of a week between Luna (in dark pink) and bLuna (in blue).

What is bLuna? bLuna is a liquid staking mechanism managed by Lido in a partnership with Anchor.10 Liquid staking is actually an interesting concept. Most readers are probably vaguely familiar with staking on a proof-of-stake network: users deposit their coins to an address on-chain and receive some form of remuneration (emission) for helping to secure the network (and process transactions, if they are a validator).

But the coins used in staking are effectively frozen and cannot be easily used elsewhere as collateral. Enter liquid staking. As the name suggests, liquid staking is a concept that has been implemented in two different ways: at the dapp layer (via Lido, Marinade, and a few others) or at the native L1 layer (Osmosis in the Cosmos ecosystem is about to be the first to do so).

Liquid staking is neat because it allows all of the locked up (“frozen”) capital to be used as collateral for lending. An imperfect example: Bob purchases $200,000 of Apple stock. He wants to buy a new home and instead of selling the stock he finds a bank willing to use his Apple stock as collateral for the down payment on the house. Similarly, liquid staking is not rehypothecation as no new asset is created.11

The reason a lot of brain cycles have been spent on creating liquid staking dapps (like Lido) is that the vast majority (>95%) of all staked assets on proof-of-stake networks is illiquid. If they can become liquid that would enable more capital to be used for endogenous lending — instead of having to rely on exogenous capital like wrapped assets (WETH, WBTC) or real world assets (USDC, USDT).

In theory, when an asset transforms from a staked asset into a liquid staked asset, the market prices of the two should be very similar. In some cases, such as stETH (ether deposited in Lido on Ethereum) or mSOL (sol deposited in Marinade on Solana), the liquid asset accrues the emission reward therefore becoming slightly more valuable over time (in proportion to the emission rate).

In the case above, bLuna and Luna were tightly coupled but clearly broke down between May 9th-11th due to the massive selling pressure and unstaking that took place (more than 95% of all Luna has been unstaked down considerably over the past month). This brings us to the final section.

Proposed category

Surprise! I have a couple ideas on how to evolve the “algo stabilization” world, including adding a (possible) new category to the four incumbents above: a demurrage-based settlement asset.

But first, let’s take a step back and ask the question what amount of UST could Luna have absorbed?

Even the most hardened maximalist or anti-coiner would concede that a single solitary 1 UST could probably be absorbed by Luna’s market cap.

So where is the limit? Where do the wheels fall off? When do things become unwieldy?

It was not the UST borrow side that was a priori the fundamental culprit. Amplifying the problem was goosing the UST demand side with 19.5% “risk free” returns on Anchor. For instance, if the arbitrage mechanism only allowed the creation of UST (or other pegged assets) based on a small single digit percentage of Luna’s marketcap, it is likely this collapse might not have happened in such a dramatic fashion.

Yet as mentioned above, this approach alone still would not have staved off simultaneous sell-offs of both UST and Luna and/or hyperlunaflation.

Future developers looking to enter this arena could construct an asset with a stabilized unit-of-account that maintains a diminutive aggregate relative to the staked asset being burned. E.g., depending on the use case, an aggregate the size of $100,000 could conceivably power a small on-chain economy much like in traditional markets rely on a high velocity of money to grease the economy (where money is circulates among participants like a hot potato).12

That is to say, a high velocity stabilized unit-of-account, one that is used as a medium-of-exchange and not as a store-of-value or hodl asset, probably has a lot more longevity so as long as its creation (or borrowing) is not heavily subsidized. Sprinkle in some demurrage – or negative interest rates – to further disincentivize hodling and focus on a handful of uses (n.b. “hodling” is not using).1314

Final remarks

It is pretty easy to dance on the grave of another dead / dying cryptocurrency, there have been a few dozen marathon’s worth of victory laps on social media this past week. Despite autopsies and red flags, it is likely that some folks will attempt to emulate the heavily subsidized borrowing model too.

Apart from designing a purposefully limited high velocity, stabilized unit-of-account, what can non-developers do?

Arguably, the most accurate commentator on this topic is a friend, Kevin Zhou (founder of Galois Capital), who publicly predicted what would occur months ago. But unlike the maximalists and anti-coiners who stridently label everything a scam and a fraud, Zhou actually modeled out several scenarios in detail. Give him a follow.

Future analysis could look into the on-chain contagion such as dapps that were impacted including Mirror protocol (did the yield at Anchor cannibalize the other use cases by acting as a liquidity gravity well?). As of this writing it is unclear what direction a “LunaV2” will take but worth pointing out that key stake holders in the ecosystem agreed to shut down the network twice and switched to PoA.

Endnotes

  1. There are oodles of news articles exploring how the “death spiral” took place, this is not really one of them. []
  2. In 2015 Sams created the USC consortium (which has evolved into Fnality) as well as proposed the original “Seiniorage Shares” concept in 2014. []
  3. Note: according to the Terra Token Cash Flow chart, Terra was actually generating more in KRW fees (primarily via Chai) than it was earning in UST fees. The KRT ecosystem had more velocity: KRT turning over ~500 per month versus UST at a mere 1.5 times with the caveat that the KRT ecosystem is very small. []
  4. The actual arbitrage opportunity would be if UST is trading for $1.10, a trader could exchange $1 of Luna for 1 UST, therein arbing a profit while increase UST supply and bring price down. Conversely, if UST is $.90, a trader could exchange 1 UST for $1 of Luna. []
  5. There are some similarities with the collapse of Titan / Iron bank last year, although part of that involved a discrepancy with the oracle feed. []
  6. A simple way to observe the troubling trend early on was the UST / Luna marketcap ratio (based on circulating supply). Below are specific numbers that appeared in a chatroom I was in:

    April 17 7:30pm EST — 63%
    April 30 11:30am EST — 66%
    May 7 5:00pm EST — 78%
    May 7 6:30pm EST — 81%
    May 8 9:00am EST — 90%
    May 9 1pm EST — 95%
    May 9 3pm EST — 113%
    May 9 11pm EST –125%
    May 10 7:30am EST –149%
    May 10 3:45pm EST– 166%
    May 10 5:30pm EST — 207%
    May 10 6pm EST — 211%
    May 11 5:30am EST — 291%

    In April, the ratio flirted with and fell below the 2/3rd mark. But due to the persistent bear market coupled by sell side pressure of both UST and Luna, by the morning of May 10th, ‘hyper hyperinflation’ was well underway with a massive expansion of Luna’s total supply. []

  7. As mentioned in the bLuna section: users can mint a bAsset called bLuna by depositing Luna into Anchor. Staked funds are effectively pooled together by a white list of validators (users collectively share emission rewards as well as slashing events). These staked funds are used as collateral for borrowers who are subsidized through what is now a money-market. Thus there are three different tokens active in the dapp and the “19.5%” headline figure largely consists of a recurring airdrop of the ANC governance token.  E.g., if Bob deposited bLuna as collateral, he is paid out in ANC (and UST fees) in lieu of his regular staking rewards (or at least pre-crisis that was the case).  And borrowers were subsidized in the form of ANC as well.  Those who deposited UST (not Luna) received 19.5% APY up until this month (where it dropped to 18%).  This came from ANC rewards as well as a reserve fund that TFL topped up on occasion. []
  8. Some analysts think that Anchor was not that big of a deal yet at a minimum it was important as a supply sink. It is not as important in terms of how the system got insolvent; that’s more because of the underlying mint / redeem mechanism. Or as Kevin Zhou concisely explained on Odd Lots: “And they [TFL] would also use that to keep basically topping up the Anchor protocol on their yield reserve. Because they were paying more interest to depositors than they were collecting from borrowers. And, you know, I think in the end stages of Luna in its final days, you could see that the, you know, the deposit amount was way, way higher than the borrowed amount. So, you know, they, they were bleeding.” […] “I think the system was way in the past, it was already insolvent, you know, it’s just that nobody realized because they had created such a strong supply sink in Anchor for this UST, you know, if that disappeared overnight, or even gradually, the entire system was insolvent.” []
  9. Several commentators have attempted to downplay Anchor as little more than a user acquisition strategy, stating “There was nothing wrong with Anchor, they just paid more yield than what was sustainable as a growth strategy. Tons of businesses operate at a loss as a customer acquisition growth strategy.” But we can clearly see, what works for tech platform business development does not apply generally. You probably cannot integrate a heavily subsidized GTM strategy into the incentive mechanisms of your dapp or L1 without contorting the financial system you are building. As one reviewer noted: “sustainable mechanism design needs to make pessimistic assumptions (where assumptions must be made) with respect to the behavior of actors. That means minimizing mercenary behavior (e.g., “I’ll come for the subsidy and immediately depart when the freebie is removed.”). []
  10. Lido is the largest and most popular liquid staking dapp for Ethereum, Terra, and several other blockchains. []
  11. A Luna holder can pledge their Luna as collateral and receive bLuna which pay out rewards in Terra-related tokens such as UST and ANC. []
  12. In this strawman example: a stabilized unit-of-account would not need expand much so as long as its usage is high velocity. “Velocity” is an economics term used to describe how quickly the average unit of money (e.g., dollars) turns over in a given year. If this stabilized unit-of-account is only used to top up loans or fulfill margin requirements, its aggregate size would be different than a synthetic store-of-value (which is what UST attempted to be). Thus $100,000 may be sufficient to help fulfill specific sets of on-chain uses (such as those around derivatives or prediction markets). []
  13. As a friend recently pointed out: “an ‘algo stablecoin’ like Luna / UST is a form of collateralized stablecoin just different from external collateral. In this case, TFL and others were making their own collateral and hoping it retains value. They seemed to believe the amount of Luna backing UST was relatively high enough it could absorb redemptions without going into a spiral because, say, people valued those Luna tokens independently from redemption sufficiently high enough due to its governance rights over the entire blockchain that had other important commercial applications. A small coin that had limited systemic impact could be used as some sort of collateral basis and potentially survive indefinitely.” []
  14. Ultimately all public chains need base layer transactional demand to survive post-block reward. “Hypothetically, an algorithmic stablecoin could survive in the long-run, if it were to have ongoing transaction-related demand (similar to a fiat currency)” from Global Markets Daily: The Economics of Algorithmic Stablecoins, by Rosenberg & Pandl at Goldman Sachs on May 16, 2022. []

Book review: The Truth Machine

A friend of mine sent me a copy of The Truth Machine which was published in February 2018.  Its co-authors are Michael Casey and Paul Vigna, who also previously co-wrote The Age of Cryptocurrency a few years ago.

I had a chance to read it and like my other reviews, underlined a number of passages that could be enhanced, modified, or even removed in future editions.

Overall: I do not recommend the first edition. For comparison, here are several other reviews.

This book seemed overly political with an Occupy Wall Street tone that doesn’t mesh well with what at times is a highly technical topic.

I think a fundamental challenge for anyone trying to write book-length content on this topic is that as of 2018, there really aren’t many measurable ‘success’ stories – aside from speculation and illicit activities – so you end up having to fill a couple hundred pages based on hypotheticals that you (as an author) probably don’t have the best optics in.

Also, I am a villain in the book. Can’t wait?  Scroll down to Chapter 6 and also view these specific tweets for what that means.

Note: all transcription errors are my own. See my other book reviews on this topic.

Preface

on p. x they write:

The second impact is the book you are reading. In The Age of Cryptocurrency, we focused primarily on a single application of Bitcoin’s core technology, on its potential to upend currency and payments.

Would encourage readers to peruse my previous review of their previous book. I don’t think they made the case, empirically, that Bitcoin will upend either currency or payments. Bitcoin itself will likely exist in some form or fashion, but “upending” seems like a stretch at this time.

On p. xi they write in a footnote:

We mostly avoid the construct of “blockchain” as a non-countable noun.

This is good. And they were consistent throughout the book too.

Introduction

They spent several pages discussing ways to use a blockchain for humanitarian purposes (and later have a whole chapter on it), however, it is unclear why a blockchain alone is the solution when there are likely other additional ways to help refugees.

For instance, on p. 3 they write:

Just as the blockchain-distributed ledger is used to assure bitcoin users that others aren’t “double-spending” their currency holdings – in other words, to prevent what would otherwise be rampant digital counterfeiting – the Azraq blockchain pilot ensures that people aren’t double-spending their food entitlements.

But why can’t these food entitlements be digitized and use something like SNAP cards? Sure you can technically use a blockchain to track this kind of thing, but you could also use existing on-premise or cloud solutions too, right?  Can centralized or non-blockchain solutions fundamentally not provide an adequate solution?

On p. 4 they write:

Under this new pilot, all that’s needed to institute a payment with a food merchant is a scan of a refugee’s iris. In effect, the eye becomes a kind of digital wallet, obviating the need for cash, vouchers, debit cards, or smartphones, which reduces the danger of theft (You may have some privacy concerns related to that iris scan – we’ll get to that below.) For the WFP, making these transfers digital results in millions of dollars in saved fees as they cut out middlemen such as money transmitter and the bankers that formerly processed the overall payments system.

Get used to the “bankers” comments because this book is filled with a dozen of them. Intermediaries such as MSBs and banks do take cuts, however they don’t really dive into the fee structure. This is important because lots of “cryptocurrency”-focused startups have tried to use cryptocurrencies to supposedly disrupt remittances and most basically failed because there are a lot of unseen costs that aren’t taken into account for.

Another unseen cost that this book really didn’t dive into was: the fee to miners that users must pay to get included into a block.  They mention it in passing but typically hand-waved it saying something like Lightning would lower those costs.  That’s not really a good line of reasoning at this stage in development, but we’ll look at it again later.

On p. 6 they write:

That’s an especially appealing idea for many underdeveloped countries as it would enable their economies to function more like those of developed countries – low-income homeowners could get mortgages, for example; street vendors could get insurance. It could give billions of people their first opening into the economic opportunities that the rest of us take for granted.

That sounds amazing, who wouldn’t want that?  Unfortunately this is a pretty superficial bit of speculation.  For example, how do street vendors get insurance just because of the invention of a blockchain?  That is never answered in the book.

On p. 7 they write:

The problem is that these fee-charging institutions, which act as gatekeepers, dictating who can and cannot engage in commercial interactions, add cost and friction to our economic activities.

Sure, this is true and there are efforts to reduce and remove this intermediation. The book also ignores that every cryptocurrency right now also charges some kind of fee to miners and/or stakers. And with nearly all coins, in order to obtain it, a user typically must buy it through a trusted third party (an exchange) who will also charge a markup fee… often simultaneously requiring you to go through some kind of KYC / AML process (or at least connect to a bank that does).

Thus if fee-charging gatekeepers are considered a problem in the traditional world, perhaps this can be modified in the next edition because these type of gatekeepers exist throughout the coin world too.

On p. 8 they list a bunch of use-cases, some of which they go into additional detail later in the book. But even then the details are pretty vague and superficial, recommend updating this in the next edition with more concrete examples.

On p. 9 they write:

Silicon Valley’s anti-establishment coders hadn’t reckoned with the challenge of trust and how society traditionally turns to centralized institutions to deal with that.

There may have been a time in which the majority of coders in the Bay area were “anti-establishment” but from the nearly 5 years of living out here, I don’t think that is necessarily the case across the board. Recommend providing a citation for that in the future.

On p. 10 they write:

R3 CEV, a New York-based technology developer, for one, raised $107 million from more than a hundred of the world’s biggest financial institutions and tech companies to develop a proprietary distributed ledger technology. Inspired by blockchains but eschewing that lable, R3’s Corda platform is built to comply with banks’ business and regulatory models while streamlining trillions of dollars in daily interbank securities transfers.

This whole paragraph should be updated (later in Chapter 6 as well):

  • The Series A funding included over 40 investors, not 100+.
  • The ‘community’ version of Corda is open sourced and available on github, so anyone can download, use, and modify it. There is also a Corda Enterprise version that requires a license and is proprietary.
  • While initially eschewing the term “blockchain,” Corda is now actively marketed as a “blockchain” and even uses the handle @cordablockchain on Twitter, on podcast advertisements, and in public presentations.1
  • I am unaware of any current publicly announced project that involves streamlining trillions of dollars in daily interbank securities transfers. Citation?

On p. 10 they briefly mention the Hyperledger Project.  Recommend tweaking it because of its own evolution over the years.

For example, here is my early contribution: what is the difference between Hyperledger and Hyperledger.

On p. 11 they write:

While it’s quite possible that many ICOs will fall afoul of securities regulations and that a bursting of this bubble will burn innocent investors, there’s something refreshingly democratic about this boom. Hordes of retail investors are entering into early stage investment rounds typically reserved for venture capitalists and other professional.

This paragraph aged horribly since the book was published in February.

All of the signs were there: we knew even last year that many, if not all, ICOs involved overpromising features and not disclosing much of anything to investors. As a result, virtually every week and month in 2018 we have learned just how much fraud and outright scams took place under the guise and pretext of the “democratization of fund raising.”

For instance, one study published this summer found that about 80% of the ICOs in 2017 were “identified scams.” Another study from EY found that about 1/3 of all ICOs in 2017 have lost “substantially all value” and most trade below their listing price.

Future versions of this book should remove this paragraph and also look into where all of that money went, especially since there wasn’t – arguably – a single cryptocurrency application with a real user base that arose from that funding method (yet).

On p. 11 they write:

Not to be outdone, Bitcoin, the grandaddy of the cryptocurrency world, has continued to reveal strengths — and this has been reflected in its price.

This is an asinine metric. How exactly does price reflect strength? They never really explain that yet repeat roughly the same type of explanation in other places in this book.

Interestingly, both bitcoin’s price and on-chain transaction volume have dramatically fallen since this book was first published. Does that mean that Bitcoin weakened somehow?

On p. 12 they write:

Such results give credence to crypto-asset analysts Chris Burniske and Jack Tatar’s description of bitcoin as “the most exciting alternative investment of the 21st century.”

Firstly, the Burniske and Tatar book was poorly written and wrong in many places: see my review

Secondly, bitcoin is a volatile investment that is arguably driven by a Keynesian beauty contest, not for the reasons that either book describes (e.g., not because of remittance activity).

On p. 12 they write:

The blockchain achieves this with a special algorithm embedded into a common piece of software run by all the computers in the network.

To be clear: neither PoW nor PoS are consensus protocols which is implied elsewhere on page 12.

On p. 12 they write:

Once new ledger entries are introduced, special cryptographic protections make it virtually impossible to go back and change them.

This is not really true. For coins like Bitcoin, it is proof-of-work that makes it resource intensive to do a block reorganization. Given enough hashrate, participants can and do fork the network. We have seen it occur many times this year alone. There is no cryptography in Bitcoin or Ethereum that prevents this reorg from happening because PoW is separate from block validation.2

On p. 13 they write:

Essentially, it should let people share more. And with the positive, multiplier effects that this kind of open sharing has on networks of economic activity, more engagement should in turn create more business opportunities.

These statement should be backed up with supporting evidence in the next edition because as it stands right now, this sounds more like a long-term goal or vision statement than something that currently exists today in the cryptocurrency world.

On p. 13 they mention “disintermediation” but throughout the book, many of the cryptocurrency-related companies they explore are new intermediaries. This is not a consistent narrative.

On p. 14 they write:

If I can trust another person’s claims – about their educational credentials, for example, or their assets, or their professional reputation – because they’ve been objectively verified by a decentralized system, then I can go into direct business with them.

This is a non sequitur. Garbage in, garbage out (GIGO) — in fact, the authors make that point later on in the book in Chapter 7.

On p. 15 they write:

Blockchains are a social technology, a new blueprint for how to govern communities, whether we’re talking about frightened refugees in a desolate Jordanian output or an interbank market in which the world’s biggest financial institutions exchange trillions of dollars daily.

This is vague and lacks nuance because there is no consensus on what a blockchain is today. Many different organizations and companies define it differently (see the Corda example above).

Either way, what does it mean to call a blockchain “social technology”? Databases are also being used by refugee camp organizers and financial infrastructure providers… are databases “social technology” too?

Chapter 1

On p. 17 they write:

Its blockchain promised a new way around processes that had become at best controlled by middlemen who insisted on taking their cut of every transaction, and at worst the cause of some man-made economic disasters.

This is true and problematic and unfortunately Bitcoin itself doesn’t solve that because it also has middlemen that take a cut of every transaction in the form of a fee to miners. Future editions should add more nuance such as the “moral hazard” of bailing out SIFIs and TBTF and separate that from payment processors… which technically speaking is what most cryptocurrencies strive to be (a network to pay unidentified participants).

On p. 18 they write:

Problems arise when communities view them with absolute faith, especially when the ledger is under control of self-interested actors who can manipulate them. This is what happened in 2008 when insufficient scrutiny of Lehman Brother’s and other’s actions left society exposed and contributed to the financial crisis.

This seems to be a bit revisionist history. This seems to conflate two separate things: the type of assets that Lehman owned and stated on its books… and the integrity of the ledgers themselves. Are the authors claiming that Lehman Brother’s ledgers were being maliciously modified and manipulated? If so, what citation do they have?

Also a couple pages ago, the authors wrote that blockchains were social technology… but we know that from Deadcoins.com that they can die and anything relying on them can be impacted.

Either way, in this chapter the authors don’t really explain how something Bitcoin itself would have prevented Lehman’s collapse. See also my new article on this topic.

On p. 19 they write:

A decentralized network of computers, one that no single entity controlled, would thus supplant the banks and other centralized ledger-keepers that Nakamoto identified as “trusted third parties.”

Fun fact: the word “ledger” does not appear in the Bitcoin white paper or other initial emails or posts by Nakamoto.

Secondly, perhaps an industry wide or commonly used blockchain of some kind does eventually displace and remove the role some banks have in maintaining certain ledgers, but their statement, as it is currently worded, seems a lot like of speculation (projection?).

We know this because throughout the book it is pretty clear they do not like banks, and that is fine, but future editions need to back up these types of opinions with evidence that banks are no longer maintaining a specific ledger because of a blockchain.

On p. 20 they write:

With Bitcoin’s network of independent computers verifying everything collectively, transactions could now be instituted peer to peer, that is, from person to person. That’s a big change from our convoluted credit and debit card payment systems, for example, which routes transactions through a long sequence of intermediaries – at least two banks, one or two payment processors, a card network manager (such as Visa or Mastercard), and a variety of other institutions, depending on where the transaction take place.

If we look back too 2009, this is factually correct of Bitcoin at a high level.3 The nuance that is missing is that today in 2018, the majority of bitcoin transactions route through a third party, some kind of intermediary like a deposit-taking exchange or custodial wallet.4 There are still folks who prefer to use Bitcoin as a P2P network, but according to Chainalysis, last year more than 80% of transactions went through a third party.5

On p. 20 they write:

Whereas you might think that money is being instantly transferred when you swipe your card at a clothing store, in reality the whole process takes several days for the funds to make all those hops and finally settle in the storeowner’s account, a delay that create risks and costs. With Bitcoin, the idea is that your transaction should take only ten to sixty minutes to fully clear (not withstanding some current capacity bottlenecks that Bitcoin developers are working tor resolve). You don’t have to rely on all those separate, trusted third parties to process it on your behalf.

This is mostly incorrect and there is also a false comparison.

In the first sentence they gloss over how credit card payment systems confirm and approve transactions in a matter of seconds.6 Instead they focus on settlement finality: when the actual cash is delivered to the merchant… which can take up to 30+ days depending on the system and jurisdiction.

The second half they glowingly say how much faster bitcoin is… but all they do is describe the “seen” activity with a cryptocurrency: the “six block” confirmations everyone is advised to wait before transferring coins again. This part does not mention that there is no settlement finality in Bitcoin, at most you get probabilistic finality (because there is always chance there may be a fork / reorg).

In addition, with cryptocurrencies like Bitcoin you are only transferring the coins. The cash leg on either side of the transaction still must transfer through the same intermediated system they describe above. We will discuss this further below when discussing remittances.

On p. 20 they write:

It does so in a way that makes it virtually impossible for anyone to change the historical record once it has been accepted.

For proof-of-work chains this is untrue in theory and empirically. In the next edition this should be modified to “resource intensive” or “economically expensive.”

On p. 20 they write:

The result is something remarkable: a record-keeping method that brings us to a commonly accepted version of the truth that’s more reliable than any truth we’ve ever seen. We’re calling the blockchain a Truth Machine, and its applications go far beyond just money.

It is not a “truth machine” because garbage in, garbage out.

In addition, while they do discuss some historical stone tablets, they don’t really provide a metric for how quantitatively more (or less) precise a blockchain is versus other methods of recording and witnessing information. Might be worth adding a comparison table in the next edition.

On p. 21 they write:

A lion of Wall Street, the firm was revealed to be little more than a debt-ravaged shell kept alive only by shady accounting – in other words, the bank was manipulating its ledgers. Sometimes, that manipulation involved moving debt off the books come reporting season. Other times, it involved assigning arbitrarily high values to “hard-to-value” assets – when the great selloff came, the shocking reality hit home: the assets had no value.

The crash of 2008 revealed most of what we know about Wall Street’s confidence game at that time. It entailed a vast manipulation of ledgers.

This was going well until that last sentence. Blockchains do not solve the garbage in, garbage out problem. If the CFO or accountant or book keeper or internal counsel puts numbers into blocks that do not accurately reflect or represent what the “real value” actually is, blockchains do not fix that. Bitcoin does not fix that.

Inappropriate oversight, rubber stamp valuations, inaccurate risk models… these are off-chain issues that afflicted Lehman and other banks. Note: they continue making this connection on pages 24, 28, and elsewhere but again, they do not detail how a blockchain of some kind would have explicitly prevented the collapse of Lehman other other investment banks.

See also: Systemically important cryptocurrency networks

On p. 22 they write:

The real problem was never really about liquidity, or a breakdown of the market. It was a failure of trust. When that trust was broken, the impact on society – including on our political culture – was devastating.

How about all of the above? Pinning it on just one thing seems a little dismissive of the multitude of other interconnecting problems / culprits.

On p. 22 they write:

By various measures, the U.S. economy has recovered – at the time of writing, unemployment was near record lows and the Dow Jones Industrial Average was at record highs. But those gains are not evenly distributed; wage growth at the top is six times what it is for those in the middle, and even more compared to those at the bottom.

If the goal of the authors is to rectify wealth inequalities then there are probably better comparisons than using cryptocurrencies.

Why? Because – while it is hard to full quantify, it appears that on cursory examination most (if not all) cryptocurrencies including Bitcoin have Gini coefficients that trends towards 1 (perfectly unequal).

On p. 23 they write about disinformation in the US and elsewhere.  And discuss how trust is a “vital social resource” and then mention hyperinflation in Venezuela. These are all worthy topics to discuss, but it is not really clear how any of these real or perceived problems are somehow solved because of a blockchain, especially when Venezuela is used as the example. The next edition should make this more clear.

On p. 29 they write:

On October 31, 2008, whil the world was drowning in the financial crisis, a little-noticed “white paper” was released by somebody using the pen name “Satoshi Nakamoto,” and describing something called “Bitcoin,” an electronic version of cash that didn’t need state backing. At the heart of Nakamoto’s electronic cash was a public ledger that could be viewed by anybody but was virtually impossible to alter.

One pedantic note: it wasn’t broadly marketed beyond a niche mailing list on purpose… a future edition might want to change ” a little-noticed” because it doesn’t seem like the goal by Nakamoto was to get Techcrunch or Slashdot to cover it (even though eventually they both did).

Also, it is not virtually impossible to alter.7 As shown by links above, proof-of-work networks can and do get forked which may include a block reorganization. There is nothing that technically prevents this from happening.

See also: Interview with Ray Dillinger

On p. 31 they write:

Szabo, Grigg, and others pioneered an approach with the potential to create a record of history that cannot be changed – a record that someone like Madoff, or Lehman’s bankers, could not have meddled with.

I still think that the authors are being a little too liberal with what a blockchain can do. What Madoff did and Lehman did were different from one another too.

Either way, a blockchain would not have prevented data – representing fraudulent claims – from being inserted into blocks. Theoretically a blockchain may have allowed auditors to detect tampering of blocks, but if the information in the blocks are “garbage” then it is kind of besides the point.

On p. 32 they write:

Consider that Bitcoin is now the most powerful computing network in the world, one whose combined “hashing” rate as of August 2017 enabled all its computers to collectively pore through 7 million trillion different number guesses per second.

[…]

Let the record show that period of time is 36,264 trillion trillion times longer than the current best-estimate age of the universe. Bitcoin’s cryptography is pretty secure.

This should be scrapped for several reasons.

The authors conflate the cryptography used by digital signatures with generating proofs-of-work.8 There are not the same thing. Digital signatures are considered “immutable” for the reasons they describe in the second part, not because of the hashes that are generated in the first.9

Another problem is that the activity in the first part — the hash generation process — is not an apples-to-apples comparison with other general computing efforts. Bitcoin mining is a narrowly specific activity and consequently ASICs have been built and deployed to generate these hashes. The single-use machines used to generate these hashes cannot even verify transactions or construct blocks. In contrast, CPUs and GPUs can process a much wider selection of general purpose applications… including serialize transactions and produce blocks.

For example: it would be like comparing a Falcon 9 rocket launch vehicle with a Toyota Prius. Sure they are nominally both “modes of transportation” but built for entirely different purposes and uses.

An additional point is that again, proof-of-work chains can and have been forked over the years. Bitcoin is not special or unique or impervious to forks either (here’s a history of the times Bitcoin has forked). And there are other ways to create forks, beyond the singular Maginot Line attack that the authors describe on this page.10

On p. 33 they write:

Whether the solution requires these extreme privacy measures or not, the broad model of a new ledger system that we laid out above – distributed, cryptographically secure, public yet private – may be just what’s needed to restore people’s confidence in society’s record-keeping systems. And to encourage people to re-engage in economic exchange and risk-taking.

This comes across as speculation and projecting. We will see later that the authors have a dim view of anything that is not a public blockchain. Why is this specific layout the best?

Either way, future versions should include a citation for how people’s confidence level increase because of the use of some kind of blockchain. At this time, I am unaware of any such survey.

On p. 34 they quote Tomicah Tilleman from the Global Blockchain Business Council, a lobbying organization:

Blockchain has the potential to push back against that erosion and it has the potential to create a new dynamic in which everyone can come to agree on a core set of facts but also ensure the privacy of facts that should not be in the public domain.

This seems like a non sequitur. How does a blockchain itself push back on anything directly? Just replace the word “blockchain” with “database” and see if it makes sense.

Furthermore, as we have empirically observed, there are fractures and special interest groups within each of these little coin ecosystems. Each has their own desired roadmap and in some cases, they cannot agree with one another about facts such as the impact larger block sizes may have on node operators.

On p. 35 they write:

If it can foster consensus in the way it has been shown to with Bitcon, it’s best understood as a Truth Machine.

This is a non sequitur. Just because Nakamoto consensus exists does not mean it that blockchains are machines of truth. They can replicate falsehoods if the blocks are filled with the incorrect information.

Chapter 2

On p. 38 they write:

Consider how Facebook’s secret algorithm choose the news to suit your ideological bent, creating echo chambers of like-minded angry or delighted readers who are ripe to consume and share dubious information that confirms their pre-existing political biases.

There are some really valid points in this first part of the chapter. As it relates to cryptocurrencies, a second edition should also include the astroturfing and censoring of alternative views that take place on cryptocurency-related subreddits which in turn prevent people from learning about alternative implementations.

We saw this front-and-center in 2015 with the block size debate in which moderators of /r/bitcoin (specifically, theymos and BashCo) banned any discussion from one camp, those that wanted to discuss ways of increasing the block size via a hardfork (e.g., Bitcoin XT, Bitcoin Classic).

This wasn’t the first or last time that cryptocurrency-related topics on social media have resulted in the creation of echo chambers.

On p. 43 they write:

The potential power of this concept starts with the example of Bitcoin. Even though that particular blockchain may not provide the ultimate solution in this use case, it’s worth recalling that without any of the classic, centrally deployed cybersecurity tools such as firewalls, and with a tempting “bounty” of more than $160 billion in market cap value at the time we went to print, Bitcoin’s core ledger has thus far proven to be unhackable.

There is a lot to unpack here but I think a future edition should explain in more detail how Bitcoin is a type of cybersecurity tool. Do they mean that because the information is replicated to thousands of nodes around the world, it is more resilient or redundant?

Either way, saying that “Bitcoin’s core ledger” is “unhackable” is a trope that should be removed from the next edition as well.

Why? Because when speaking about BTC or BCH or any variant of Bitcoin, there is only one “ledger” per chain… the word ‘core’ is superfluous. And as described above, the word “unhackable” should be changed to “resource intensive to fork” or something along those lines. “Unhackable” is anarchronistic because what the authors are probably trying to describe is malicious network partitions… and not something from a ’90s film like The Net.

Continuing on p. 43 they write:

Based on the ledger’s own standards for integrity, Bitcoin’s nine-year experience of survival provides pretty solid proof of the resiliency of its core mechanism for providing decentralized trust between users. It suggest that one of the most important non-currency applications of Bitcoin’s blockchain could be security itself.

This last sentence makes no sense and they do not expand on it in the book. What is the security they are talking about? And how is that particularly helpful to “non-currency applications of Bitcoin’s blockchain”? Do they mean piggy-backing like colored coins try to do?

On p. 44 they write:

The public ledger contains no identifying information about the system’s users. Even more important, no one owns or controls that ledger.

Well technically speaking, miners via mining pools control the chain. They can and do upgrade / downgrade / sidegrade the software. And they can (and do) fork and reorg a chain. Is that defined as “control”? Unclear but we’ll probably see some court cases if real large loses take place due to forks.

On p. 44 they write:

As such there is no central vector of attack.

In theory, yes. In practice though, many chains are highly centralized: both in terms of block creation and in terms of development. Thus in theory it is possible to compromise and successfully “attack” a blockchain under the right circumstances. Could be worth rephrasing this in the next edition.

On p. 44 they write:

As we’ll discuss further in the book, there are varying degrees of security in different blockchain designs, including those known as “private” or “permissioned” blockchains, which rely on central authorities to approve participants. In contrast, Bitcoin is based on a decentralized model that eschews approvals and instead banks on the participants caring enough about their money in the system to protect it.

This is a bit of a strawman because there are different types of “permissioned” blockchains designed for different purposes… they’re not all alike. In general, the main commonality is that the validators are known via a legal identity. How these networks are setup or run does not necessarily need to rely on a centralized authority, that would be a single point of trust (and failure). But we’ll discuss this later below.

On p. 44 they write:

On stage at the time, Adam Ludwin, the CEO of blockchain / distributed ledger services company Chain Inc., took advantage of the results to call out Wall Street firms for failing to see how this technology offers a different paradigm. Ludwin, whose clients include household names like Visa and Nasdaq, said he could understand why people saw a continued market for cybersecurity services, since his audience was full of people paid to worry about data breaches constantly. But their answers suggested they didn’t understand that the blockchain offered a solution. Unlike other system-design software, for which cybersecurity is an add-on, this technology “incorporates security by design,” he said.

It is unclear from the comments above exactly how a blockchain solves problems in the world of cybersecurity. Maybe it does. If so, then it should be explored in more detail than what is provided in this area of the book.

As an aside, I’m not sure how credible Ludwin’s comments on this matter are because of the multiple pivots that his companies have done over the past five years.11

On p. 45 they write:

A more radical solution is to embrace open, “permissionless” blockchains like Bitcoin and Ethereum, where there’s no central authority keeping track of who’s using the network.

This is very much a prescriptive pitch and not a descriptive analysis. Recommend changing some of the language in the next edition. Also, they should define what “open” means because there basically every mining pool doxxes themselves.

Furthermore, some exchanges that attempt to enforce their terms-of-service around KYC / AML / CTF do try to keep track of who is doing what on the network via tools from Chainalysis, Blockseer, Elliptic and others. Violating the ToS may result in account closures. Thus, ironically, the largest “permissioned” platforms are actually those on the edges of all cryptocurrencies.

See: What is Permissioned-on-Permissionless

On p. 45 they write:

It’s not about building a firewall up around a centralized pool of valuable data controlled by a trusted third party; rather the focus is on pushing control over information out to the edges of the network, to the people themselves, and on limiting the amount of identifying information that’s communicated publicly. Importantly, it’s also about making it prohibitively expensive for someone to try to steal valuable information.

This sounds all well and good, definitely noble goals. However in the cryptocurrency world, many exchanges and custodial wallets have been compromised and the victims have had very little recourse. Despite the fact that everyone is continually told not to store their private keys (coins) with an intermediary, Chainalysis found that in 2017 more than 80% of all transactions involved a third-party service.

On p. 45 they write:

Bitcoin’s core ledger has never been successfully attacked.

They should define what they mean by “attacked” because it has forked a number of times in its history. And a huge civil war took place resulting in multiple groups waging off-chain social media campaigns to promote their positions, resulting in one discrete group divorcing and another discrete group trying to prevent them from divorcing. Since there is only de facto and not de jure governance, who attacked who? Who were the victims?

On p. 45 they write:

Now, it will undoubtedly be a major challenge to get the institutions that until now have been entrusted with securing our data systems to let go and defer security to some decentralized network in which there is no identifiable authority to sue if something goes wrong. But doing so might just be the most important step they can take to improve data security. It will require them to think about security not as a function of superior encryption and other external protections, but in terms of economics, of making attacks so expensive that they’re not worth the effort.

This seems a bit repetitive with the previous couple of page, recommend slimming this down in the next edition. Also, there are several class action lawsuits underway (e.g., Ripple, Tezos) which do in fact attempt to identify specific individuals and corporations as being “authorities.” The Nano lawsuit also attempted to sue “core developers.”

On p. 46 they write:

A hacker could go after each device, try to steal the private key that’s used to initiate transactions on the decentralized network, and, if they’re lucky, get away with a few thousand dollars in bitcoin. But it’s far less lucrative and far more time-consuming than going after the rich target of a central server.

The ironic part of this is that generally speaking, the private keys controlling millions of bitcoins are being housed in trusted third parties / intermediaries right now. In some cases these are stored on a centralized server. In other cases, the cold wallet managed by hosting providers such as Xapo (which is rumored to secure $10 billion of bitcoin) does geographically split the keys apart into bunkers. Yet at some point those handling the mutli-sig do come together in order to move the coins to a hot wallet.12

On p. 47 they write:

It seems clear to us that the digital economy would benefit greatly from embracing the distributed trust architecture allowed by blockchains – whether it’s simply the data backups that a distributed system offers, or the more radical of an open system that’s protected by a high cost-to-payout ratio.

What does this mean? Are they saying to add proof-of-work to all types of distributed systems? It is only useful in the Bitcoin context in order to make it expensive to Sybil attack the network… because participants were originally unknown. Does that same problem exist in other environments that they are thinking of? More clarity should be added in the next edition.

On p. 48 they write:

The idea, one that’s also being pursued in different forms by startups such as Gem of Los Angeles and Blockchain Health of San Francisco, is that the patient has control over who sees their records.

This is one of the difficulties in writing a long-form book on this general topic right now: projects and companies frequently pivot.

For instance, a couple months after the book was published, Gem announced its “Universal Token Wallet,” a product which currently dominates its front page and social media accounts of the company. There have been no health care-related announcements from the company in over a year.

Similarly, Blockchain Health no longer exists. Its CEO left and joined Chia as a co-founder and the COO has joined the Neighborly team.

On p. 50 they write:

It was a jury-rigged solution that meant that the banking system, the centralized ledger-keeping solution with which society had solved the double-spend problem for five hundred years, would be awkwardly bolted onto the ostensibly decentralized Internet as its core trust infrastructure.

I think there are some legitimate complaints to made towards how online commerce evolved and currently exists but this seems a tad petty. As backwards as financial institutions are (rightly and wrongly) portrayed, it’s not like their decision makers sat around in the early ’90s trying to figure out how to make integrating the Web an awkward process.

On p. 50 they write:

Under this model, the banks charged merchants an interchange fee of around 3 percent to cover their anti-fraud costs, adding a hidden tax to the digital economy we all pay in the form of higher prices.

Again, like their statement above: there are some very legitimate gripes to be had regarding the existing oligopolistic payment systems, but this specific gripe is kind of petty.

Fraud exists and as a result someone has to pay for it. In the cryptocurrency world, there is no recourse because it is caveat emptor. In the world of courts and legal recourse, fees are levied to cover customer service including fraud and insurance. It may be possible to build a payment system in which there is legal recourse and simultaneously no oligopolistic rent seeking but this is not explored in the book. Also, for some reason the fee to miners is not brought up in this section, yet it is a real fee users must pay… yet they do not receive customer service as part of it.

Lastly, the Federal Reserve (and other central banks) monitor historical interchange fees. Not all users are charged the ~3% as mentioned in the book.

For instance (see below): Average Debit Card Interchange Fee by Payment Card Network

Source: Statista

On pages 52 and 53 they write uncritically about Marc Andresseen and VCs who have invested in Bitcoin and cryptocurrencies.

a16z, the venture firm co-founded by Andresseen, arguably has a few areas that may be conflicts-of-interest with the various coin-related projects it has invested in and/or promoted the past several years (e.g., investing in coins which are listed on an exchange they also are an investor and board member of such as 0x). Those ties are not scrutinized in a chapter that attempts to create a black and white narrative: that the legacy players are centralized rent-seekers and the VCs are not. When we know empirically that some VCs, including a16z, have invested in what they believe will become monopolies of some kind.

On page 54 and 55 they write about “Code is not law,” a topic that I have likewise publicly presented on.

Specifically they state:

One risk is that regulators, confused by all these outside-the-box concepts, will overreact to some bad news – potentially triggered by large-scale investors losses if and when the ICO bubble bursts and exposes a host of scams. The fear is that a new set of draconian catchall measures would suck the life out of innovation in this space or drive it offshore or underground. To be sure, institutions like the Washington-based Coin Center and the Digital Chamber of Commerce are doing their best to keep officials aware of the importance of keeping their respective jurisdictions competitive in what is now a global race to lead the world in financial technology.

This is word for word what coin lobbyists have been pitching to policy makers around the world for years. Both Coin Center and Digital Chamber of Commerce lobby on behalf of their sponsors and donors to prevent certain oversight on the cryptocurrency market.13 An entire book could probably be written about how specific people within coin lobbying organizations have attempted to white wash and spin the narrative around illicit usage, using carefully worded talking points. And they have been effective because these authors do not question the motivations and agenda these special interest groups have.

Either way, Bitcoin and many other cryptocurrencies were born in the “underground” and even “offshore.” It is unclear what the authors are trying to excuse because if anything, regulators and law enforcement have arguably been very light handed in the US and most regions abroad.

If anything, once a foreign registered ICO or coin is created, often the parent company and/or foundation opens an office to recruit developers in San Francisco, New York, and other US cities. I know this because all the multiple “blockchain” events I have attended overseas the past two years in which organizers explain their strategy. The next edition of this book could explore this phenomenon.

On p. 57 they write:

By The DAO founders’ own terms, the attacker had done nothing wrong, in other words. He or she had simply exploited one of its features.

Excellent point that should be explored in further detail in the next edition. For instance, in Bitcoin there have been multiple CVEs which if exploited (at least one was) could have resulted in changes in the money supply. Is that a feature or a bug?

And the most recent one, found in pre-0.16.3, was partially downplayed and hidden to prevent others from knowing the extent of potential damage that could have been done.

On p. 59 they write:

The dependence on a trusted middleman, some cryptocurrency purists would argue, overly compromises a blockchain’s security function, rending it unreliable. For that reason, some of them say, a blockchain is inappropriate for many non-currency applications. We, however, view it as a trade-off and believe there’s still plenty of value in recording ownership rights and transfers to digitally represented real-world assets in blockchains.

I think this whole section should be reworded to describe:

  1. what types of blockchains they had in mind?
  2. how the legal hooks into certain blockchains behave versus anarchic chains?
  3. being more precise with the term purist… do they mean maximalists or do they mean someone who points out that most proposed use-cases are chainwashing?

On pages 59 and 60 they write:

Permissioned blockchains – those which require some authorized entity to approve the computers that validate the blockchain – by definition more prone to gatekeeping controls, and therefore to the emergence monopoly or oligopoly powers, than the persmissionless ideal that Bitcoin represents. (We say “ideal” because, as we’ll discuss in the next chapter, there are also concerns that aspects of Bitcoin’s software program have encouraged an unwelcome concentration of ownership – flaws that developers are working to overcome.)

It would be beneficial in the next edition to at least walk through two different “permissioned blockchains” so the reader can get an idea of how validators become validators in these chains. By not including them, each platform is painted in the same light.

And because they are still comparing it with Bitcoin (which was designed for a completely different type of use-case than ‘permissioned chains’ are), keep in mind that the way mining (block making) is done in 2018 is very different than when it was first proposed in the 2008 paper. Back then, mining included a machine that did two things: validated blocks and also generate proofs-of-work. Today, those two functions are completely separate and because of the relatively fierce competition at generating hashes, there are real exit and entry costs to the market.

In many cases, this means that both the mining pool operators and hash generators end up connecting their real world government-issued identities with their on-chain activity (e.g., block validation). It may be a stretch to say that there is an outright monopoly in mining today, but there is a definite trend towards oligopoly in manufacturing, block producing, and hash generation the past several years. This is not explored beyond a superficial level in the book.

On p. 60 they write:

Until law changes, banks would face insurmountable legal and regulatory opposition, for example, to using a system like Bitcoin that relies on an algorithm randomly assigning responsibility at different stages of the bookkeeping process to different, unidentifiable computers around the world.

This is another asinine comment because they don’t explicitly say which laws they would like changed. The authors make it sound like the PFMIs are holding the world back when the opposite is completely true. These principals and best practices arose over time because of the systemic impact important financial market infrastructures could have on society as a whole.

Proof-of-work chains, the ones that are continually promoted in this book, have no ability to prevent forks, by design. Anarchic chains like Bitcoin and Ethereum can only provide probabilistic finality. Yet commercial best practices and courts around the world demands definitive settlement finality. Why should commerce be captured by pseudonymous, unaccountable validators maintained in jurisdictions in which legal recourse is difficult if not impossible?

On p. 60 they continue:

But that doesn’t mean that other companies don’t have a clear interest in reviewing how these permissioned networks are set up. Would a distributed ledger system that’s controlled by a consortium of the world’s biggest banking institutions be incentivized to act in the interest of the general public it serves? One can imagine the dangers of a “too-big-to-fail blockchain” massive institutions could once again hold us hostage to bailouts because of failures in the combined accounting system.

This has been one of Michael Casey’s talking points for the past three years. I was even on a panel with him in January 2016 in which he called R3 a “cartelchain,” months before Corda even existed. His justified disdain towards traditional financial institutions — and those involved with technology being developed in the “permissioned” world — pops up throughout this book. I do think there are some valid critiques of consortia and permissioned chains and even Corda, but those aren’t presented in this edition of the book.

He does make two valid observations here as well: regulated commerce should have oversight. That is one of the reasons why many of the organizations developing “permissioned blockchains” have plans to or already have created separate legal entities to be regulated as some type of FMI.

The other point is that we should attempt to move away from recreating TBTF and SIFI scenarios. Unfortunately in some cases, “permissioned chains” are being pitched as re-enabler of that very scenario. In contrast, dFMI is a model that attempts to move away from these highly intermediated infrastructures. See also my new article on SICNs.

On p. 60 they write:

Either way, it’s incumbent upon us to ensure that the control over the blockchains of the future is sufficiently representative of broad-based interests and needs so that they don’t just become vehicles for collusion and oligpolistic power by the old guard of finance.

The ironic part of this statement is — while well-intended — because of economies of scale there is an oligopoly or even monopoly in most PoW-mined coins. It is unclear how or why that would change in the future. In addition, with the entrance of Bakkt, ErisX, Fidelity and other large traditional financial organizations (e.g., the old guard) into the cryptocurrency world, it is hard to see how “permissionless ecosystems” can prevent them from participating.

On p. 61 they write:

As we stated in The Age of Cryptocurrency, Bitcoin was merely the first crack at using a distributed computing and decentralized ledger-keeping system to resolve the age-old problem of trust and achieve this open, low-cost architecture for intermediary-free global transactions.

But as the authors have stated elsewhere: proof-of-work chains are inherently costly. If they were cheap to maintain then they would be cheap to fork and reorg. You cannot simultaneously have a cheap (“efficient”) and secure PoW network… that’s a contradiction.

See:

Chapter 3

On pages 64 and 65 they provide a definition of a blockchain. I think this could be more helpful more earlier on in the book for newer audiences.

A few other citations readers may be interested in:

On p. 66 they write:

That way, no authorizing entity could block, retract, or decide what gest entered into the ledger, making it censorship resistant.

Could be worth referencing Eligius, a pool run by Luke-Jr. that would not allow Satoshi Dice transactions because its owners religious views.14

On p. 67 they write:

These computers are known as “miners,” because in seeking to win the ten-minute payout, they engage in a kind of computational treasure hunt for digital gold.

I understand the need to make simple analogies but the digital gold one isn’t quite right because gold does not have an inflexible supply whereas bitcoin does. I’ve pointed this out in other book reviews and it bears repeating because of how the narrative of e-cash to HODLing has changed over the last few years.1516

Readers may be interested of a few real life examples of perfectly inelastic supplies.

On p. 67 they write:

Proof of work is expensive, because it chews up both electricity and processing power. That means that if a miner wants to seize majority control of the consensus system by adding more computing power, they would have to spend a lot of money doing so.

This is correct. Yet six pages earlier they say it is a “low-cost” infrastructure. Needs to be a little more consistent in this book. Either PoW is resource intensive or it is not, it cannot be both.

On p. 68 they write:

Over time, bitcoin mining has evolved into an industrial undertaking, with gigantic mining “farms” now dominating the network. Might those big players collude and undermine the ledger by combining resources? Perhaps, but there are also overwhelming disincentives for doing so. Among other considerations, a successful attack would significantly undermine the value of all the bitcoins the attacking miner owns. Either way, no one has managed to attack Bitcoin’s ledger in nine years. That unbroken record continues to reinforce belief in Bitcoin’s cost-and-incentive security system.

It’s worth pointing out that there are ways to fork Bitcoin beyond the singular Maginot Line attack. As mentioned above, Bitcoin and many other coins have forked; see this history. Hundreds of coins have died due to lack of interest by miners and developers.

It could also be argued that between 2015-2017, Bitcoin underwent a social, off-chain attack by multiple different groups attempting to exert their own influence and ideology onto the ecosystem. The end result was a permanent fracture, a divorce which the principal participants still lob social media bombs at one another. There isn’t enough room to discuss it here, but the astroturfing actions by specific people and companies in order to influence others is worth looking into as well. And it worked.

On p. 71 they write:

The caveat, of course, is that if bad actors do control more than 50 percent of the computing power they can produce the longest chain and so incorporate fraudulent transactions, which other miners will unwittingly treat as legitimate. Still, as we’ve explained, achieving that level of computing power is prohibitively expensive. It’s this combination of math and money that keeps Bitcoin secure.

I probably would change some of the wording because with proof-of-work chains (and basically any cryptocurrency), there are no terms of service or end user license agreement or SLA. At most there is only de facto governance and certainly not de jure.

What does that mean? It means that we really can’t say who the “bad actors” are since there is no service agreement. Barring an administrator, who is the legitimate authority in the anarchic world of cryptocurrencies? The original pitch was: if miners want to choose to build on another tree or fork, it’s their decision to do so… they don’t need anyone’s permission to validate blocks and attempt to update the chain as they want to. The next edition should explicitly say who or what is an attacker or what a fraudulent transaction is… these are points I’ve raised in other posts and book reviews.

Also, the authors mention that computational resources involved in PoW are “prohibitively expensive” here. So again, to be consistent they likely should remove “low-cost” in other places.

On p. 71 and 72 they write:

In solving the double-spend problem, Bitcoin did something else important: it magically created the concept of a “digital asset.” Previously, anything digital was too easily replicated to be regarded as a distinct piece of property, which is why digital products such as music and movies are typically sold with licensing and access rights rather than ownership. By making it impossible to replicate something of value – in this case bitcoins – Bitcoin broke this conventional wisdom. It created digital scarcity.

No it did not. This whole passage is wrong. As we have seen with forks and clones, there really is no such thing as this DRM-for-money narrative. This should be removed in the next edition.

Scarcity effectively means rivalrous, yet anyone can copy and clone any of these anarchic chains. PoW might make it relatively expensive to do a block reorg on one specific chain, but it does not really prevent someone from doing what they want with an identically cloned chain.

For instance, here is a list of 44 Bitcoin forked tokens that arose between August 2017 and May 2018. In light of the Bitcoin and Bitcoin Cash divorce, lobbying exchanges to recognize ticker symbols is also worth looking into in a future edition.

On p. 73 they write:

Many startups that were trying to build a business on top of Bitcoin, such as wallet providers and exchanges, were frustrated by an inability to process their customers’ transactions in a timely manner. “I’ve become a trusted third party,” complained Wences Casares, CEO of bitcoin wallet and custodial service Xapo. Casares was referring to the fact that too many of his firms’ transactions with its customers had to be processed “off-chain” on faith that Xapo would later settle the transaction on the Bitcoin blockchain.

This is one of the most honest statements in the book. The entire cryptocurrency ecosystem is now dominated by intermediaries.

Interestingly, Xapo moved its main office from Palo Alto to Switzerland days after Ripple was fined by FinCEN for violating the BSA. Was this just a coincidence?

On p. 73 they wrote:

Making blocks bigger would require more memory, which would make it even more expensive to operate a miner, critics pointed out. That could drive other prospective miners away, and leave Bitcoin mining even more concentrated among a few centralized players, raising the existential threat of collusion to undermine the ledger.

This wasn’t really the argument being made by the “small blockers.” Rather, it was disk space (not memory) that was — at the time — perceived as a limitation for retail (home) users in the long run. Yet it has been a moot point for both Bitcoin and Bitcoin Cash as the price per gigabyte for a hard drive continues to decline over time… and because in the past year, on-chain transactions on both chains have fallen from their peak in December 2017.

In practice, the “miners” that that authors refer to are the roughly 15 to 20 or so mining pools that in a given day, create the blocks that others build on. Nearly all of them maintain these nodes at a cloud provider. So there is already a lot of trust that takes place (e.g., AWS and Alibaba are trusted third parties). Because of economies of scale, spinning up a node (computer) in AWS is relatively inexpensive.

It really isn’t discussed much in the book, but the main argument throughout the 2nd half of 2017 was about UASF — a populist message which basically said miners (mining pools) didn’t really matter. Followers of this philosophy emphasized the need to run a node at home. For instance, if a UASF supporter based in rural Florida is attempting to run a node from his home, there could be a stark difference between the uptime and bandwidth capacity he has at home versus what AWS provides.

On p. 74 they write:

Without a tally of who’s who and who owns what, there was no way to gauge what the majority of the Bitcoin community, composed of users, businesses, investors, developers, and miners, wanted. And so, it all devolved into shouting matches on social media.

I wrote about this phenomenon in Appendix A in a paper published in November 2015. And what eventually happened was a series of off-chain Sybil attacks by several different tribes, but especially by promoters of UASF who spun up hundreds — thousands of nodes — and acted as if those mattered.

Future editions should also include a discussion on what took place at the Hong Kong roundtable, New York agreement, and other multilateral governance-related talks prior to the Bitcoin Cash fork.

On p. 74 they write:

A hard-fork-based software change thus poses a do-or-die decision for users on whether to upgrade or not. That’s bad enough for, say, word processing software, but for a currency it’s downright problematic. A bitcoin based on the old version could not be transferred to someone running software that support the new version. Two Bitcoins. Two versions of the truth.

The authors actually accidentally proved my earlier point: that public chains, specifically, proof-of-work chains, cannot prevent duplication or forks. Proof-of-work only makes it resource intensive to do double-spend on one specific chain.

This is one of the reasons why regulated financial organizations likely will continue to not issue long lifecycle instruments directly onto an anarchic chain like Bitcoin: because by design, PoW chains are forkable.

Also, future editions may want to modify this language because there are some counterarguments from folks like Vitalik Buterin that state: because hard forks are opt-in and thus lead to cleaner long-term outcomes (e.g., less technical debt).

On p. 75 they write a lot about Lightning Network, stating:

So, there are no miners’ fees to pay and no limit on how many transaction can be done at any time. The smart contracts prevent users from defrauding each other while the Bitcoin blockchain is used solely as a settlement layer, recording new balance transactions whenever a channel is opened or closed. It persists as the ultimate source of proof, a guarantee that all the “off-chain” Lightning transactions are legitimate.

What is not discussed in this edition is that:

  1. Lightning has been massively hyped with still relatively subdued traction
  2. Lightning is a separate network – it is not Bitcoin – and thus must be protected and secured through other non-mining means
  3. Lightning arguably distorts the potential transition to a fee-based Bitcoin network in much the same way that intermediaries like Coinbase do. That is to say, users are paying intermediaries the fees instead of miners thus prolonging the time that miners rely on block rewards (as a subsidy) instead of user fees.

Also, it bears mentioning that Bitcoin cannot in its current form act as a legal “settlement layer” as it cannot provide definitive settlement finality as outlined in the PFMIs (principle #8).

On p. 75 they write:

The SegWit/Lightning combination was in their minds the responsible way to make changes. They had a duty, they believed, to avoid big, disruptive codebase alterations and instead wanted to encourage innovators to develop applications that would augment the powers of the limited foundational code. It’s a classic, security-minded approach to protocol development: keep the core system at the bottom layer of the system simple, robust, and hard to change – some of the words “deliberately dumb” – and thus force innovation “up the stack” to the “application layer.” When it works you get the best of both worlds: security and innovation.

The authors should revise this because this is just repeating the talking points of specific Core developers, especially the last line.

Empirically it is possible to create a secure and “innovative” platform… and do so with multiple implementations of a specification. We see that in other cryptocurrencies and blockchain-related development efforts including Ethereum. The Bitcoin Core participants do not have a monopoly on what is or is not “security minded” and several of them are vocally opposed to supporting multiple implementations, in part, because of the politics around who controls the BIP process.

In fact, it could be argued that by insisting on the SegWit/Lightning approach, they caused a disruption because in point of fact, the amount of code that needed to be changed to increase the block size is arguably less than what was needed to build, verify, and release SegWit.

It’s not worth wading deep into these waters in this review, but the next edition of this book should be more even handed towards this schism.

On p. 76 they write:

But a group of miners with real clout was having none of it. Led by a Chinese company that both mined bitcoin and produced some of the most widely used mining equipment, this group was adamantly opposed to SegWit and Lightning. It’s not entirely clear what upset Jihan Wu, CEO of Bitmain, but after lining up with early Bitcoin investor and prominent libertarian Roger Ver, he launched a series of lobbying efforts to promote bigger blocks. One theory was that Bitmain worried that an “off-chain” Lightning solution would siphon away transaction fees that should be rightly going to miners; another was that because such payment channel transactions weren’t traceable as on-chain transactions, Chinese miners were worried that their government might shut them down. Bitmain’s reputation suffered a blow when revelations emerged that its popular Ant-miner mining rigs were being shipped to third-party miners with a “backdoor” that allowed the manufacturer-cum-miner to shut its opponents’ equipment down. Conspiracy theories abounded: Bitmain was planning to subvert SegWit. The company denied this and vowed to disable the feature. But trust was destroyed.

There is a lot of revisionism here.

But to start with, in the process of writing this review I reached out and contacted both Roger Ver and separately an advisor at Bitmain. Both told me that neither of the authors of this book had reached out to them for any comment. Why would the authors freely quote Bitcoin Core / SegWit developers to get their side of this debate but not reach out to speak with two prominent individuals from the other side to get their specific views? The next edition should either include these views and/or heavily revise this section of the book.

There are a few other problems with this passage.

Multiple different groups were actively lobbying and petitioning various influential figures (such as exchange operators) during this time period, not just Jihan and Roger. For instance, as mentioned above, the Hong Kong roundtable and New York agreement were two such examples. Conversely, SegWit and UASF was heavily promoted and lobbied by executives and affiliates at Blockstream and a handful of other organizations.

Regarding this “backdoor,” let’s rewind the clock and look at the overt / covert tempest in a teapot.

Last April Bitmain was alleged by Greg Maxwell (and the Antbleed campaign) of having maybe kinda sorta engaged in something called covert mining via Asicboost. Jimmy Song and others looked into it and said that there was no evidence covert was happening. At the time, some of the vocal self-identified “small block” supporters backing UASF, used this as evidence that Bitmain was a malicious Byzantine actor that must be purged from Bitcoinland. At the time, Greg proposed changing the PoW function in Bitcoin in order to prevent covert Asicboost from working.

In its defense, Bitmain stated that while Asicboost had been integrated into the mining equipment, it was never activated… partly because of the uncertain international IP / patent claims surrounding Asicboost. Recently, they announced a firmware upgrade that miners could activate overt Asicboost… a few days after another organization did (called “braiins”).

So why revisit this?

Two months ago Sia released code which specifically blocked mining equipment from Bitmain and Innosilicon. How and why this action is perceived as being fair or non-political is very confusing… they are definitely picking favorites (their own hardware). Certainly can’t claim to be sufficiently decentralized, right?

Yet in this section of the book, they don’t really touch on how key participants within the tribes and factions, represented at the time. Peruse both lists and look at all of the individuals at the roundtable that claim to represent “Bitcoin Core” in the governance process versus (the non-existent) reps from other implementations.

Even though the divorce is considered over, the tribes still fling mud at one another.

For example, one of the signatories of the HK roundtable, Adam Back, is still heckling Bitmain for supposedly not being involved in the BIP process. Wasn’t participation supposed to be “voluntary” and “permissionless”? Adam is also now fine with “overt” Asicboost today but wasn’t okay with it 18 months ago. What changed? Why was it supposedly bad for Bitmain to potentially use it back then but now it’s kosher because “braiins” (Slush) is doing it? That seems like favoritism.

Either way, the book passage above needs to be rewritten to include views from other camps and also to remove the still unproven conspiracy theories.

On p. 76 they write:

Meanwhile, original bitcoin went on a tear, rallying by more than 50 percent to a new high above $4,400 over a two-week period. The comparative performance of the pair suggested that small-block BTC and the SegWit reformers had won.

The next edition should change the wording because this comes across one-sided.

While an imperfect comparison, a more likely explanation is that of a Keynesian beauty contest. Most unsophisticated retail investors had heard of Bitcoin and hadn’t heard of Bitcoin Cash. Bitcoin (BTC) has brand recognition while Bitcoin Cash and the dozens of other Bitcoin-named forks and clones, did not.

Based on anecdotes, most coin speculators do not seem to care about the technical specifications of the coins they buy and typically keep the coins stored on an intermediary (such as an exchange) with the view that they can sell the coins later to someone else (e.g., “a greater fool“).

On p. 77 they write:

Bitcoin had gone through a ridiculous circus, one that many outsiders naturally assumed would hurt its reputation and undermine its support. Who wants such an ungovernable currency? Yet here was the original bitcoin surging to new heights and registering a staggering 650 percent gain in less than twelve months.

The problem with cherry picking price action dates is that, as seen in the passage above, it may not age well.17

For example, during the write-up of this review, the price of bitcoin declined from where it was a year ago (from over $10,000 then down to around $4,000). What does that mean? We can all guess what happened during this most recent bubble, but to act like non-tech savvy retail buyers bought bitcoin (BTC) because of SegWit is a non sequitur. No one but the tribalists in the civil war really cared.

On p. 77 they write:

Why? Well, for one, Bitcoin had proven itself resilient. Despite its civil war, its blockchain ledger remained intact. And, while it’s hard to see how the acrimony and bitterness was an advantage, the fact that it had proven so difficult to alter the code, to introduce a change to its monetary system, was seen by many as an important test of Bitcoin’s immutability.

There are a few issues here.

What do the authors mean by the “blockchain ledger remained intact”? I don’t think it was ever a question over whether or not copies of the Bitcoin blockchain (and/or forks thereof) would somehow be deleted. Might want to reword this in the future.

Segwit2x / Bitcoin Cash proponents were not trying to introduce a change to Bitcoin’s monetary system. The supply schedule of bitcoins would have stayed the same. The main issue was: a permanent block size increase from 1 MB to at least 2 MB. That proposal, if enacted, would not have changed the money supply.

What do the authors mean by “Bitcoin’s immutability”? The digital signatures are not being reversed or changed and that is what provides transactions the characteristic of “immutability.”

It is likely that the authors believe that a “hard fork” means that Bitcoin is not immutable. That seems to conflate “immutability” of a digital signature with finality (meaning irreversibility). By design, no proof-of-work coin can guarantee finality or irreversibility.

Also, Bitcoin had more than a dozen forks prior to the block size civil war.

On p. 77 and 78 they write:

Solid censorship resistance was, after all, a defining selling point for Bitcoin, the reason why some see the digital currency becoming a world reserve asset to replace the outdated, mutable, fiat-currency systems that still run the world. In fact, it could be argued that this failure to compromise and move forward, seen by outsiders as Bitcoin’s biggest flaw, might actually be its biggest feature. Like the simple, unchanging codebase of TCP/IP, the gridlocked politics of the Bitcoin protocol were imposing secure rigidity on the system and forcing innovation up the stack.

This is not what “censorship resistance” means in the context of Bitcoin. Censorship resistance is narrow and specific to what operators of miners could do. Specifically, the game theory behind Nakamoto Consensus is that it would be costly (resource intensive) for a malicious (Byzantine) actor to try and attempt to permanently censor transactions due to the amount of hashrate (proof-of-work) a Byzantine actor would need to control (e.g., more than 50%).

In contrast, what the authors described in this book was off-chain censorship, such as lobbying by various special interest groups at events, flamewars on Twitter, removing alternative views and voices on reddit, and via several other forms.

The “world reserve asset” is a loaded phrase that should be clarified in the next edition because the passage above comes across a bit like an Occupy Wall Street speech. It needs more of an explanation beyond the colorful one sentence it was given. Furthermore, as I predicted last year, cryptocurrencies continue to rely on the unit-of-account of “fiat systems” and shows no signs of letting up in this new era of “stablecoins.”

The authors definitely need to remove the part that says “unchanging codebase of TCP/IP” because this is not true. TCP/IP is a suite of protocol standards and its constituent implementations continue to evolve over time. There is no single monolithic codebase that lies unchanged since 1974 which is basically the takeaway from the passage above.18

In fact, several governing bodies such as IFTF and IAB continue to issue RFCs in order to help improve the quality-of-service of what we call the internet. It is also worth pointing out that their analogy is flawed for other reasons discussed in: Intranets and the Internet. In addition, the next version of HTTP won’t be using TCP.

As far as whether innovation will move “up the stack” remains to be seen but this seems to be an argument that the ends justify the means. If that is the case, that appears to open up a can of worms beyond the space for this review.

On p. 78 there is a typo: “BTH” instead of “BCH”

On p. 78 they write:

That’s what BTC, the original Bitcoin, promises with its depth of talent at Core and elsewhere. BTH can’t access such rich inventiveness because the community of money-focused bitcoin miners can’t attract the same kinds of passionate developers.

Strongly recommend removing this passage because it comes across as a one-sided marketing message rather than a balanced or neutral explanation using metrics. For instance, how active are the various code repositories for Bitcoin Core, Unlimited, and others? The next edition should attempt to measure how to measure “depth.”

For example, Bitmain has invested $50 million into a new fund focused on Bitcoin Cash called “Permissionless Ventures.” 2-3 years from now, what are the outcomes of that portfolio?

On p. 78 they write about permissioned blockchains:

Under these arrangements, some authority, such as a consortium of banks, choose which entities get to participate in the validation process. It is, in many respects, a step backward from Nakamoto’s achievement, since it makes the users of that permissioned system dependent once again, on the say-so of some trusted third party.

This is a common refrain throughout the book: that the true innovation was Bitcoin.

But it’s an apples-to-oranges comparison. Both worlds can and will co-exist because they were designed for different operating environments. Bitcoin cannot provide the same finality guarantees that “permissioned chains” attempt to do… because it was designed to be forkable. That’s not necessarily a flaw because Satoshi wasn’t trying to create a solution to a problem banks had. It’s okay to be different.

On p. 79 they write:

Most importantly, permissioned blockchains are more scalable than Bitcoin’s, at least for now, since their governance doesn’t depend upon the agreement of thousands of unidentified actors around the world; their members can simply agree to increase computing power whenever processing needs rise.

This doesn’t make sense at all. “Permissioned chains” in the broadest sense, do not use proof-of-work. As a result, there is no computational arms race. Not once have I been in a governance-related meeting involving banks in which they thought the solution to a governance-related issue was increasing or decreasing computational power. It is a non sequitur and should be removed in the next edition.

Also, there are plenty of governance issues involving “permissioned chains” — but those are typically tangential to the technical challenges and limitations around scaling a blockchain.

On p. 79 they write:

To us, permissionless systems pose the greatest opportunity. While there may well be great value in developing permissioned blockchains as an interim step toward a more open system, we believe permissionlessness and open access are ideals that we should strive for – notwithstanding the challenges exposed by Bitcoin’s “civil war.”

The authors repeat this statement in a couple other areas in the book and it doesn’t really make sense. Why? Because it is possible for both operating environments to co-exist. It doesn’t have to be us versus them. This is a false dichotomy.

Also, if any of these “permissioned chains” are actually put into production, it could be the case that end users could have “open access” to the platform, with the exception of participating in the validation of blocks. That’s pretty much how most coin users experience a cryptocurrency network today (e.g., via permissioned endpoints on Coinbase).19

On p. 80 they write:

The problem was that Bitcoin’s single-purpose currency design wasn’t ideally suited for these non-currency applications.

A side note maybe worth mentioning in a footnote is that Satoshi did attempt to build a marketplace early on but gave up.

On p. 81 they mention Nick Szabo with respect to smart contracts. Could be worth exploring the work of Martín Abadi which predates Szabo (the idea of distributed programs that perform authorizations predates Szabo’s “smart contracts”).  Mark S Miller has also done work in this area.

On p. 82 they write about Ethereum:

“Android for decentralized apps.” It would be an open platform much like Google’s smartphone operating system, on which people could design any new application they wanted and run it, not on a single company-owned server but in a decentralized manner across Ethereum’s ownerless network of computers.

This is probably not the best analogy because there is a difference between Google Android and Android Open Source Project. One of them includes proprietary tech. Also, Google can and does add and remove applications from the Play store on a regular basis based on its terms and conditions.

Lastly, someone does in fact own each of the computers that constitute the Ethereum blockchain… mining farms are owned by someone, mining pools are owned by someone, validating nodes are owned by someone. And so forth.

On p. 82 they write about Vitalik Buterin:

Now he was building a universally accessible, decentralized global supercomputer.

The next edition should drop the “supercomputer” verbiage because the Ethereum chain is only as powerful as the least powerful mining pool node… which in practice is typically a common computer located in a cloud provider such as AWS. This isn’t something like Summit over at Oak Ridge.

On p. 82 they write:

Now, with more than six hundred decentralized applications, or Dapps, running on Ethereum, he is looking vindicated. In just the first eleven months of 2017, the system’s internal currency, ether, rose from just over $8 to more than $400. By then the entire market cap for ether stood at $39 billion, a quarter that of Bitcoin’s. The success has made the wunderkind Buterin an instant multi-millionaire and turned him into a cultlike figure for the holders of ether and related tokens who’ve become rich.

The next version of the book should explicitly spell out what are the metrics for success. If it is solely price of a coin going up, what happens when the price of the coins goes down like it has in the past year?

For instance, ether (ETH), peaked in mid-January at around $1,400 and has been hovering near $100 the past several weeks. Does that mean Vitalik is no longer vindicated? Also, what is he vindicated from?

Lastly, it would be worth exploring in the next edition what Dapps are currently being used on a regular basis. As of this writing, the most popular Dapps are gambling apps (like proof-of-weak-hands / FOMO3D) and a few “decentralized exchanges” (DEX).

On p. 82 they write:

Ethereum co-founder Joseph Lubin only added to the complexity when he setup ConsenSys, a Brooklyn-based think tank-like business development unit tasked with developing new use cases and applications of the technology.

ConsenSys markets itself as a “venture studio” — a bit like YCombinator which incubates projects and provides some seed financing to get it off the ground. These projects are typically referred to as “spokes” (like a hub-and-spoke model).  As of this writing there are over 1,100 employees spread across several dozen spokes.  There is more to it than that and it would be interesting to see it explored in the next edition.

On p. 83 they write:

For example, the Parity Wallet, which was designed by Ethereum co-founder and lead architect Gavin Wood as a way to seamlessly engage, via a browser, with Ethereum smart contracts, lost $30 million in a hack.

Actually, Parity had a couple issues in 2017 and it is likely that the book may have been sent to publication around the same time the bigger problem occurred on November 13, 2017. The second one involved a Parity-developed multisig wallet… and $150 million in ether that is now locked away and cannot be accessed (barring a hardfork). Most developers — including those at Parity — characterize this instance as a “bug” that was accidentally exploited by a developer.

On p. 84 they write:

These kinds of dynamics, with large amounts of money at stake, can foster concerns that founders’ interests are misaligned with other users. Ethereum’s answer was the not-for-profit Ethereum Foundation, which was tasked with managing the pool of ether and other assets from the pre-mine and pre-sale- a model since used by many of the ICO token sales.

It would be interesting to explore how this foundation was created and how it evolved and who manages it today. For instance, at one point in 2014 there were conversations around creating a commercial, for-profit entity led in part by Charles Hoskinson who later left and founded Cardano.

On p. 85 they write about The DAO:

After a few modest coding changes failed, they settled on a drastic fix: Ethereum’s core developers “hard-forked” the Ethereum blockchain, implementing a backward-incompatible software update that invalidated all of the attacker’s transactions from a certain date forward. It was a radical move. To many in the cryptocurrency community, it threw into question Ethereum’s all-important claim to immutability. If a group of developers can force a change in the ledger to override the actions of a user, however unsavory those actions are, how can you trust that ledger won’t be tampered with or manipulated again in the interest of one group over another? Does that not destroy the whole value proposition?

This passage should probably be revised because of the usage of the word immutable.

Also, it could be argued that Bitcoin Core and other “core” groups act as gate keepers to the BIP process (or its equivalent) could lobby on behalf of special interest groups to push specific code changes and/or favor certain outcomes on behalf of specific stakeholders.

In either case, it is the miners that ultimately install and use the code. While some developers (like Bitcoin Core) are highly influential, without miners installing and running software, the rules on the network cannot be changed.

See Sufficiently Decentralized Howeycoins.

On p. 85 they write:

Well, in many respects, the Ethereum team operated as policymakers do during real-world crises. They made hard decisions that hurt some but were ultimately taken in the interests of the greater good — determined, hopefully, through as democratic a process as possible. The organizers went to great lengths to explain and gain support for the hard fork.

The next edition should strive to be more specific here: what exactly made the decision making around the hard fork democratic. Who participated, who didn’t participate. And so forth.

Continuing on p. 85:

And, much like the Segwit2x and other Bitcoin reform pro-miners didn’t accept it. For all intents and purposes, the fix was democratic – arguably, much more so than non-participatory democratic models through which crisis policymaking is enacted by national governments. And since Ethereum is more of a community of software engineers than of cryptocurrency investors, it was less contentious than Bitcoin’s struggle over hard-fork proposals.

This makes very little sense as it is written because the authors don’t define or specify what exactly made any of the decision making democratic. Who was enfranchised? Who got to vote and make decision? Also, how do the authors know that Ethereum is “more of a community of software engineers than of cryptocurrency investors.” Is there any hard numbers to back that assertion up?

And lastly how do we measure the level of contentiousness? Is there an objective measure out there?

On p. 85 they write about Ethereum Classic:

This created much confusion and some interesting arbitrage opportunities – as well as some lessons for bitcoin traders when their own currency split two years later – but it can also be viewed as the actions of a dissenting group non-violently exercising their right to secede. More than a year later, Ethereum Classic is still around, though it trades at a small fraction of Ethereum’s value, which means The DAO attacker’s funds – whose movements on the public Ethereum blockchain have been closely watched – are of lower value than if they’d been preserved in ETH.

I don’t think we can really say for sure how much the The DAO fund (and child DAO fundss) would be worth since that is an alternative timeline.

Also, there are some vocal maximalists that have created various Ethereum-branded tribes which are okay with The DAO attacker having access to those funds. Will be interesting to see if there are any sociological studies to reference in a new edition.

On p. 86 they write:

These hacks, and the scrambles to fix them, seem nuts, right? But let’s put them in perspective. First, is this monetary chaos anything less unsettling than the financial crisis of 2008? Or the audacity of the subsequent Wall Street trading scandals?

This is a whataboutism. Also, strangely the authors are saying the bar for judgement is as low as the financial engineering and socialized loses of the GFC. Isn’t the narrative that cryptocurrencies are supposed to be held to a higher standard because the coin creators seek to architect a world that doesn’t have arbitrary decision making?

On p. 87 and 88 they write:

When the FBI auctioned the 144,000 bitcoins (worth $1.4 billion as of late November 2017) that it seized from Ross Ulbricht, the convicted mastermind of the Silk Road illicit goods marketplace, those coins fetched a significantly higher price than others in the market. The notion was that hey had now been “whitewashed” by the U.S. government. In comparison, other bitcoins with a potentially shady past should be worth less because of the risk of future seizure. That’s hardly fair: imagine if the dollar notes in your wallet were hit with a 10 percent tax because the merchant knew that five years ago, unbeknownst to you, they had been handled by a drug dealer. To avoid these distortions and create a cryptocurrency that works more like fungible cash, Wilcox’s Zcash uses sophisticated “zero-knowledge proofs” to allow miners to prove that holders of the currency aren’t’ double-spending without being able to trace the addresses.

What the authors likely mean by “whitewashed” is probably “cleansed.” In the US there have been discussions on how this could take place via the existing Uniform Commercial Code (see Section 3.3). To date, there hasn’t been a specific update to the UCC regarding this issue (yet) but it has been discussed in multiple places such as Bitcoin’s lien problem.

As far as the “fairness” claim goes, it could be worth revising the passage to include a discussion around nemo dat quod non habet and bona fide purchasers. Legal tender is explicitly exempt because of the very scenario the authors describe. But cryptocurrencies aren’t legal tender, so that exemption doesn’t exist (yet).

Lastly, only “shielded” transactions in Zcash provide the functionality described in the passage above… not all transactions on Zcash utilize and opt-in to this mode.

On p. 89 they describe EOS. Worth updating this section because to-date, they have not achieved the 50,000 transactions per second on mainnet that is stated in the book. There has also been a bit of churn in the organizations as Ian Grigg (named in the book) is no longer at the organization, nor are employees 2 through 5.

On p. 90 they write about proof-of-stake:

One criticism of the model has been that without the electricity consumption costs of proof of work, attackers in a proof-of-stake system would simply mine multiple blocks to boost their chances of inserting a fraudulent one into the ledger.

This “nothing at stake” scenario is a valid criticism of some early attempts at building a proof-of-stake mechanism but isn’t valid for some other proposals (such as, theoretically, “Slasher“).

Chapter 4

On p. 91 they write:

It was clear that investors bought into Brave’s promise of a token that could fundamentally change the broken online advertising industry.

How do we know this was clear to investors? Anecdotally it appears that at least some investors participated as speculators, with the view that the token price would increase. A future edition should probably change the wording unless there is a reference that breaks down the motivation of the investors.

What about Civil?

On p. 96 they write about StorJ

Other models include that of the decentralized computer storage platform Storj, which allows hard-drive-starved users to access other’s excess space in exchange for storj tokens.

Could be worth pointing out that Storj had two public ICOs and it is still unclear if that will result in legal or regulatory issues. Putting that aside, currently Storj has just under 3,000 users. This stat is worth looking at again in future versions, especially in light of less-than-favorable reviews.

On p. 98 they talk about BAT:

The point is that it’s all on the community – the society of BATs users – not on external investors, to bear the risk of that happening

[…]

Once the 1 billion tokens had sold out in twenty-four seconds, it was revelead that only 130 accounts got them and that the biggest twenty holdings covered more than two-thirds of the total. Those distortions left many investors angry.

There is currently a debate around whether these types of ICOs in 2017 (and earlier) were investment contracts (e.g., securities). In the US, this has led to more than a hundred subpoenas with some quiet (and not so quiet) enforcement action.

The language used in this chapter (and elsewhere in the book) suggests that the participants involved in the ICO were investing with the expectation of profit in a common enterprise managed by the Brave team. Worth revisiting in a future edition.

On p. 102 they write about ERC20 tokens:

But because of the ERC-20 solution, they didn’t need to develop their own blockchain with all the independent computing power that would require. Instead, Ethereum’s existing computing network would do the validation for them.

This piggybacking may be initially helpful to token issuers but:

  1. it is a form of centralization which could have legal and regulatory consequences with respect to being viewed as not sufficiently decentralized
  2. in the long run this could create a top-heavy issue as miners are not being compensated in proportion to the amount of value they are trying to secure (see Section 2.1)

On p. 102 they write:

This low-cost solution to the double-spending challenge launched a factory of ICOs as issuers found an easy way to tap a global investing community. No painful negotiations with venture capitalists over dilution and control of the board. No wining and dining of Wall Street investment banks to get them to put their clients on the order book. No wait for SEC approval. Just straight to the general public: here are more tokens; they’re cool, buy them. It was a simple, low-cost formula and it lowered the barrier to entry for some brilliant innovators to bring potentially world-changing ideas to market. Unfortunately, it was also a magnet for scammers.

Could be worth updating this section to include more details on the scams and fraud that took place throughout 2017. Many of the tokens that raised capital from outside investors during this time not only have not delivered a working product, but in most cases, the token underperformed both ether and bitcoin.

Also bears mentioning that beginning in late 2017 through the time of this writing, there was a clear divergence between public sale ICOs and private sale of tokens… the latter of which basically involves a private placement to accredited investors, including the same type of funds that the passage above eschewed.

On p. 104 they write about Gnosis:

With the other 95 percent controlled by the founders, those prices meant that the implied valuation of the entire enterprise stood at $300 million – a figure that soon rose above $1 billion as the Gnosis token promptly quadrupled in price in the secondary market. By Silicon Valley standards, it meant we had the first ICO “unicorn.”

Actually, Ethereum did an ICO back in 2014 — and as the price of ether (measured in USD) increased, it is likely that ETH could be seen as the first ICO “unicorn.” But that’s not really an apples-to-apples comparison though because ETH (or Gnosis) holders do not have say, voting rights, which equity holders of a traditional company would.  Plus, “marketcap” is a poorly defined metric in the coin world (see Section 6).

On p. 104 and 105 they write:

One day, Paul received a call from a businessman who’d read one of his stories in The Wall Street Journal and wanted more information about how to get started and where to get legal advice. The man said he’d tried to reach the lawyer Marco Santori, a partner at the law firm Cooley who’d been quoted in the story, but couldn’t get through. Santori later told us that he was getting so many calls about ICOs, he simply couldn’t answer them all.

In January 2018, the SEC Chairman gave a public speech in which he singled out the “gatekeepers” (legal professionals) regarding the advice they gave clients. Could be worth revisiting who the main ICO-focused lawyers and lawfirms were during this time period and where they are now and if there were any enforcement actions undertaken.

On p. 105 they write:

“Most of these will fail,” said Olaf Carlson-Wee, the CEO of Polychain Capital, citing poorly conceived ideas and a lack of coding development. “Most of these are bad ideas from the beginning.” That said, Polychain is an investment firm that Carlson-Wee founded expressly to invest in these new projects. In fact, most of the people investing seemed to be taking a very VC-like approach to it. They understood that most of the projects would fail. They just hoped to have a few chips down on the one winner.

Carlson-Wee’s comments seem accurate insofar as the inability of many projects to execute and deliver based on the narratives each pitched investors. However, it could be worth digging into Polychain itself, which among other drama, may have “flipped” tokens due to a lack of lock-up periods.20 21

On p. 108 and 109 they compare Blue Apron and block.one (EOS). Even though it’s not an apples-to-apples comparison could be worth revisiting this in the future because of the churn and drama with both organizations.

Pages 110 and 111 aged quickly as most of the ICO rating websites and newsletters have fallen to the wayside due to payola scandals and inability to trust the motivations behind the ratings.

Similarly, the authors describe accredited investors and SAFTs. There is a typo here as the authors likely mean that an individual needs to have an income of $200,000 not $200 million. The SAFT model has fallen out of favor for several reasons that could be explored in a future version.22

On p. 112 they write about ASICs:

But developers of Vertcoin have shown that it’s also possible to create a permanent commitment to ASIC-resistance by introducing something from the real, non-digital world of social organizations: a pact. If the platform’s governing principles include a re-existing commitment from all users of the coin to accept a fork – a change to the code – that would add new, ASIC-resistant elements as soon as someone develops such a chip, the coin’s community can protect the distributed, democratic structure of a GPU-led mining network.

Putting aside the fanciful ASIC-resistance utopia that is peddled by some coin issuers, the passage above raises a couple flags.

Who gets to decide what the governing principles are? Do these principles get to change overtime? If the answer is yes to either, who are those decision makers and how are they chosen? So far, there has not really been any “democratic” way of participating in that decision making process for any cryptocurrency. How can that change in the future?

Why is a GPU-led mining network considered more democratic? In practice, most of these farms are located in basically the same type of structure and geography as ASIC-based equipment… in some cases they are swapped out over time. In light of the Sia coin fork… which clearly shows favoritism at play, a future edition of the book could include a chart or spectrum explaining how the mining of one coin more or less democratic versus another.

On p. 113 there is more discussion of ICOs and token sales as it relates to “open protocols” but in practice it has largely been reinventing the same intermediated system we have to do, but with fewer check and balances or even recourse for retail investors.

On p. 114 they speculate that:

This speaks to our broader notion that tokens, by incentivizing the preservation of public goods, might help humanity solve the Tragedy of the Commons, a centuries-in-the-making shift in economic reality.

That’s a big claim that requires evidence to back it. Let’s revisit next time.

On p. 115 they write:

Much like Wall Street bond traders, these will “make markets” to bring financial liquidity to every countervailing pair of tokens – buying some here and selling other there – so that if anyone wants to trade 100 BATs for a third of a Jackson Pollock, they can be assured of a reasonable market price.

But how does a blockchain actually do this? They mention Lykke as an startup that could help match tokens at a fair price… but to-date there is nothing listed on Lykke that really stands out as different than what you could fine at other cryptocurrency exchanges. Perhaps a future version of the book could walk the reader step-by-step through how a blockchain can enable this type of “fairness” whereas previous technology could not.

On p. 116 they discuss several projects they label as “interoperability” initiatives including Interledger, Cosmos, sidechains, and Lightning. It may be helpful for the reader to see a definition for what “interoperability” means because each of these projects — and its supporters — may be using the term in a different way. Perhaps a comparison chart showing the similarities and differences?

On p. 117 they write:

In an age where U.S. presidents peddle “alternative facts” and pundits talk openly about our “post-truth society,” using the truth machine to put a value on honesty sounds appealing.

On the face of it, that end goal seems like more than a stretch because it’s unclear how a blockchain (today) controls off-chain behavior. The example they go on to use is Augur. But Augur is a futures market and there are many of those already in existence. How would Augur or a futures market “with a blockchain” prevent politicians from lying? Walking through this process could be helpful to the reader.

On p. 118 they mention Erick Miller’s investment fund called CoinCircle… and a couple of “special value tokens” called Ocean Health Coin and Climate Coin.

Maybe worth following up in the next edition because neither has launched and each of the pitches sounds very handwavy, lacking in substance. Also, one of the ICOs CoinCircle advised – Unikrn – is part of a class action lawsuit.

Most of p. 119 and 120 come across as more political discourse, which is fine… but unclear how a blockchain in some form or fashion could directly impact the various issues raised. Perhaps the next edition could include a chart with a roadmap in how they see various projects achieving different milestones?

Chapter 5

If the reader is unfamiliar with IoT then the first 1/3 of chapter five is pretty helpful and informative.

Then there are some speedbumps.

On p. 130 they write about authenticating and verifying transactions involving self-driving cars:

The question, though, is: would this transaction be easily processed if it were based on a private blockchain? What are the chances, in a country of more than 230 million cars, that both vehicles would belong to the same closed network run by a group of permissioned validating computers? If they weren’t part of the same network, the payment couldn’t go through as the respective software would not be interoperable.

This is a red herring. Both “permissioned” and “permissionless” blockchains have similar (though not identical) scaling challenges. And interoperability is a separate issue which has been a known hurdle for years.

In fact, recently the Hyperledger Fabric team announced that it now supports the EVM. This comes a couple weeks after Hyperledger joined EEA as a member and vice-versa. Maybe none of these immediate efforts and experiments amount to many tangible outputs in the short-run but it does show that several ecosystems are attempting to be less tribal and more collaborative.

Also, the issue of payments is also separate from a blockchain-related infrastructure. Payments is a broad term and can include, for instance, a proposed central bank digital currency (e.g., “cash on ledger”)… or it can involve plugging into existing external payment systems (like Visa or ACH). It would be helpful if the next edition was more specific.

Continuing on p. 130 they write:

Other car manufacturers might not want to use a permissioned verification system for which, say GM, or Ford, is the gatekeeper. And if they instead formed a consortium of carmakers to run the system, would their collective control over this all-important data network create a barrier to entry for newer, startup carmakers? Would it effectively become a competition-killing oligopoly?

These are possible scenarios and good questions but this is kind of an unfair characterization of consortia. Let’s flip it around: why shouldn’t carmakers be allowed to build their own blockchains or collaborate with others who do? Do they need someones permission to do so? Depending on local regulations, maybe they do need permission or oversight in a specific jurisdiction. That could be worth exploring in another version.

On this topic they conclude that:

A truly decentralized, permissionless system could be a way around this “walled-garden” problem of siloed technology. A decentralized, permissionless system means any device can participate in the network yet still give everyone confidence in the integrity of the data, of the devices, and of the value being transacted. A permissionless system would create a much more fluid, expansive Internet of Things that’s not beholden to the say-so and fees of powerful gatekeepers.

That sounds well and good and a bit repetitive from earlier passages which said something similar. The passage aboves seems to be redefining what make something “permissioned” and “permissionless.” What does it mean for every device participate on a ‘decentralized, permissionless system’? Does that mean that each device is capable of building and/or creating a new block? If so, how do they choose which chain to build on?

And why is it so hard to imagine a world in which open-sourced platforms are also permissioned (e.g., validation is run by known, identifiable participants)… and these platforms are interoperable. Could be worth exploring because that scenario may be just as likely as the ones presented in this chapter.

Lastly, how does a “permissionless system” create a more fluid IoT world? These claims should be explored in more detail next time.

On p. 131 and 132 they write about IOTA, a specific project that markets itself as a purpose-built blockchain for IoT devices. But that project is beset by all kinds of drama that is beyond the scope of this review. Suffice to say that the February software build of IOTA cannot be run on most resource constrained IoT devices.

On p. 138 they mention in passing:

Exergy is a vital concept for measuring energy efficiency and containing wasteful practices; it doesn’t just measure the amount of energy generated but also the amount of useful work produced per each given amount of energy produced.

Fun fact: back in May 2014 I wrote an in-depth paper on Bitcoin mining that utilized the concept of “exergy.”

On pages 139-145 they talk about a number of vendors, use-cases, and platforms typically centered around the supply chain management world. Would be interesting to see which of these gained traction.

On p. 147 they write:

Blockchain-proven digital tokens point to what blockchain consultant and entrepreneurs Pindar Wong calls the “packetization of risk.” This radical idea introduces a negotiable structure to different phases of the chain. Intermediate goods that would otherwise be encumbered by a pre-established chain of unsettled commitments can instead be put out to bid to see if other buyers want to take on the rights and obligations associated with them.

It would be useful in this explanation to have a diagram or two to explain what Pindar proposes because it is a bit hard to follow.

On p. 147 they write:

This is why many people believe that the concept of a “circular economy” – where there is as much recycling as possible of the energy sources and materials in production – will hinge on the transparency and information flows that blockchain systems allow.

Does this mean that other “non-blockchain” systems do not allow transparency and information flows?

On p. 147 they write:

The principal challenge remains scaling. Open-to-all, permissionless blockcahins such as Bitcoin’s and Ethereum’s simply aren’t ready for the prime time of global trade. If all of the world’s supply chains were to pass their transactions through a permissionless blockchain, there would need to be a gargantuan increase in scalability, either off-chain or on-chain. Solutions may come from innovations such as the Lightning Network, discussed in chapter three, but they are far from ready at this stage.

Can we propose a moratorium on additional usages of “Lightning” in the next edition unless there is significant adoption and usage of it? Also, it is unclear why the worlds supply chains should for some reason be connected onto an anarchic chain: what is the benefit of putting this information onto a chain whose operators are unaccountable if a fork occurs?

On p. 148 they write:

Instead, companies are looking at permissioned blockchains, which we’ll discuss in more detail in chapter six. That makes sense because many big manufacturers think of their supply chains as static concepts, with defined members who have been certified to supply this or that component to a finished product. But in the rapidly changing world of the Fourth Industrial Revolution, this might not be the most competitive option. Emerging technologies such as additive manufacturing, where production can be called up anywhere and delivered by anyone with access to the right software files and a sufficiently configured 3D printer, are pointing to a much more fluid, dynamic supply-chain world, where suppliers come and go more easily. In that environment, a permissionless system would seem necessary. Once scaling challenges are resolved, and with robust encryption and reliable monitoring systems for proving the quality of suppliers work, permissionless blockchain-based supply chains could end up being a big leveler of the playing field for global manufacturing.

There are way too many assumptions in this paragraph to not have somewhere written that there are many assumptions.

Is a blockchain really needed in this environment? If so, a future edition should explain how a 3D printer would be more useful connected to a blockchain than some other network. Also, this seems to be a misuse of the term “permissionless” — why does the network need to be anarchic? How would the supply chain benefit from validators who are unknown?

On p. 148 they write:

It will be difficult to marry that old-world body of law, and the human-led institutions that manage it, with the digital, dematerailized, automated, and de-nationalized nature of blockchains and smart contracts.

How are blockchains “de-nationalized”? As of this writing there are probably a couple dozen publicly announced state-sponsored blockchain platforms of some kind (including various cryptocurrency-related initiatives). This phrase should probably be removed.

On p. 150 they write about the Belt and Road Blockchain Consortium:

Hence the opportunity for blockchain technologies to function as an international governance system. Hong Kong’s role will be important: the territory’s British legal traditions and reputation for respecting property rights have made it a respected safehouse for managing intellectual property and other contractual obligations within international trade. If the blockchain is to be inserted into global trade flows, the region’s bridging function may offer the fastest and most impactful route. For Hong Kong residents who want the territory to retain its British legal traditions, that role could be a vital protection against Beijing undermining them.

From publicly available information it is unclear if the Belt and Road Blockchain Consortium has seen much traction. In contrast, the Ping An-led HKMA trade finance group has turned on its “blockchain” platform.

Chapter 6

On p. 151 they wrote about a public event held on August 5, 2015:

As far as bankers were concerned, Bitcoin had no role to play in the existing financial system. Banking institutions thrive on a system of opacity in which our inability to trust each other leaves us dependent on their intermediation of our transactions. Bankers might give lip service to reforming the inner workings of their system, but the thought of turning it over to something as uncontrollable as Bitcoin was beyond heresy. It wasn’t even conceivable.

This is a bit of a red herring. I’ve been in dozens of meetings with banks and financial institutions over the past four years and in general there is consensus that Bitcoin – the network – is not fit for purpose as financial market infrastructure to handle regulated financial instruments. Why should banks process, say payments, on a network in which the validators are neither accountable if a problem occurs nor directly reachable in case users want to change or upgrade the software? Satoshi wasn’t trying to solve interbank-related issues between known participants so this description shouldn’t be seen as a slight against Bitcoin.

Now, bitcoin, the coin, may become more widespread in its usage and/or ownership at banks. In fact, as of this writing, nearly every large commercial bank owns at least a handful of cryptocurrencies in order to pay off ransomware issues. But the passage above seems to conflate the two.

See also: Systemically important cryptocurrency networks

On p. 151 they write:

At the same time, committed Bitcoin fans weren’t much interested in Wall Street, either. Bitcoin, after all, was designed as an alternative to the existing banking system. An improvement.

This is a bit revisionist. For instance, the original whitepaper uses the term “payment” twelve times. It doesn’t discuss banking or specific product lines at banks. Banks do a lot more than just handle payments too. Satoshi attempted to create an alternative payment system… the “be your own bank” narrative is something that other Bitcoin promoters later added.

On p. 152 they discuss the August 2015 event:

In essence, Symbiont was promising “blockchain without bitcoin” – it would maintain the fast, secure, and cheap distributed network model, and a truth machine at its center that validated transactions, but it was not leaderless, permissionless, and open to all. It was a blockchain that Wall Street could control.

This has some hyperbole in it (does “Wall Street” really control it?) but there is a kernel that the authors could expand on in the next version: vendor-dependence and implementation monopoly. In the example above, the authors could have pointed out that the same market structure still exists, so what benefit does a blockchain provide that couldn’t already be used? In addition to, what do the authors mean by “cheap distributed network model” when they have (rightly) mentioned that proof-of-work is resource intensive? As of this writing, Symbiont uses BFT-SMaRt and doesn’t use PoW.

Also, the authors seem to conflate “open to all” with blockchains that they prefer. Yet nearly all of the blockchains they seem to favor (like Bitcoin) involve relatively centralized gatekeeping (BIP process) and permissioned edges via exchanges.

Again, when I wrote the paper that created this distinction in 2015, the “permissionless’ness” is solely an attribute of mining not on sending or receiving coins.

On p. 153 they write:

But these permissioned systems are less open to experiments by computer engineers, and access rights to the data and software are subject to the whim of the official gatekeeper. That inherently constrains innovation. A private blockchain, some say, is an oxymoron. The whole point of this technology is to build a system that is open, accessible, and public. Many describe them with the generic phrase “distributed ledger technology” instead of “blockchain.”

This is why it would be important for the authors to explicitly mention what “blockchain” they are referring to. In many cases their point is valid: what is the point of using a blockchain if a single entity runs the network and/or monopolizes the implementation?

Yet their argument is diminished by insisting on using loaded phrases like “open” and “public.” What does it mean to be open or public here? For instance, in order to use Bitcoin today, you need to acquire it or mine it. There can be substantial entry and exit costs to mining so most individuals typically acquire bitcoins via a trusted, permissioned gateway (an exchange). How is that open?

Lastly, the euphemism of using the term “blockchain” instead of using the term “bitcoin” dates back to late 2015 with investors like Adam Draper explicitly stating that was his agenda. See: The great pivot?

On p. 156 they write:

Though Bitcoin fans frowned upon permissioned blockchains, Wall Street continued to build them. These tweaked versions of Bitcoin shared various elements of the cryptocurrency’s powerful cryptography and network rules. However, instead of its electricity-hungry “proof-of-work” consensus model, they drew upon older, pre-Bitcoin protocols that were more efficient but which couldn’t achieve the same level of security without putting a centralized entity in charge of identifying and authorizing participants.

There is a few issues with this:

  1. Which Bitcoin fans are the authors referring to, the maximalists?
  2. Proof-of-work is not an actual consensus model
  3. There are newer Byzantine fault tolerant protocols such as HoneybadgerBFT which are also being used by different platforms

Their last sentence uses a false dichotomy because there are different security assumptions based on the targeted operating environment that result in tradeoffs. To say that Bitcoin is more or less secure versus say, an instance of Fabric is a bit meaningless because the users have different expectations that the system is built around.

On p. 157 they write about R3:

The biggest winner in this hiring spree was the research and development company R3 CEV, which focused on the financial industry. It sought to build a distributed ledger that could, on the one hand, reap the benefits of real-time securities settlement and cross-industry harmonization but, on the other, would comply with a vast array of banking regulations and meet its members’ proprietary interest in keeping their books private.

This seems like a dated pitch from a couple use cases from mid-2015 because by the time I departed in September 2017, real-time securities settlement wasn’t the primary use (for Corda) being discussed externally.

Also, the “CEV” was formally removed from the name about two years ago. See: A brief history of R3 – the Distributed Ledger Group

By the spring of 2017, R3 CEV had grown its membership to more than one hundred. Each member firm paid annual dues of $250,000 in return for access to the insights being developed inside the R3 lab. Its founders also raised $107 million in venture funding in 2017, mostly from financial institutions.

I don’t think the full details are public but the description of the funding – and what was exchanged for it – is not quite correct. The original DLG members got equity stakes as part of their initial investment. Also, as far as the Series A that was announced in May 2017, all but one of the investors was a financial institution of some kind.

On p. 157 they write:

Some of that money went to hire people like Mike Hearn, a once prominent Bitcoin developer who dramatically turned his back on the cryptocurrency community with an “I quit” blog post complaining about the bitter in fighting. R3 also hired Ian Grigg – who later left to join EOS – another prominent onetime rebel from the cryptocurrency space.

To be clear on the timing: Mike Hearn began working at R3 in October 2015 (along with James Carlyle).23 Several months later he published a widely discussed post about Bitcoin itself. Based on his public talks since January 2016, he still seems to have some passing interest in cryptocurrencies; he did a reddit AMA on /r/btc this past spring.

Also, Ian Grigg has since left EOS and launched a new startup, Chamapesa.

On p. 157 they write about me:

Before their arrival, R3 had also signed on Tim Swanson as research director. Swanson was a distributed ledger/blockchain analyst who was briefly enthused by Bitcoin but who later became disillusioned with the cryptocurrency’s ideologues. He became a vocal, anti-Bitcoin gadfly who seemed to delight in mocking its travails.

This is also revisionist history.

Not to dive too much into the weeds here – and ignoring everything pre-2014 – a quick chronology that could be added if the authors are looking to be balanced is the following:

Over the course of under four months, after doing market research covering a few dozen projects, I published Great Chain of Numbers in March 2014… which was a brief report that quickly became outdated.

Some of the feedback I received – including from Bob, an expert at a data analytics startup – was that I was too charitable towards the claims of cryptocurrency promoters at payment processors and exchanges.24 That is to say, Bob thought that based on analytics, the actual usage of a payment processor was a lot lower than what the executives from that processor told me. In retrospect, Bob was absolutely correct.

A couple months later I ended up – by accident – doing an interview on Let’s Talk Bitcoin. The original guest did not show up and while we (the co-hosts) were waiting, I ended up getting into a small debate with another co-host about the adoption and usage of cryptocurrencies like Bitcoin. You can listen to it here and read the corresponding long-read that provides more citations and supporting links to back up the comments I made in the podcast.

From this moment forward (June 2014) – because I fact-checked the claims and did not blindly promote cryptocurrencies – I quickly became labeled as a pariah by several of the vocal cryptotwitter personalities. Or as the authors of this book unfairly label me: “anti-Bitcoin gadfly.” To call this order of events “disillusionment” is also unfair.

Lastly, a quick fix to the passage in the book: I technically became a formal advisor to R3 at the end of 2014 (after their second roundtable in Palo Alto)… and then later in August 2015 came on full-time as director of market research (although I subsequently wore several different hats).

On p. 158 they write:

Of a similar breed was Preston Byrne, the general counsel of Eris Ltd., later called Monax which designed private blockchains for banks and a variety of other companies. When Byrne’s Twitter feed wasn’t conveying his eclectic mix of political positions – pro-Trump, anti-Brexit, pro-Second Amendment, pro-encryption, anti-software utopianism – or constant references to marmots (the Eris brand’s mascot), it poured scorn on Bitcoin’s fanatic followers. For guys like Swanson and Byrne, Bitcoin’s dysfunctional governance was a godsend.

Again, chronologically I met Preston online in early 2014. He helped edit and contributed to Great Chain of Numbers. Note: he left Eris last year and recently joined a US law firm.

This is an unfair description: “For guys like Swanson and Byrne, Bitcoin’s dysfunctional governance was a godsend.”

This is unfair for several reasons:

  • We were hardly the first people to spend time writing about the governance problems and frictions involved in cryptocurrencies. For instance this includes: Ray Dillinger, Ben Laurie, and likely dozens of others. Nor were we the only ones discussing it in 2014 and 2015.
  • Preston and I have also – separately – written and discussed issues with other cryptocurrencies and blockchains during that time frame… not just Bitcoin.

Thus to single us out and simultaneously not mention others who had similar views, paints us as some type of cartoonish villains in this narrative. Plus, the authors could have reached out to us for comment. Either way, the next version should attempt to fix the word choices and chronology.

I reached out to Preston Byrne and he provided a response that he asked to have included in a footnote.25

On p. 159 they write more about R3:

On the one hand, regulators were comfortable with the familiar membership of R3’s consortium: they were more accustomed to working with bankers than with T-shirt-and-jeans-wearing crypto-investors. But on the other, the idea of a consortium of the world’s biggest banks having say-so over who and what gets included within the financial system’s single and only distributed ledger conjured up fears of excessive banking power and of the politically unpopular bailouts that happened after the crisis. Might Wall Street be building a “too-big-to-fail” blockchain?

This is some strange criticism because many of the developers of Corda (and other pieces of software) wore casual and business casual attire while working in the offices.

Corda is not the “single and only distributed ledger” being used by enterprises. Nearly all of the banks that invested in R3 also invested in other competing entities and organizations including Axoni and Digital Asset. Thus the statement in the middle should be updated to reflect that R3 does not have some kind of exclusivity over banking or enterprise relationships.

Michael Casey has said multiple times in public (even prior to the existence of Corda) that R3 was a “cartel coin” or “cartel chain” — including on at least one panel I was on with him in January 2016.  This is during a time in which R3 did not have or sell any type of product, it was strictly a services-focused company.  Maybe the organization evolves in the future – there may even be some valid criticism of a mono-implementation or a centrally run notary – but even as of this writing there is no Corda Enterprise network up and running.26

Lastly, all of these banks are members of many different types of consortia and multilateral bodies. Simply belonging to or participating in organizations such as IOSCO does not mean something nefarious is afoot.

On p. 160 they write:

The settlement time is also a factor in a financial crisis, and it contributed to the global panic of 2008.

This is a good point and it would be great to go into further details and examples in the next edition.

On p. 160 they write:

This systemic risk problem is what drew Blythe Masters, one of the key figures behind blockchain innovation on Wall Street, into digital ledger technology; she joined Digital Asset Holdings, a blockchain service provider for the financial system’s back-office processing tasks, as CEO in 2014.

Two small quibbles:

  1. Pretty sure the authors meant to say “distributed” not “digital”
  2. Blythe Masters joined as CEO in March 2015, not in 2014

On p. 162 they write:

It’s just that to address such breakdowns, this new wave of distributed ledger system designers have cherry-picked the features of Nakamoto’s invention that are least threatening to the players in the banking system, such as its cryptographic integrity, and left aside its more radical, and arguably more powerful, features, especially the decentralized, permissionless consensus system.

This is revisionist history. Satoshi bundled together existing ideas and libraries to create a blockchain. He or she did not invent cryptography from the ground up. For more details, readers are encouraged to read “Bitcoin is worse is better” from Gwern Branwen. IT systems at financial institutions were (and are) already using various bits of cryptography, encryption, permissioning, data lakes, and distributed storage methods.

Furthermore, because the participants in the financial system are known, there is no reason to use proof-of-work, which is used in Bitcoin because the participants (miners) are unknown.

Lastly, the authors touch on it and do have a valid point about market structure being changed (or unchanged) and should try to expand that in the next edition.

On p. 162 they write:

The DTCC, which settles and clears the vast majority of US stock and bond trades, handles 10,000 transactions per second; Bitcoin, at the time of this writing, could process just seven. And as strong as Bitcoin’s value – and incentive-based security model has proven to be, it’s not at all clear that a few hundred million dollars in bitcoin mining costs would deter rogue traders in New York or London when government bond markets offer billion dollar fraud opportunities.

Firstly, at the time of this writing, on-chain capacity for Bitcoin (even with Segwit activated) is still less than seven transaction per second.

Second, it is not clear how “rogue traders” in New York or London would be able to directly subvert the mining process of Bitcoin. Are the authors thinking about the potential security delta caused by watermarked tokens and colored coins?27

On p. 162 they write:

Either way, for the firms that R3 and Digital Asset serve – managers of the world’s retirement funds, corporate payrolls, government bond issuances, and so forth -these are not security risks they can afford. For now – at least until solutions as Lightning provide large-scale transaction abilities – Bitcoin isn’t anywhere near ready to service Wall Street’s back-office needs.

But Bitcoin is not fit for purpose for regulated financial institutions. Satoshi wasn’t trying to solve back-office problems that enterprises had, why are the authors intent on fitting a round peg in a square hole?

Also, Lightning isn’t being designed with institutions in mind either. Even if one or more of its implementations becomes widely adopted and used by Bitcoin users, it still doesn’t (currently) meet the functional and non-functional requirements that regulated institutions have. Why market it as if it does?

On p. 162 they write:

There are also legal concerns. R3’s Swanson has argued that the mere possibility of a 51 percent attack – that scenario in which a minder gains majority control of a cryptocurrency network’s computing power and fraudulently changes transactions – means that there can never be “settlement finality” in a cryptocurrency transaction. That of perpetual limbo is a scenario that Wall Street lawyers can’t live with, he said. We might retort that the bailouts and various other deals which banks reversed their losses during the crisis make a mockery of “finality,” and that Bitcoin’s track record of irreversibility is many magnitudes better than Wall Street’s. Nonetheless, Swanson’s catchy critique caught on among bankers. After all, he was preaching to the choir.

So there are a few issues with this statement.

I did not invent the concept of “settlement finality” nor did ‘Wall Street lawyers.’  The term dates back decades if not centuries and in its most recent incarnation is the product of international regulatory bodies such as BIS and IOSCO. Regulated financial institutions – starting with financial market infrastructures – are tasked with reducing risk by making sure the payment systems, for instance, are irreversible. Readers should peruse the PFMIs published in 2012.

The next issue is, they make it sound like I lobbied banks using some ‘gotcha’ loophole to scare banks from using Bitcoin. Nowhere in my presentations or speeches have I justified or handwaved away the (criminally?) negligent behavior of individuals at banks that may have benefited from bailouts. This is another unfair characterization that they have painted me as.

To that point, they need to be more specific about what banks got specific transactions reversed. Name and shame the organizations and explain how it would not be possible in a blockchain-based world. Comparing Bitcoin with ‘Wall Street’ doesn’t make much sense because Bitcoin just handles transfers of bitcoin, nothing else. ‘Wall Street’ encompasses many different product lines and processes many other types of transactions beyond payments.

All in all, painting me as a villain is weak criticism and they should remove it in their next edition.

On p. 163 they write about permissioned ledgers:

They’re not racing each other to win currency rewards, which also means they’re not constantly building a wasteful computing infrastructure a la Bitcoin.

They say that as if it is a good thing. Encourage readers to look through the energy costs of maintaining several different proof-of-work networks that handle almost no commerce.

On p. 163 they write:

That’s why we argue that individuals, businesses, and governments really need to support the various hard-core technical solutions that developers are pursuing to help permissionless ledgers like Bitcoin and Ethereum overcome their scaling, security, and political challenges.

This agenda has been pretty clear throughout the book, though it may be more transparent to the reader if it comes earlier in chapter 1 or 2.

From a historical perspective this argument doesn’t make much sense. If Karl Benz had said the same thing in the 19th century about getting engineers to build around his car and not others. Or the Wright Brothers had been ‘more successful’ at suing aerospace competitors. Why not let the market – and its participants – chose to work on platforms they find of interest?

On p. 165 they write about the MIT Digital Currency Inititative but do not disclose that they solicit financial support from organizations such as central banks, some of whom pay up to $1 million a year to collaborate on research projects. Ironically, the details of this program are not public.

On p. 167 they write:

A broad corporate consortium dedicated to a mostly open-source collaborative approach, Hyperledger is seeking to develop nothing less than a common blockchain / distributed ledger infrastructure for the global economy, one that’s targeted not only at finance and banking but also at the Internet of Things, supply chains, and manufacturing.

The next edition should update that passage. All of the projects incubated by the Hyperledger Project are open sourced, there is no “mostly.” And not all of these projects involve a blockchain, some involve identity-related efforts.28

On p. 169 and again on p. 172 the authors quote Joi Ito who compares TCP/IP with “walled gardens” such as AOL and Prodigy.

That is comparing apples-and-oranges. TCP/IP is a suite of protocols, not a business. AOL and Prodigy are businesses, not protocols. AOL used a proprietary protocol and you could use TCP/IP via a gateway. Today, there are thousands of ‘walled gardens’ called ISPs that allow packets to jump across boundaries via handshake agreements. There is no singular ‘Internet’ but instead there are thousands of intranets tied together using common standards.

Readers may be interested in: Intranets and the Internet

On p. 173 they write:

Permissionless systems like those of Bitcoin and Ethereum inherently facilitate more creativity and innovation, because it’s just understood that no authorizing company or group of companies can ever say this or that thing cannot be built.

How are they measuring this? Also, while each platform has its own terms of service, it cannot be said that you need explicit permission to build an application on top of a specific permissioned platform. The permissioning has to do with how validation is handled.

On p. 173 they write:

It’s the guarantee of open access that fosters enthusiasm and passion for “permissionlessness” networks That’s already evident in the caliber and rapid expansion in the number of developers working on public blockchain applications. Permissioned systems will have their place, if nothing else because they can be more easily programmed at this early stage of the technology’s life to handle heavier transaction loads. But the overarching objective for all of us should be to encourage the evolution of an open, interoperable permissionless network.

This is just word salad that lacks supporting evidence. For the next edition the authors should tabulate or provide a source for how many developers are working on public blockchain applications.

The passage above also continues to repeat a false dichotomy of “us versus them.” Why can’t both of these types of ‘platforms’ live in co-existence? Why does it have to be just one since neither platform can fulfill the requirements of the other?

It’s like saying only helicopters provide the freedom to navigate and that folks working on airplanes are only doing so because they are less restricted with distances. Specialization is a real.

On p. 173 they conclude with:

There’s a reason we want a world of open, public blockchains and distributed trust models that gives everybody a seat at the table. Let’s keep our eyes on that ball.

This whole chapter and this specific statement alone comes across as preachy and a bit paternalistic. If the message is ‘permissionlessness’ then we should be allowed to pursue our own goals and paths on this topic.

Also, there are real entry and exit costs to be a miner on these public chains so from an infrastructure point of view, it is not really accurate to say everybody gets a seat at the table.

Chapter 7

This is probably their strongest chapter. They do a good job story telling here. Though there were few areas that were not clear.

On p. 179 they write:

But as Bitcoin and the blockchain have shown, the peer-to-peer system of digital exchange, which avoids the cumbersome, expensive, and inherently exclusionary banking system, may offer a better way.

The authors have said 5-6 times already that proof-of-work networks like Bitcoin can be very costly and wasteful to maintain. It would be helpful to the reader for the authors to expand on what areas the banking system is expensive.

And if a bank or group of banks used a permissioned blockchain, would that reduce their expenses?

On p. 181 they write about time stamps:

The stamp, though, is incredibly powerful. And that, essentially, is the service that blockchains provide to people. This public, recognizable open ledger, which can be checked by any time by anybody, acts in much the same way as the notary stamp: it codified that certain action took place at a certain time, with certain particulars attached to it, and it does this in a way that the record of that transaction cannot be altered by private parties, whether they be individuals or governments.

In the next edition the authors should differentiate time stamps and all the functions a notary does. Time stamps may empower notaries but simply stamping something doesn’t necessarily make it notarized. We see this with electronic signatures from Hello Sign and Docusign.

Also, these blockchains have to be funded or subsidized in some manner otherwise they could join the graveyard of hundreds of dead coins.

On p. 181 they write about Factom and Stampery. It would be good to get an update on these types of companies because the founder of Stampery who they single out – Luis Ivan Cuende – has moved on to join and found Aragon.

On p. 183 they discuss data anchoring: taking a hash of data (hash of a document) and placing that into a blockchain so that it can be witnessed. This goes back to the proof-of-existence discussion earlier on. Its function has probably been overstated and is discussed in Anchor’s Aweigh.

On p. 184 they discuss Chromaway. This section should be updated because they have come out with their own private blockchain, Chromapolis funded via a SAFT.

On p. 185 they write:

The easier thing to do, then, for a reform-minded government, is to hire a startup that’s willing to go through the process of converting all of an existing registry, if one exists, into a digital format that can be recorded in a blockchain.

Why? Why does this information have to be put onto a blockchain? And why is a startup the right entity to do this?

On p. 186 they mention several companies such as Bitfury, BitLand, and Ubiquity. It would be good to update these in the next edition to see if any traction occurred.

On p. 187 they write:

They key reason for that is the “garbage-in/garbage-out” conundrum: when beginning records are unreliable, there’s a risk of creating an indisputable permanence to information that enshrines some abuse of a person’s property rights.

This GIGO conundrum doesn’t stop and isn’t limited to just the beginning of record keeping. It is an ongoing challenge, potentially in every country.

On p. 188-192 they describe several other use cases and projects but it is unclear why they can’t just use a database.

On p. 193 they write:

Part of the problem is that cryptocurrencies continue to sustain a reptutation among the general public for criminality. This was intensified by the massive “WannaCry” ransomware attacks of 2017 in which attackers broke into hospitals’ and other institutions’ databases, encrypted their vital files and then extorted payments in bitcoin to have the data decrypted. (In response to the calls to ban bitcoin that inevitably arose in the wake of this episode, we like to point that far more illegal activity and money laundering occurs in dollar notes, which are much harder to trace than bitcoin transactions. Still, when it comes to perception, that’s beside the point – none of these incidents help Bitcoin’s reputation.)

This is a whataboutism. Both actions can be unethical and criminal, there is no need to downplay one versus the other. And the reason why bitcoin and other cryptocurrencies are used by ransomware authors is because they are genuinely useful in their operating environment. Data kidnapping is a good use case for anarchic networks… and cryptocurrencies, by design, continue to enable this activity. The authors can attempt to downplay the criminal element, but it hasn’t gone away and in fact, has been aided by additional liquidity to coins that provide additional privacy and confidentiality (like Monero).

On p. 193 they write about volatility:

This is a massive barrier to Bitcoin achieving its great promise as a tool to achieve financial inclusion. A Jamaican immigrant in Miami might find the near-zero fees on a bitcoin transaction more appealing than the 9 percent it costs to use a Western Union agent to send money home to his mother.

This financial inclusion narrative is something that Bitcoin promoters created after Satoshi disappeared. The goal of Bitcoin — according to the whitepaper and announcement threads – wasn’t to be a new rail for remittance corridors. Maybe it becomes used that way, but the wording in the passage above as a “great promise” is misleading.

Also, the remittance costs above should be fact-checked at the very handy Save On Send site.

On p. 194 they write about BitPesa. Until we see real numbers in Companies House filings, it means their revenue is tiny. Yet the authors make it sound like they have “succeeded”:

The approach is paying dividends as evident in the recent success of BitPesa, which was established in 2013 and was profiled in The Age of Cryptocurrency. The company, which offers cross-border payments and foreign-exchange transactions in and out of Kenya, Nigeria, Tanzania, and Uganda, reported 25 percent month-on-month growth, taking its transaction volume midway through 2017, up from $1 million in 2016.

They also cited some remittance figures from South Korea to the Philippines which were never independently verified and are old.

On p. 194 they dive into Abra a company they described as a remittance company but earlier this year they pivoted into the investment app category as a Robinhood-wannabe, with a coin index.

On p. 196 they discuss the “Somalia dilemma” in which the entire country is effectively unable to access external financial systems and somehow a blockhain would solve their KYC woes. The authors then describe young companies such as Chainalysis and Elliptic which work with law enforcement to identify suspicious transactions. Yet they do not close the loop on the narrative as to how the companies would help the average person in Somalia.

On p. 198 they discuss a startup called WeTrust and mention that one of the authors – Michael – is an advisor. But don’t disclose if he received any compensation for being an advisor. WeTrust did an ICO last year. This is important because the SEC just announced it has fined and settled with Floyd Mayweather and DJ Khaled for violating anti-touting regulations.

Chapter 8

Chapter 8 dives into self-sovereign identity which is genuinely an interesting topic. It is probably the shortest chapter and perhaps in the next edition can be updated to reflect any adoption that took place.

On p. 209 they write about physical identification cards:

Already, in the age of powerful big data and network analytics – now enhanced with blockchain-based distributed trust systems to assure data integrity – our digital records are more reliable indicators of the behavior that defines who we are than are the error-prone attestations that go into easily forged passports and laminated cards.

How common and how easily forged are passports? Would be interesting to see that reference and specifically how a blockchain would actually stop that from happening.

On p. 212 they write about single-sign ons:

A group of banks including BBVA, CIBC, ING, Societe Generale, and UBS has already developed such a proof of concept in conjunction with blockchain research outfit R3 CEV.

Earlier they described R3 differently. Would be good to see more consistency and also an update on this project (did it go anywhere?).

On p. 213 they describe ConsenSys as a “think tank” but it is actually a ‘venture studio’ similar to an incubator (like 500 Startups). Later on p. 233 they describe ConsenSys as an “Ethereum-based lab”.

On p. 216 they write about Andreas Antonopoulos:

What we should be doing, instead of acting as judge and executioner and making assumptions “that past behavior will give me some insight into future behavior,” Antonpolous argues, is building systems that better manage default risk within lenders’ portfolios. Bitcoin, he sustains, has the tolls to do so. There’s a lot of power in this technology to protect against risk: smart contracts, multi-signature controls that ensure that neither of the two parties can run off with the funds without the other also signing a transaction, automated escrow arrangements, and more broadly, the superior transparency and granularity of information on the public ledger.

There are at least two issues with this:

Nowhere in this section do the authors – or Antonopolous – provide specific details for how someone could build a system that manages default risk on top of Bitcoin. It would be helpful if this was added in the next edition.
And recently, Antonopoulos claims to have been simply educating people about “blockchain technology” and not promoting financial products.

If you have followed his affinity marketing over the past 4-5 years he has clearly promoted Bitcoin usage as a type of ‘self-sovereign bank‘ — and you can’t use Bitcoin without bitcoins.29 He seems to be trying to have his cake and eat it too and as a result got called out by both Nouriel and Buttcoin.

On p. 219 they write:

If an attestation of identifying information is locked into an immutable blockchain environment, it can’t be revoked, not without both parties agreeing ot the reversal of the transaction. That’s how we get to self-sovereignty. It’s why, for example, the folks at Learning Machine are developing a product to prove people’s educational bona fides on Blockcerts, an MIT Media Lab-initiated open-source code for notarizing university transcripts that hashes those documents to the bitcoin blockchain. Note the deliberate choice of the most secure, permissionless blockchain, Bitcoin’s. A permissioned blockchain would fall short of the ideal because there, too, the central authority controlling the network could always override the private keys of the individual and could revoke their educational certificates. A permissionless blockchain is the only way to give real control/ownership of the document to the graduate, so that he/she can disclose this particularly important attribute at will to anyone who demands it.

This disdain for ‘permissioned blockchains’ is a red herring and another example of the “us versus them” language that is used throughout the book. If a blockchain has a central authority that can do what the authors describe, it would be rightly described as a single point of failure and trust. And this is why it is important to ask what ‘permissioned’ chain they had in mind, because they are not all the same.

They also need to explain how they measure ‘most secure’ because Bitcoin – as described throughout this review – has several areas of centralization include mining and those who control the BIP process.

On p. 219 they quote Chris Allen. Could be worth updating this because he left Blockstream last year.

Chapter 9

This chapter seemed light on details and a bit polemical.

For instance, on p. 223 they write:

Many of our politicians seem to have no ideas this is coming. In the United States, Donald Trump pushes a “Buy America First” campaign (complete with that slogan’s echoes of past fascism), backed by threats to raise tariffs, tear up trade deals, boot undocumented immigrants out of the country, and “do good deals for America.” None of this addresses the looming juggernaut of decentralized software systems. IoT systems and 3D printing, all connected via blockchains and smart-contract-triggered, on-demand service agreements, will render each presidential attempt to strong-arm a company into retaining a few hundred jobs in this or that factory town even more meaningless.

Putting the politics aside for a moment, this book does not provide a detailed blue print for how any of the technology listed will prevent a US president from strong-arming a company to do any specific task. How does a 3D printer connected to a blockchain prevent a president from executing on their agenda?

On p. 224 they write about universal basic income:

This idea, first floated by Thomas Paine in the eighteenth century, has enjoyed a resurgence on the left as people have contemplated how robotics, artificial intelligence, and other technologies would hit working-class jobs such as truck driving. But it may gain wider traction as decentralizing force based on blockchain models start destroying middle-class jobs.

This speculation seems like a non sequitur. Nowhere in the chapter do they detail how a “blockchain-based model” will destroy middle class jobs. What is an example?

On p. 227 they write:

In case you’re a little snobbish about such lowbrow art, we should also point out that a similar mind-set of collaborative creation now drives the world of science and innovation. Most prominently, this occurs within the world of open-source software development; Bitcoin and Ethereum are the most important examples of that.

If readers were unfamiliar with the long history of the free open source software movement, they might believe that. But this ignores the contributions of BSD, Linux, Apache, and many other projects that are regularly used each and every day by enterprises of all shapes and sizes.

Also, during the writing of this review, an open source library was compromised — potentially impacting the Copay wallet from Bitpay — and no one noticed (at first). Eric Diehl, a security expert at Sony, has a succinct post up on the topic:

In other words, this is an example of a software supply chain attack. One element in the supply chain (here a library) has been compromised. Such an attack is not a surprise. Nevertheless, it raises a question about the security of open source components.

Many years ago, the motto was “Open source is more secure than proprietary solutions.” The primary rationale was that many eyes reviewed the code and we all know that code review is key for secure software. In the early days of open source, this motto may have been mostly true, under some specific trust models ( see https://eric-diehl.com/is-open-source-more-secure/, Chapter 12 of Securing Digital Video…). Is it still true in our days?

How often do these types of compromises take place in open-source software?

On p. 232 they write:

Undaunted, an unofficial alliance of technologists, entrepreneurs, artists, musicians, lawyers, and disruption-wary music executives is now exploring a blockchain-led approach to the entire enterprise of human expression.

What does that even mean?

On p. 232 they write about taking a hash of their first book and inserting it into a block on the Bitcoin blockchain. They then quote Dan Ardle from the Digital Currency Council who says:

“This hash is unique to the book, and therefore could not have been generated before the book existed. By embedding this hash in a bitcoin transaction, the existence of the book on that transaction date is logged in the most secure and irrefutable recordkeeping system humanity has ever devised.”

These plattitudes are everywhere in the book and should be toned down in the next edition especially since Ardle – at least in the quote – doesn’t explain how he measures secure or irrefutable. Especially in light of hundreds of dead coins that were not sustainable.

On p. 233 they write:

The hope now is that blockchains could fulfill the same function that photographers carry out when they put a limited number of tags and signatures on reproduced photo prints: it turns an otherwise replicable piece of content into a unique asset, in this case a digital asset.

This seems to be solutionism because blockchains are not some new form of DRM.

Continuing on this topic, they write:

Copying a digital file of text, music, or vidoe has always been trivial. Now, with blockchain-based models, Koonce says, “we are seeing systems develop that can unequivocally ensure that a particular digital ‘edition’ of a creative work is the only one that can be legitimately transferred or sold.” Recall that the blockchain, as we explained in chapter three, made the concept of a digital asset possible for the first time.

This is empirically untrue. It is still trivially possible to download and clone a blockchain, nothing currently prevents that from happening. It’s why there are more than 2,000 cryptocurrencies at the time of this writing and why there are dozens of forks of Bitcoin: blockchains did not make the concept of a digital asset possible. Digital assets existed prior to the creation of Bitcoin and attempting to build a DRM system to prevent unauthorized copies does not necessarily require a blockchain to do.

On p. 238 they write:

Yet, given the amssive, multitudinous, and hetergeneous state of the world’s content, with hundreds of millions of would-be creators spread all over the world and no way to organize themselves as a common interest, there’s likely a need for a permissionless, decentralized system in which the data can’t be restricted and manipulated by a centralized institution such as a recording studio.

Maybe, but who maintains the decentralized system? They don’t run themselves and are often quite expensive (as even the authors have mentioned multiple times). How does a decentralized system fix this issue? And don’t some artists already coordinate via different interest groups like the RIAA and MPAA?

On p. 240 they discuss Mediachain’s acquisition by Spotify:

On the other hand, this could result in a private company taking a technology that could have been used publicly, broadly for the general good, and hiding it, along with its innovative ideas for tokens and other solutions, behind a for-profit wall. Let’s hope it’s not the latter.

This chapter would have been a bit more interesting if the authors weren’t as heavy handed and opinionated about how economic activities (like M&A) should or should not occur. To improve their argument, they could include links or citations for why this type of acquisition has historically harmed the general public.

Chapter 10

On p. 243 they write:

Bitcoin, with its new model of decentralized governance for the digital economy, did not spring out of nowhere, either. Some of the elements – cryptography, for instance – are thousands of years old. Others, like the idea of electronic money, are decades old. And, as should be evident in Bitcoin’s block-size debate, Bitcoin is still very much a work in progress.

This statement is strange because it is inconsistent with what they wrote on p. 162 regarding permissioned chains: “… cherry-picked the features of Nakamoto’s invention that are least threatening to the players in the banking system, such as its cryptographic integrity…”

In this section they are saying that the ideas are old, but in the passage above in chapter 6, they make it sound like it was all from Nakamoto. The authors should edit it to be one way or the other.

Also, Bitcoin’s governance now basically consists of off-chain shouting matches on social media. Massive influence and lobbying campaigns on reddit and Twitter is effectively how the UASF / no2x movement took control of the direction of the BIP process last year.

On p. 245 they write:

That can be found in the individual freedom principles that guide the best elements of Europe’s new General Data Protection Regulation, or GDPR.

All blockchains that involve cross-jurisdictional movement of data will likely face challenges regarding compliance with data privacy laws such as GDPR. Michele Finck published a relevant paper on this topic a year ago.

See also: Clouds and Chains

On p. 247 they write about if you need to use a blockchain:

Since a community must spend significant resources to prove transactions on a blockchain, that type of record-keeping system is most valuable when a high degree of mutual mistrust means that managing agreements comes at a prohibitively high price. (That price can be measured in various ways: in fees paid to middlemen, for instance, in the time it takes to reconcile and settle transactions, or in the fact that it’s impossible to conduct certain business processes, such as sharing information across a supply chain.) When a bank won’t issue a mortgage to a perfectly legitimate and creditworthy homeowner, except at some usurious rate, because it doesn’t trust the registry of deeds and liens, we can argue that the price of trust is too high and that a blockchain might be a good solution.

Not all blockchains utilize proof-of-work as an anti-Sybil attack mechanism, so it cannot be said that “a community must spend significant resources”.

In the next edition it would be interesting to see a cost / benefit analysis for when someone should use a blockchain as it relates the mortgage use case they describe above.

On p. 248 they talk about voting:

Every centralized system should be open for evaluation – even those of government and the political process. Already, startups such as Procivis are working on e-voting systems that would hand the business of vote-counting to a blockchain-based backend. And some adventurous governments are open to the idea. By piloting a shareholder voting program on top of Nasdaq’s Linq blockchain service, Estonia is leading the way. The idea is that the blockchain, by ensuring that no vote can be double-counted – just as no bitcoin can be double-spent – could for the first time enable reliable mobile voting via smartphones. Arguably it would both reduce discrimination against those who can’t make it to the ballot box on time and create a more transparent, accountable electoral system that can be independently audited and which engenders the public’s trust.

A month ago Alex Tapscott made a similar argument.

He managed to temporarily unite some of the warring blockchain tribes because he penned a NYT op-ed about how the future is online voting… powered by blockchains. Below is a short selection of some Twitter threads:

  • Arvind Narayanan, a CS professor at Princeton said this is a bad idea
  • Angela Walch, a law professor at St. Mary’s said this is a bad idea
  • Philip Daian, a grad student at Cornell said this is a bad idea.
  • Luis Saiz, a security researcher at BBVA said this is a bad idea
  • Joseph Hall, the Chief Technologist at the Center for Democracy & Technology said this a bad idea
  • Preston Byrne, a transatlantic attorney and father of marmotology said this is a bad idea
  • Matt Blaze, a CS professor at UPenn, said this is a bad idea

NBC News covered the reaction to Tapscott’s op-ed.  Suffice to say, the next edition should either remove this proposal or provide more citations and references detailing why this is a good idea.

Throughout this chapter projects like BitNation and the Economic Space Agency are used as examples of projects that are “doing something” — but none of these have gotten much traction likely because it’s doing-something-theater.

On p. 252 – 255 they uncritically mention various special interest groups that are attempting to influence decision makers via lobbying. It would be good to see some balance added to this section because many of the vocal promoters at lobbying organizations do not disclose their vested interests (e.g., coin positions).

On p. 255 they talk about “Crypto Valley” in Switzerland:

One reason they’ve done so is because Swiss law makes it easier to set up the foundations needed to launch coin offerings and issue digital tokens.

MME – the Swiss law firm that arguably popularized the approach described in this section – set up more than a dozen of these foundations (Stiftung) before stopping. And its creator, Luke Mueller, now says that:

“The Swiss foundation actually is a very old, inflexible, stupid model,” he said. “The foundation is not designed for operations.”

Could be worth updating this section to reflect what happened over the past year with lawsuits as well.

On p. 255 they write:

The next question is: what will it take for U.S. policymakers to worry that America’s financial and IT hubs are losing out to these foreign competitors in this vital new field.

This is FOMO. The authors should tabulate all of the companies that have left the US – or claim to leave – and look at how many jobs they actually set up overseas because of these laws. Based on many anecdotes it appears what happens in practice is that a company will register or hold an ICO overseas in say, Singapore or Panama, but then open up a development arm in San Francisco and New York. They effectively practice regulatory arbitrage whereby they bypass securities laws in one country (e.g., the US) and then turn around and remit the proceeds to the same country (the US).

On p. 263 they conclude the chapter with:

No state or corporation can put bricks around the Bitcoin blockchain or whitewash its record. They can’t shut down the truth machine, which is exactly why it’s a valuable place to record the voices of human experience, whether it’s our love poems or our cries for help. This, at its core, is why the blockchain matters.

Their description basically anthropromorphizes a data structure. It also comes across as polemical as well as favoritism towards one specific chain, Bitcoin. Furthermore, as discussed throughout this review, there are clear special interest groups – including VC-backed Bitcoin companies — that have successfully pushes Bitcoin and other cyrptocurrencies – into roadmaps that benefit their organizations.

Conclusion

Like their previous book (AoC), The Truth Machine touches on many topics but only superficially.  It makes a lot of broad sweeping claims but curious readers – even after looking at the references – are left wanting specifics: how to get from point A to point B.

There also seems to be an anti-private enterprise streak within the book wherein the authors condescendingly talk down efforts to build chains that are not anarchic. That becomes tiring because – as discussed on this blog many times – it is not a “us versus them” proposition.  Both types of blockchains can and do exist because they are built around different expectations, requirements, and operating environments.

In terms of one-sided narratives: they also did not reach out to several of the people they villify, such as both myself and Preston Byrne as well as coin proponents such as Roger Ver and Jihan Wu.  The next edition should rectify this by either dropping the passages cited above, or in which the authors reach out to get an on-the-record comment from.

Lastly, while some churn is expect, many of the phrases throughout the book did not age well because it relied on price bubbles and legal interpretations that went a different direction (e.g., SAFTs are no longer popular).  If you are still looking for other books to read on the topic, here are several other reviews.

Endnotes

  1. See A brief history of R3 — the Distributed Ledger Group []
  2. Developers of various coins will include “check points” which do make it virtually impossible to roll back to a specific state. Both Bitcoin and Bitcoin Cash have done this. []
  3. See Why the payment card system works the way it does – and why Bitcoin isn’t going to replace it any time soon by Richard Brown []
  4. See Learning from the past to build an improved future of fintech and Distributed Oversight: Custodians and Intermediaries []
  5. Unsurprisingly users want to be able to hold someone accountable for their lack of care and/or difficulty in safely and securely backing up their keys. []
  6. Ibid []
  7. Technically every orphaned block alters the blockchain, because you thought one thing and now you are asked to think another. []
  8. Readers may be interested in The Path of the Blockchain Lexicon by Angela Walch []
  9. Recall that generating hashes is a means to an end: to make Sybil attacks costly on a network with no “real” identities. []
  10. For instance, Selfish Mining []
  11. Albumatic -> Koala -> Chain.com the Bitcoin API company -> Chain.com the enterprise company, etc. []
  12. This is slightly reminiscent of Dr. Strangelove in which General Turgidson says, “I admit the human element seems to have failed us here.” []
  13. See The Revolving Door Comes to Cryptocurrency by Lee Reiners and Is Bitcoin Secretly Messing with the Midterms? from Politico []
  14. See also his role in attacks on CoiledCoin and BBQcoin []
  15. David Andolfatto, from the St. Louis Fed, also pointed this out back in May 2015, skip to the 28 min mark []
  16. See the “no” side of the debate: Can Bitcoin Become a Dominant Currency? []
  17. Ironically in his most recent op-ed published today, he asks people to “quit this ugly obsession with price.”  There are at least 3-4 instances of the co-authors using price as a metric for “strength” in this book. []
  18. See also this related thread from Don Bailey []
  19. Some exchanges, such as Gemini, want proof of mining activity. See also: What is Permissioned-on-Permissionless []
  20. See also the Polly Pocket Investor Day []
  21. Ryan Zurrer, second-in-command at Polychain, was recently fired from Polychain amid weak performance this year. []
  22. The whole public sale thing is problematic from a MSB perspective. The colorability of the position taken by Cooley in that section was questionable at the time and possibly indefensible now. []
  23. Mike wrote the first line of code for Corda over three years ago. []
  24. The initial conversation with Bob took place in San Francisco during Coin Summit. Bob later became a key person at Chainalysis. []
  25. According to Preston:

    Eris, now Monax, was the first company to look at the combination of cryptographic primitives that make up Bitcoin and attempt to use them to make business processes more efficient. In shorthand, the company invented “blockchains without coins” or “permissioned blockchains.”

    Bitcoin’s dysfunctional governance wasn’t a “godsend” for our business, as we weren’t competing with Bitcoin. Rather we were trying to dramatically expand the usecases for database software that had peer to peer networking and elliptic curve cryptography at its core, in recognition of the fact that business counterparties reconcile shared data extremely inefficiently and their information security could benefit from a little more cryptography.

    In exchange for our efforts, Bitcoiners of all shapes and sizes heaped scorn on the idea that any successor technology could utilize their technology’s components more efficiently. We responded with pictures of marmots to defuse some of the really quite vitriolic attacks on our company and because I like marmots; these little critters became the company’s mascot through that process.

    Subsequent developments vindicated my approach. Cryptographically-secure digital cash being trialled by Circle, Gemini, and Paxos utilizes permissioning, a concept that Circle’s Jeremy Allaire said was impossible in 2015 – “they’re not possible separately” – and I predict that as those USD coins seek to add throughput capacity and functionality they will migrate off of the Ethereum chain and onto their own public, permissioned chains which are direct conceptual descendants of Eris’ work.

    They will compete with Bitcoin in some respects, much as a AAA-rated bond or USD compete with Bitcoin now, but they will not compete with Bitcoin in others, as they will cater to different users who don’t use Bitcoin today and are unlikely to use it in the future.

    Ultimately, whether Eris’ original vision was right is a question of how many permissioned chains there are, operating as secure open financial services APIs as Circle and Gemini are using them now. I predict there will be rather a lot of those in production sooner rather than later. []

  26. Oddly the authors of the book do not name “Corda” in this book… they use the phrase: “R3’s distributed ledger” instead. []
  27. Readers may also be interested in reading the 2016 whitepaper from the DTCC []
  28. At the time of this writing there are: 5 incubated “Frameworks” and 6 incubated “Tools.” []
  29. Antonopolous recently gave a talk in Seattle where he promoted the usage of cryptocurrencies to exit the banking system.  Again, a user cannot use a cryptocurrency without absorbing the exposure and risks attached to the underlying coins of those anarchic networks. []

How much electricity is consumed by Bitcoin, Bitcoin Cash, Ethereum, Litecoin, and Monero?

I recently created a thread that on Twitter regarding the lower-bound estimates for how much electricity the Bitcoin blockchain consumed using publicly available numbers.

The first part of this post is a slightly modified version of that thread.

The second part of this post, below part 1, includes additional information on Bitcoin Cash, Ethereum, Litecoin, and Monero using the same type of methodology.

Background

The original nested thread started by explaining why a proof-of-work (PoW) maximalist view tries to have it both ways.

You cannot simultaneously say that Bitcoin is – as measured by hashrate – the “most secure public chain” and in the same breath say the miners do not consume enormous quantities of energy to achieve that.  The fundamental problem with PoW maximalism is that it wants to have a free energy lunch.

All proof-of-work chains rely on resource consumption to defend their network from malicious attackers.  Consequently, a less resource intensive network automatically becomes a less secure network.1  I discussed this in detail a few years ago.

Part 1: Bitcoin

Someone recently asked for me to explain the math behind some of Bitcoin’s electricity consumption, below is simple model using publicly known numbers:

  • the current Bitcoin network hashrate is around 50 exahashes/sec
  • the most common mining hardware is still the S9 Antminer which churns out ~13 terahashes/sec

Thus the hashrate pointed at the Bitcoin network today is about 50,000,000 terashashes.

Dividing one from the other, this is the equivalent of 3,846,000 S9s… yes over 3 million S9s.

While there is other hardware including some newer, slightly more energy efficient gear online, the S9 is a good approximate.

Because the vast majority of these machines are left on 24/7, the math to estimate how much energy consumption is as follows:

  • in practice, the S9 draws about 1,500 watts
  • so 1,500 x 24 = 36kWh per machine per day

Note: here’s a good thread explaining this by actual miners.

In a single month, one S9 will use ~1,080 kWh.

Thus if you multiply that by 3,846,000 machines, you reach a number that is the equivalent of an entire country.

  • for a single day the math is: ~138.4 million kWh / day
  • annually that is: ~50.5 billion kWh / year

For perspective, ~50.5 billion kWh / year would place the Bitcoin network at around the 47th largest on the list of countries by electricity consumption, right between Algeria and Greece.

But, this estimate is probably a lower-bound because it doesn’t include the electricity consumed within the data centers to cool the systems, nor does it include the relatively older ASIC equipment that is still turned on because of local subsidies a farm might receive.

So what?

According to a recent Wired article:

In Iceland, the finance minister has warned that cryptocurrency mining – which uses more power than the nation’s entire residential demand – could severely damage its economy.

Recent analysis from a researcher at PwC places the Bitcoin network electricity consumption higher, at more than the level of Austria which is number 39th on that list above.  Similarly, a computer science professor from Princeton estimates that Bitcoin mining accounts for almost 1% of the world’s energy consumption.2

Or to look at it in a different perspective: the Bitcoin network is consuming the same level of electricity of a developed country – Austria – a country that generates ~$415 billion per year in economic activity.

Based on a recent analysis from Chainalysis, it found that Bitcoin – which is just one of many proof-of-work coins – handled about $70 million in payments processed for the month of June.  Yet its cost-per-transaction (~$50) is higher than at any point prior to November 2017.

You don’t have to be a hippy tree hugger (I’m not) to clearly see that a proof-of-work blockchains (such as Bitcoin and its derivatives) are currently consuming significantly more resources than they create. However this math is hand-waved away on a regular basis by coin lobbyists.

The figure also didn’t include the e-waste generated from millions of single-use ASIC mining machines that are useful for about ~12 months; or the labor costs, or building rents, or transportation, etc.  These ASIC-based machines are typically discarded and not recycled.

In addition to e-waste, many mining farms also end up with piles of discarded cardboard boxes and styrofoam (source)

Part 2: Bitcoin Cash

With Bitcoin Cash the math and examples are almost identical to the Bitcoin example above.  Why?  Because they both use the same SHA256 proof-of-work hash function and as a result, right now the same exact hardware can be used to mine both (although not simultaneously).3

So what do the numbers look like?

The BCH network hashrate has been hovering around 4 – 4.5 exahashes the past month. So let’s use 4.25 exahashes.

Note: this is about one order of magnitude less hashrate than Bitcoin so you can already guesstimate its electricity usage.  But let’s do it by hand anyways.

An S9 generates ~13 TH/s and 4.25 exahashes is 4.25 million terahashes.

After dividing: the equivalent of about 327,000 S9s are used.

Again, these machines are also left on 24/7 and consume about 36 kWh per machine per day.  So a single S9 will use ~1,080 kWh per month.

  • 327,000 S9s churning for one day: ~11.77 million kWh / day
  • Annually this is: ~4.30 billion kWh / year

To reuse the comparison above, what country’s total electricity consumption is Bitcoin Cash most similar to?

Around 124th, between Moldova and Cambodia.

How much economic activity does Moldova and Cambodia generate with that electricity consumption?  According to several sources, Cambodia has an annual GDP of ~ $22 billion and Moldova has an annual GDP of ~$8 billion.

For comparison, according to Chainalysis, this past May, Bitcoin Cash handled a mere $3.7 million in merchant payments, down from a high of $10.5 million in March a couple months before.

Also, the Bitcoin Cash energy consumption number is likely a lower-bound as well for the reasons discussed above; doesn’t account for the e-waste or the resources consumed to create the mining equipment in the first place.

This illustrates once again that despite the hype and interest in cryptocurrencies such as Bitcoin and Bitcoin Cash, there is still little real commercial “activity” beyond hoarding, speculation, and illicit darknet markets.  And in practice, hoarding is indistinguishable from losing a private key so that could be removed too.  Will mainstream adoption actually take place like its vocal advocates claim it will?

Discarded power supplies from Bitcoin mining equipment (source)

Part 3: Ethereum

So what about Ethereum?

Its network hashrate has been hovering very closely to 300 TH/s the past month

At the time of this writing, the Ethereum network is still largely dominated by large GPU farms. It is likely that ASICs were privately being used by a handful of small teams with the necessary engineering and manufacturing talent (and capital), but direct-to-consumer ASIC hardware for Ethereum didn’t really show up until this summer.

There are an estimated 10 million GPUs churning up hashes for the Ethereum network, to replace those with ASICs will likely take more than a year… assuming price stability occurs (and coin prices are volatile and anything but stable).

For illustrative purposes, what if the entire network were to magically switch over the most efficient hardware -the Innosilicon A10 – released next month?

Innosilicon currently advertises its top machine can generate 485 megahashes/sec and consumes ~ 850 W.

So what is that math?

The Ethereum network is ~300 TH/s which is around 300,000,000 megahashes /sec.

Quick division: that’s the equivalent of 618,557 A10 machines.

Again, each machine is advertised to consume ~850 W.

  • in a single day one A10 consumes: 20.4 kWh
  • in a month: ~612 kWh

So what would 618,557 A10 machines consume in a single day?
– about 12.6 million kWh / day

And annually:
– about 4.6 billion kWh / year

That works out to be between Afghanistan or Macau.  However…

Before you say “this is nearly identical to Bitcoin Cash” keep in mind that the Ethereum estimate above is the lowest of lower-bounds because it uses the most efficient mining gear that hasn’t even been released to the consumer.

In reality the total energy consumption for Ethereum is probably twice as high.

Why is Etherum electricity usage likely twice as high as the example above?

Because each of the ~10 million GPUs on the Ethereum network is significantly less efficient per hash than the A10 is. 4  Note: an example of a large Ethereum mine that uses GPUs is the Enigma facility.

For instance, an air-cooled Vega 64 can churn ~41 MH/s at around 135 W which as you see above, is much less efficient per hash than an A10.

If the Ethereum network was comprised by some of the most efficient GPUs (the Vega 64) then the numbers are much different.

Starting with: 300,000,000 MH/s divided by 41 MH/s.  There is the equivalent to 7.32 million Vega GPUs generating hashes for the network which is more in line with the ~10 million GPU estimate.

  • one Vega 64 running a day consumes ~3.24 kWh
  • one Vega 64 running a month: ~77.7 kWh

If 7.32 million Vega equivalent GPUs were used:

  • in a day: ~ 23.71 million kWh
  • in a year: ~8.65 billion kWh

That would place the Ethereum network at around 100th on the electricity consumption list, between Guatemala and Estonia.

In terms of economic activity: Guatemala’s GDP is around $75 billion and Estonia’s GDP is around $26 billion.

What is Ethereum’s economic activity?

Unlike Bitcoin and Bitcoin Cash, the stated goal of Ethereum was basically to be a ‘censorship-resistant’ world computer.  Although it can transmit funds (ETH), its design goals were different than building an e-cash payments platform which is what Bitcoin was originally built for.

So while merchants can and do accept ETH (and its derivatives) for payment, perhaps a more accurate measure of its activity is how many Dapp users there are.

There are a couple sites that estimate Daily Active Users:

  • State of the Dapps currently estimates that there are 8.93k users and 8.25K ETH moving through Dapps
  • DappRadar estimates a similar number, around 8.37k users and 8.57K ETH moving through Dapps

Based on the fact that the most popular Dapps are decentralized exchanges (DEXs) and MLM schemes, it is unlikely that the Ethereum network is generating economic activity equivalent to either Guatemala or Estonia.5

For more on the revenue Ethereum miners have earned and an estimate for how much CO2 has been produced, Dominic Williams has crunched some numbers.  See also this footnote.6

According to Malachi Salacido (above), their mining systems (in the background) are at a 2 MW facility, they are building a 10 MW facility now and have broken ground on a 20 MW facility. Also have 8 MW of facilities in 2 separate locations and developing projects for another 80 MW. (source)

Part 4: Litecoin

If you have been reading my blog over the past few years, you’ll probably have seen some of my Litecoin mining guides from 2013 and 2014.

If you haven’t, the math to model Litecoin’s electricity usage is very similar to both Bitcoin and Bitcoin Cash.  From a mining perspective, the biggest difference between Litecoin and the other two is that Litecoin uses a hash function called scrypt, which was intended to make Litecoin more “ASIC-resistant”.

Spoiler alert: that “resistance” didn’t last long.

Rather than diving into the history of that philosophical battle, as of today, the Litecoin network is composed primarily of ASIC mining gear from several different vendors.

One of the most popular pieces of equipment is the L3+ from Bitmain.  It’s basically the same thing as the L3 but with twice the hashrate and twice the power consumption.

So let’s do some numbers.

Over the past month, the Litecoin network hashrate has hovered around 300 TH/s, or 300 million MH/s.

Based on reviews, the L3+ consumes ~800 W and generates ~500 MH/s.

So some quick division, there are about 600,000 L3+ machines generating hashes for the Litecoin network today.

As an aggregate:

  • A single L3+ will consume 19.2 kWh per day
  • So 600,000 will consume 11.5 million kWh per day
  • An annually: 4.2 billion kWh per year

Coincidentally this is roughly the same amount as Bitcoin Cash does as well.

So it would be placed around 124th, between Moldova and Cambodia.

Again, this is likely a lower-bound as well because it assumes the L3+ is the most widely used ASIC for Litecoin but we know there are other, less efficient ones being used as well.

What about activity?

While there are a few vocal merchants and a small army of “true believers” on social media, anecdotally I don’t think I’ve spoken to someone in the past year who has used Litecoin for any good or service (besides converting from one coin to another).

We can see that — apart from the bubble at the end of last year — the daily transaction volume has remained roughly constant each day for the past 18 months.  Before you flame me with a troll account, consider that LitePay collapsed before it could launch, partly because Litecoin still lacks a strong merchant-adopting ecosystem.

In other words, despite some support by merchant payment processors, its current usage is likely as marginal as Bitcoin and Bitcoin Cash.

Genesis Mining facility with Zeus scrypt mining equipment (source)

Part 5: Monero

The math around Monero is most similar to Ethereum in that it is largely dominated by GPUs.

In fact, earlier this year, a large number of Monero developers convinced its boisterous userbase to fork the network to prevent ASICs from being used.  This resulted in four Monero forks and basically all of them are dominated by high-end GPUs.

For the purposes of this article, we are looking at the fork that has the highest hashrate, XMR.  Over the past month its hashrate has hovered around 475 MH/s.

Only 475 MH/s?  That may sound like a very diminutive hashrate, but it is all relative to what most CPU and GPU hashrate performance is measured in Monero and not other coins.

For example, MoneroBenchmarks lists hundreds of different system configurations with the corresponding hashrate.  Similarly there are other independent testing systems that provide public information on hashrates.

Let’s take that same Vega 64 used above from Ethereum.  For Monero, based on tweaking it generates around 2000 hashes/sec and consumes around 160 W.

So the math is as follows:

  • 475,000,000 hashes/sec is the current average hashrate
  • A single Vega 64 will generate about 2000 hashes/sec
  • The equivalent of 237,500 Vega 64s are being used
  • Each Vega 64 consumes about 3.84 kWh per day
  • So 237,500 Vega 64s consume 912,000 kWh per day
  • And in a year: 332 million kWh

The 332 million kWh / year figure is a lower-bound because like the Ethereum Vega 64 example above: it doesn’t include the whole mining system, all of these systems still need a CPU with its own RAM, hard drive, and so forth.

As a result, the real electricity consumption figure is much closer to Haiti than Seychelles, perhaps even higher.  Note: Haiti has a ~$8.4 billion economy and the GDP of Seychelles is ~$1.5 billion.

So what about Monero’s economic activity?  Many Monero advocates like to market it as a privacy-focused coin.  Some of its “core” developers publicly claimed it would be the best coin to use for interacting with darknet markets.  Whatever the case may be, compared to the four above, currently it is probably the least used for commercial activity as revealed by its relative flat transactional volume this past year.

A now-deleted image of a Monero mining farm in Toronto (source)

Conclusion

Above were examples of how much electricity is consumed by just five proof-of-work coins.  And there are hundreds of other PoW coins actively online using disproportionate amounts of electricity relative to what they process in payments or commerce.

This article did not dive into the additional resources (e.g., air conditioning) used to cool mining equipment.  Or the subsidies that are provided to various mining farms over the years.  It also doesn’t take into account the electricity used by thousands of validating nodes that each of the networks use to propagate blocks each day.

It also did not include the huge amount of semiconductors (e.g. DRAM, CPUs, GPUs, ASICs, network chips, motherboards, etc.) that millions of mining machines use and quickly depreciate within two years, almost all of which becomes e-waste.7 For ASIC-based systems, the only thing that is typically reused is the PSU, but these ultimately fail as well due to constant full-throttle usage.

In summation, as of this writing in late August 2018:

  • Bitcoin’s blockchain likely uses the same electricity footprint as Austria, but probably higher
  • Bitcoin Cash’s blockchain is at least somewhere between Moldova and Cambodia, but probably higher
  • Ethereum’s blockchain is at least somewhere between Guatemala and Estonia, but probably higher
  • Litecoin’s blockchain is at least somewhere between Moldova and Cambodia, but probably higher
  • One of Monero’s blockchains is at least somewhere between Haiti and Seychelles, but probably higher

Altogether, these five networks alone likely consume electricity and other resources at an equivalent scale as The Netherlands especially once you begin to account for the huge e-waste generated by the discarded single-use ASICs, the components of which each required electricity and other resources to manufacture.  Perhaps even higher when costs of land, labor, on-going maintenance, transportation and other inputs are accounted for.

The Netherlands has the 18th largest economy in the world, generating $825 billion per annum.

I know many coin supporters say that is not a fair comparison but it is.  The history of development and industrialization since the 18th century is a story about how humanity is increasingly more productive and efficient per unit of energy.

Proof-of-work coins are currently doing just the opposite.  Instead of being more productive (e.g., creating more outputs with the same level of inputs), as coin prices increase, this incentivizes miners to use more not less resources.  This is known as the Red Queen Effect.89

For years, proof-of-work advocates and lobbying organizations like Coin Center have been claiming that the energy consumption will go down and/or be replaced by renewable energy sources.

But this simply cannot happen by design: as the value of a PoW coin increases, miners will invest more capital in order to win those coins.  This continues to happen empirically and it is why over time, the aggregate electricity consumption for each PoW coin has increased over time, not decreased.  As a side-effect, cryptocurrency mining manufacturers are now doing IPOs.10

Reporters, if you plan to write future stories on this topic, always begin by looking at the network hashrate of the specific PoW coin you are looking at and dividing it by the most common piece of mining hardware.  These numbers are public and cannot be easily dismissed.  Also worth looking at the mining restrictions and bans in Quebec, Plattsburgh, Washington State, China, and elsewhere.

To front-run an example that coin promoter frequently use as a whataboutism: there are enormous wastes in the current traditional financial industry, removing those inefficiencies is a decades-long ordeal.  However, as of this writing, no major bank is building dozens of data centers and filling them with single-use ASIC machines which continuously generate random numbers like proof-of-work coins do.  That would be rightly labeled as a waste.

In point of fact, according to the Federal Reserve:

In the aggregate, U.S. PCS systems process approximately 600 million transactions per day, valued at over $12.6 trillion.

It shouldn’t take the energy footprint of a single country, big or small, to confirm and settle electronic payments of that same country.  The fact of the matter is that with all of its headline inefficiencies (and injustices), that the US financial system has — the aggregate service providers still manage to process more than three orders of magnitude more in transactional volume per day than all of the major PoW coins currently do.11 And that is just one country.

Frequent rejoinders will be something like “but Lightning!” however at the time of this writing, no Lightning implementation has seen any measurable traction besides spraying virtual graffiti on partisan-run websites.

Can the gap between the dearth of transactional volume and the exorbitantly high cost-per-transaction ratio be narrowed?  Does it all come down to uses?  Right now, the world is collectively subsidizing dozens of minuscule speculation-driven economies that in aggregate consumes electricity on par with the 18th largest real economy, but produces almost nothing tangible in exchange for it.

What if all mining magically, immediately shifted over to renewable energy?

Izabella Kaminska succinctly described how this still doesn’t solve the environmental impact issues:

Renewable is displacement. Renewable used by bitcoin network is still renewable not used by more necessary everyday infrastructure. Since traditional global energy consumption is still going up, that ensures demand for fossil continues to increase.

To Kaminska’s point, in April a once-shuttered coal power plant in Australia was announced to be reopened to provide electricity to a cryptocurrency miner.  And just today, a senator from Montana warned that the closure of a coal power plant “could harm the booming bitcoin mining business in the state.”

It is still possible to be interested in cryptocurrencies and simultaneously acknowledge the opportunity costs that a large subset of them, proof-of-work coins, are environmental black holes.12

If you’re interested in discussing this topic more, feel free to reach out.  If you’re looking to read detailed papers on the topic, also highly recommend the first two links listed below.

Recommended reading:

End notes

  1. If the market value of a coin decreases, then because hashrate follows price, in practice hashrate also declines.  See also a ‘Maginot Line’ attack []
  2. Another estimate is that Bitcoin’s energy usage creates as much CO2 as 1 million transatlantic flights. []
  3. There have been proposals from various developers over the years to change this hash function but at the time of this writing, both Bitcoin and Bitcoin Cash use the same one. []
  4. And because many of these mining systems likely use more-powerful-than-needed CPUs. []
  5. Note: Vitalik Buterin highlighted this discrepancy earlier this year with the NYT: The creator of Ethereum, Vitalik Buterin, is leading an experiment with a more energy-efficient way to create tokens, in part because of his concern about the impact that the network’s electricity use could have on global warming. “I would personally feel very unhappy if my main contribution to the world was adding Cyprus’s worth of electricity consumption to global warming,” Mr. Buterin said in an interview. []
  6. At 8.65 billion kWh * $0.07 / kWh comes to around $600 million spent on electricity per year.  Mining rewards as of this writing: 3 ETH * $267 / ETH * 6000 blocks / day equals to $4.8 million USD / day.  Or ~$1.7 billion per year.  This includes electricity and hardware.  Thanks to Vitalik for double-checking this for me. []
  7. Just looking at the hash-generating machines, according to Chen Min (a chip designer at Avalon Mining), as of early November 2017, 5% of all transistors in the entire semiconductor industry is now used for cryptocurrency mining and that Ethereum mining alone is driving up DRAM prices. []
  8. See Chapter 3 []
  9. As described in a Politico article this past spring: “To maintain their output, miners had to buy more servers, or upgrade to the more powerful servers, but the new calculating power simply boosted the solution difficulty even more quickly. In effect, your mine was becoming outdated as soon as you launched it, and the only hope of moving forward profitably was to adopt a kind of perpetual scale-up: Your existing mine had to be large enough to pay for your next, larger mine.” []
  10. Following the dramatic drop in coin prices since January, Nvidia missed its revenue forecast from cryptocurrency-related mining: Revenues from miners were $289 million in Q1, which was about 10% of Nvidia’s revenue. The forecast for Q2 was $100 million and the actual revenues ended up being $18 million. []
  11. On average, the Bitcoin network confirms about 300,000 transactions per day.  A lot of that is not commercial activity.  Let’s take the highest numbers from Chainalysis and assume that each major cryptocurrency is processing at least $10 million in merchant transactions a day.  They aren’t, but let’s assume that they are.  That is still several orders of magnitude less than what US PCS systems do each day. []
  12. The ideological wing within the cryptocurrency world has thus far managed to convince society that negative externalities are ‘worth the cost.’  This narrative should be challenged by both policy makers and citizens alike as everyone must unnecessarily bear the environmental and economic costs of proof-of-work blockchains.  See also the Bitcoin Energy Consumption Index from Digiconomist and also Bitcoin is not a good fit for renewable energy. Here’s why. []

Book Review: Cryptoassets

[Disclaimer: The views expressed below are solely my own and do not necessarily represent the views of my clients.  I currently own no cryptocurrencies.]

As a follow-on to my previous book reviews, an old colleague lent me a copy of Cryptoassets by Chris Burniske and Jack Tatar.

Overall they have several “meta” points that could have legs if they substantially modify the language and structure of multiple sections in the book.  As a whole it’s about on par with the equally inaccurate “Blockchain Revolution” by the Tapscotts.

As I have one in my previous book reviews, I’ll go through and provide specific quotes to backup the view that the authors should have waited for more data and relevant citations as some of their arguments lack definitive supporting evidence.

In short: hold off from buying this edition.

If you’re interested in understanding the basics of cryptocurrencies but without the same level of inaccuracies, check out the new The Basics of Bitcoins and Blockchains by Antony Lewis.  And if you’re interested in the colorful background of some of the first cryptocurrency investors and entrepreneurs, check out Digital Gold by Nathaniel Popper.

Another point worth mentioning at the beginning is that there are no upfront financial disclosures by the authors.  They do casually mention that they have bitcoin once or twice, but that’s about it.

I think this is problematic because it is not being transparent about potential conflicts of interest (e.g., promoting financial products you may own and hope to see financial gain from).

For instance, we learned that Chris Burniske carried around a lot of USD worth of cryptocurrencies on his phone from a NYT article last year:

But a particularly concentrated wave of attacks has hit those with the most obviously valuable online accounts: virtual currency fanatics like Mr. Burniske.

Within minutes of getting control of Mr. Burniske’s phone, his attackers had changed the password on his virtual currency wallet and drained the contents — some $150,000 at today’s values.

Some quick math for those at home.  The NYT article above was published on August 21, 2017 when 1 BTC was worth about $4,050 and 1 ETH was worth about $314.  So Burniske may have had around 37 BTC or 477 ETH or a combination of these two (and other coins).

That is not a trivial amount of money and arguably should have been disclosed in this book and other venues (such as op-eds and analyst reports).1 In the next edition, they should consider adding a disclosure statement.

A final comment is that several reviewers suggested I modify the review below to be (re)structured like a typical book review — comparing broad themes instead of a detailed dissection — after all who is going to read 38,000+ words?

That is a fair point.  Yet because many of the points they attempt to highlight are commonly repeated by promoters of cryptocurrencies, I felt that this review could be a useful resource for readers looking for different perspective to the same topics frequently discussed in media and at events.

Note: all transcription errors are my own.


Authors’ Note

On p. xi, the authors wrote:

When embarking on our literary journey, we recognized the difficulty in documenting arguably the world’s fastest moving markets. These markets can change as much in a day – up or down – as the stock market changes in a year.

It is only mentioned in passing once or twice, but we know that market manipulation is a real on-going phenomenon.  The next edition could include a subsection of cryptocurrencies and ICOs that the CFTC and SEC – among other regulators – have identified and prosecuted for manipulation.  More on that later below.

Foreword

On p. xiv, Brian Kelly wrote in the Foreword

The beauty of this book is that it takes the reader on a journey from bitcoin’s inception in the ashes of the Great Financial Crisis to its role as a diversifier in a traditional investment portfolio.

A small quibble: Satoshi actually began writing the code for Bitcoin sometime in mid-2007, before the GFC took place.  It may be a chronological coincidence that it came out when it did, especially since it was supposed to be a payment system, which is just one small function of a commercial bank.23

On p. xv Kelly writes:

As with any new model, there are questions about legality and sustainability, but the Silicon Valley ethos of “break things first, then ask for forgiveness” has found its way to Wall Street.

There are also two problems with this:

  1. Both the SEC and CFTC – among other federal agencies – were set up in the past because of the behavior that Kelly thinks is good: “break things first, then ask for forgiveness” is arguably a bad ethos to have for any fiduciary and prudential organizations.4
  2. Any organization can do that, that’s not hard.  Some have gotten away with it more than others.  For instance, Coinbase was relatively loose with its KYC / AML requirements in 2012-2014 and has managed to get away with it because it grew fast enough to become an entity that could lobby the government.

On p.xv Kelly writes

“Self-funded, decentralized organizations are a new species in the global economy that are changing everything we know about business.”

In point of fact, virtually all cryptocurrencies are not self-funded.  Even Satoshi had some kind of budget to build Bitcoin with.  And basically all ICOs are capital raises from external parties.  Blockchains don’t run and manage themselves, people do.

On p. xv Kelly writes:

“These so-called fat protocols are self-funding development platforms that create and gain value as applications are built on top.”

The fat protocol thesis has not really born out in reality, more on that in a later chapter below.  While lots of crytpocurrency “thought leaders” love to cite the original USV article, none of the platforms are actually self-funded yet.  They all require external capital to stay afloat because insiders cash out for real money.5 And because there is a coin typically shoehorned at the protocol layer, there is very little incentive for capable developers to actually create apps on top — hence the continual deluge of new protocols each month — few actors want to build apps when they can become rich building protocols that require coins. More on this later.6

Introduction

On p. xxii the authors write:

“… and Marc Andreessen developing the first widely used web browser, which ultimately became Netscape.”

A pedantic point: Marc Andreessen was leader of a team that built Mosaic, not to take away from that accomplishment, but he didn’t single handedly invent the web browser.  Maybe worth rewording in next edition.

On p. xxiii they write:

Interestingly, however, the Internet has become increasingly centralized over time, potentially endangering its original conception as a “highly survivable system.”

This is a valid point however it glosses over the fact that all blockchains use “the internet” and also — in practice — most public blockchains are actually highly centralized as well.  Perhaps that changes in time, but worth looking at “arewedecentralizedyet.”

On p. xxiii they write:

Blockchain technology can now be thought of as a general purpose technology, on par with that of the steam engine, electricity, and machine learning.

This is still debatable.  After all, there is no consensus on what “blockchains” are and furthermore, as we have seen in benchmark comparisons, blockchains (however defined) come in different configurations.  While there are a number of platforms that like to market themselves as “general purpose,” the fact of the matter is that there are trade-offs based on the user requirements: always ask who the end-users and the use-cases a blockchain was built around are.

On p. xxiv they cite Don and Alex Tapscott.  Arguably they aren’t credible people on this specific topic.  For example, their book was riddled with errors and they even inappropriately made-up advisors on their failed bid to launch and fund their NextBlock Global fund.

On p. xxiv the authors write:

Financial incumbents are aware blockchain technology puts on the horizon a world without cash – no need for loose bills, brick-and-mortar banks, or, potentially, centralized monetary policies.  Instead, value is handled virtually through a system that has no central authority figure and is governened in a centralized and democratic manner. Mathematics force order in the operations. Our life savings, and that of our heirs, could be entirely intangible, floating in a soup of secure 1s and 0s, the entire system accessed through computers and smartphones.

This conflates multiple things: digitization with automation.7  Retail banking has and will continue its march towards full digital banking.  You don’t necessarily need a blockchain to accomplish that — we see that with Zelle’s adoption already.8

Also, central banks are well aware that they could have some program adjust interest rates, but discretion is still perceived as superior due to unforeseen incidents and crisis. 9

On p. xxv they write:

The native assets historically have been called cryptocurrencies or altcoins but we prefer the term cryptoassets, which is the term we will use throughout the book.

The term seems to have become a commonly accepted term but to be pedantic: most owners and users do not actually utilize the “cryptography” part — because they house the coins in exchanges and other intermediaries they must trust (e.g., the user doesn’t actually control the coin with a private key).10

And as we continue to see, these coins are easily forkable.  You can’t fork physical assets but you can fork and clone digital / virtual ones.  That’s a separate topic though maybe worth mentioning in the next edition.

On p. xxv they write:

It’s early enough in the life of blockchain technology that no books yet have focused solely on public blockchains and their native cryptoassetss from the investing perspective. We are changing that because investors need to be aware of the opportunity and armed both to take advantage and protect themselves in the fray.

Might be worth rewording because in Amazon there are about 760 books that pop up when “investing in cryptocurrencies” is queried.  And many of those predate the publication of Cryptoassets.  For instance, Brian Kelly, who wrote the Forward, published a fluffy coin promotion book a few years ago.

On p. xv they write:

Inevitably, innovation of such magnitude, fueled by the mania of making money, can lead to overly optimistic investors. Investors who early on saw potential in Internet stock encountered the devastating dot-com bubble. Stock in Books-A-Million saw its price soar by over 1,000 percent in one week simply by announcing it had an updated website. Subsequently, the price crashed and the company has since delisted and gone private. Other Internet-based high flyers that ended up crashing include Pets.com, Worldcom, and WebVan. Today, none of those stocks exist.

So far, so good, right?

Whether specific cryptoassets will survive or go the way of Books-A-Million remains to be seen.  What’s clear, however, is that some will be big winners. Altogether, between the assets native to blockchains and the companies that stand to capitalize on this creative destruction, there needs to be a game plan that investors use to analyze and ultimately profit from this new investment theme of cryptoassets. The goal of this book is not to predict the future – it’s changing too fast for all but the lucky to be right- but rather to prepare investors for a variety of futures.

Even for 2017 when the book was publish, this statement is lagging a bit because there were already several “coin graveyard” sites around.  Late last month Bloomberg ran a story: more than 1,000 coins are dead according to Coinopsy.

It is also unclear, “that some will be big winners.”  Maybe modify this part in the next version.11

On p. xxvi they write:

“One of the keys to Graham’s book was always reminding the investor to focus on the inherent value of an investment without getting caught in the irrational behavior of the markets.”

There is a healthy debate as to whether cryptocurrencies and “cryptoassets” have any inherent value either.12  Arguably most coins traded on a secondary market depend on some level of ‘irrational’ behavior: many coin holders have short time horizons and want someone else to help push up the price so they can eventually cash out.13

Chapter 1

On p. 3 they write:

In 2008, Bitcoin rose like a phoenix from the ashes of near Wall Street collapse.

This a little bit of revisionist history.14

The Bitcoin whitepaper came out on October 31, 2008 and Satoshi later said that he/she had spent the previous 18 months coding it first before writing it up in a paper.  The authors even discuss this later on page 7.  Worth removing in next edition.

On p. 3 they write:

Meanwhile, Bitcoin provided a system of decentralized trust for value transfer, relying not on the ethics of humankind but on the cold calculation of computers and laying the foundation potentially to obviate the need for much of Wall Street.

This is not quite true.  At most, Bitcoin as it was conceived and as it is today — is a relatively expensive payment network that doesn’t provide definitive settlement finality.15 Banks as a whole, do more than just handle payments — they manage many other services and products.  So the comparison isn’t really apples-to-apples.

Note: banks again as a whole spend more on IT-related systems than nearly any other vertical — so there is already lots of “cold calculation” taking place within each of these financial institutions.16

Now, maybe blockchain-related ideas replace or enhance some of these institutions, but it is unlikely that Bitcoin itself as it exists today, will do any of that.

On p. 5 they write:

What people didn’t realize, including Wall Street executives, was how deep and interrelated the risks CMOs posed were. Part of the problem was that CMOs were complex financial instruments supported by outdated financial architecture that blended and analog systems.

That may have been part of a bigger problem.17

There were a dozen plus factors for how and why the GFC arose and evolved, but “outdated financial infrastructure” isn’t typically at the top of the list of culprits.  Would blockchain-like systems have prevented the entire crisis?  There are lots of op-eds that have made the claim, but the authors do not really provide much evidence to support the specific “blended” argument here.  Perhaps worth articulating in its own section next time.

Speaking of which, also on p. 5 they write:

Whether as an individual or an entity, what’s now clear is that Satoshi was designing a technology that if existent would have likely ameliorated the toxic opacity of CMOs. Due of the distributed transparency and immutable audit log of a blockchain, each loan issued and packaged into different CMOs could have been documented on a single blockchain.

This seems to conflate two separate things: Bitcoin as Satoshi originally designed it in 2008 (for payments) and later what many early adopters have since promoted it as: blockchain as FMI.18

Bitcoin was (purposefully) not designed to do anything with regulated financial instruments, it doesn’t meet the PFMI requirements.  He was trying to build e-cash that didn’t require KYC and was difficult to censor… not ways to audit CMOs.  If that was the goal, architecturally Bitcoin would likely look a lot different than it did (for instance, no PoW).

And lastly on p. 5 they write:

This would have allowed any purchaser to view a coherent record of CMO ownership and the status of each mortgage within.  Unfortunately, in 2008 multiple disparate systems – which were expensive and therefore poorly reconciled – held the system together by digital strings.

Interestingly, this is the general pitch for “enterprise” blockchains: that with all of the disparate siloed systems within regulated financial institutions, couldn’t reconciliation be removed if these same systems could share the same record and facts on that ledger?  Hence the creation of more than a dozen enterprise-focused “DLT” platforms now being trialed and piloted by a slew of businesses.

This is briefly discussed later but the next edition could expand on it as the platforms do not need a cryptocurrency involved.19

On p. 7 they write:

By the time he released the paper, he had already coded the entire system.  In his own words, “I had to write all the code before I could convince myself that I could solve every problem, then I wrote the paper.” Based on historical estimates, Satoshi likely started formalizing the Bitcoin concept sometime in late 2006 and started coding around May 2007.

Worth pointing out that Hal Finney and Ray Dillinger — and likely several others – helped audit the code and paper before any of it was publicly released.

On p. 8 they write:

Many years later people would realize that one of the most powerful use cases of blockchain technology was to inscribe immutable and transparent information that could never be wiped from the face of digital history and that was free for all to see.

There appears to be a little hyperbole here.

Immutability has become a nebulous word that basically means many different things to everyone.  In practice, the only thing that is “immutable” on any blockchain is the digital signature — it is a one-way hash.   All something like proof-of-work or proof-of-stake does are decide who gets to vote to append the chain.

Also, as mentioned above, there are well over 1,000 dead coins so it is actually relatively common for ‘digital history’ to effectively be wiped out.

On p. 8 they write:

A dollar invested then would be worth over $1 million by the start of 2017, underscoring the viral growth that the innovation was poised to enjoy.

Hindsight is always 20-20 and the wording above seems to be a little unclear with dates.  As often as the authors say “this is not a book endorsing investments,” other passages seem do just the opposite: by saying how smart you would’ve been if you had bought at a relative low, during certain (cherry picked) dates.

Also, what viral growth?  What are the daily active and monthly active user numbers they think are occurring on these chains?  In later chapters, they do cite some on-chain activity but this version lacks specific DAU / MAU that would strengthen their arguments.20 Worth revisiting in the next edition.

On p. 8 they write:

Diving deeper into Satoshi’s writings around the time, it becomes more apparent that he was fixated on providing an alternative financial system, if not a replacement entirely.

This isn’t quite right.  The very first thing Satoshi tried to build was a marketplace to play poker which was supposed to be integrated with the original wallet itself.

A lot of the talk about “alternative financial system” is arguably revisionist propaganda from folks like Andreas Antonopoulos who have tried to rewrite the history of Bitcoin to conform with their political ideology.

Readers should also check out MojoNation and what that team tried to accomplish.

On p. 9 they write;

While Wall Street as we knew it was experiencing an expensive death, Bitcoin’s birth cost the world nothing.

There are at least two issues that can be modified for the future:

  1.  Wall Street hasn’t died, maybe parts of the financial system are replaced or removed or enhanced, but for better and worse almost 10 years since the collapse of Lehman, the collective financial industry is still around.
  2.  Bitcoin cost somebody something, there were opportunity costs in its creation.  And as we now know: the ongoing environmental impact is enormous.  Yet promoters typically handwave it away as a “cost of doing anarchy.”  Thus worth rewording or removing in the next edition.

On p. 9 they also wrote:

It was born as an open-source technology and quickly abandoned like a motherless babe in the world. Perhaps, if the global financial system had been healthier, there would have been less of a community to support Bitcoin, which ultimately allowed it to grow into the robust and cantankerous toddler that it currently is.

This prose sounds like something from Occupy Wall Street and not something found in literature to describe a computer program.

For example, there are lots of nominally open source blockchains, hundreds or maybe even thousands.21 That’s not very unique (it is kind of expected since there is a financial incentive to clone them).

And again, Satoshi worked on it for at least a couple years.  It’s not like he/she dropped it off at an orphanage after immediate gestation.  This flowery wording acts like a distraction and should be removed in the next edition.

Chapter 2

On p. 12 they write:

Three reputable institutions would not waste their time, nor jeopardize their reputations, on a nefarious currency with no growth potential.

There is a bit of an unnecessary attitude with this statement.  The message also seems to go against the criticism earlier in the book towards banks.  For instance, the first chapter was critical of the risks that banks took leading up to the GFC.  You can’t have it both ways.  In the next edition, should either remove this or explain what level or risk is appropriate.

Also, what is the “growth potential” here?  Do the authors mean the value of a coin as measured in real money?  Or actual usage of the network?

Lastly, the statement above equates the asset value growth (USD value increases) with a bank’s interest. Bank’s do not typically speculate on the price, they usually only care about volumes which make revenues. A cryptocurrency could go to $0.01 for all they care; and if people want to use it then they could consider servicing it provided the bank sees an ability to make money.  For example, UK banks did not abandon the GBP even though it lost 20% of its value in 2016 following the Brexit referendum.

On p. 12 they write:

Certainly, some of the earliest adopters of Bitcoin were criminals. But the same goes for most revolutionary technologies, as new technologies are often useful tools for those looking to outwit the law.

This is a “whataboutism” and is actually wrong.  Satoshi specifically says he/she has designed Bitcoin to route around intermediaries (like governments) and their ability to censor.  It doesn’t take too much of a stretch to get who would be initially interested in that specific set of payment “rails” especially if there is no legal recourse.22

On p. 12 they also write:

We’ll get into the specific risks associated with cryptoassets, including BItcoin, in a later chapter, but it’s clear that the story of bitcoin as a currency has evolved beyond being solely a means of payment for illegal goods and services. Over 100 media articles have jumped at the opportunity to declare bitcoin dead, and each time they have been proven wrong.

The last sentence has nothing to do with the preceding sentence, this is a non sequitur.

Later in the book they do talk about other use cases but the one that they don’t talk about much is how — according to analytics — the majority of network traffic in 2017 was users moving cryptocurrencies from one exchange to another exchange.

For example, about a month ago, Jonathan Levin from Chainalysis did an interview and mentioned that:

So we can identify, it is quite hard to know how many people. I would say that 80% of transactions that occur on these cryptocurrency ledgers have a counterparty that is a 3rd party service. More than 80%.

Maybe mention in the second edition: the unintended ironic evolution of Bitcoin has had… where it was originally designed to route around intermediaries and instead has evolved into an expensive permissioned-on-permissionless network.23

On p. 13 they write:

It operates in a peer-to-peer manner, the same movement that has driven Uber, Airbnb, and LendingClub to be multibillion-dollar companies in their own realms. Bitcoin lets anyone be their own bank, putting control in the hands of a grassroots movement and empowering the globally unbanked.

Not quite.  For starters: Uber, Airbnb, and LendingClub all act as intermediaries to every transaction, that’s how they became multibillion-dollar companies.

Next, Bitcoin doesn’t really let anyone be their own bank because banks offer a lot more products and services beyond just payments.  At most, Bitcoin provides a way of moving bitcoins you control to someone else’s bitcoin address (wallet).  That’s it.24

And there is not much evidence that Bitcoin or any cryptocurrency for that matter, has empowered many beyond relatively wealthy people in developed or developing countries.  There have been a few feel-good stories about marginalized folks in developing countries, but those are typically (unfortunately) one-off theatrics displaying people living in squalor in order to promote a financial product (coins).  It would be good to see more evidence in the next edition.

For more on this topic, recommend listening to LTB episode 133 with Richard Boase.

On p. 13 they write:

Decentralizing a currency, without a top-down authority, requires coordinated global acceptance of a shared means of payment and store of value.

Readers should check out “arewedecentralizedyet” which illustrates that nearly all cryptourrencies in practice have some type of centralized, top-down hierarchy as of July 2018.

On p. 13 they write:

Bitcoin’s blockchain is a distributed, cryptographic, and immutal database that uses proof-of-work to keep the ecosystem in sync.

Worth modifying because the network is not inherently immutable — only digital signatures have “immutability.”25 Also, proof-of-work doesn’t keep any “ecosystem” in sync.  All proof-of-work does is determine who can append the chain.  The “ecosystem” thing is completely unrelated.

On p. 15 they write:

There is no subjectivity as to whether a transaction is confirmed in Bitcoin’s blockchain: it’s just math.

This isn’t quite true.26 Empirically, mining pools have censored transactions for various reasons.  For example, Luke-Jr (who used to run Eligius pool) thinks that SatoshiDice misuses the network; he is also not a fan of what OP_RETURN was being used for by Counterparty.

Also, humans control pools and also manage the code repositories… blockchains don’t fix and run themselves.  So it’s not as simple as: “it’s just math.”

On p. 15 they write an entire paragraph on “immutability”:

The combination of globally distributed computers that can cryptographically verify transactions and the building of Bitcoin’s blockchain leads to an immutable database, meaning the computers building Bitcoin’s blockchain can only do so in an append only fashion. Append only means that information can only be added to Bitcoin’s blockchain over time and cannot be deleted – an audit trail etched in digital granite. Once information is confirmed in Bitcoin’s blockchain, it’s permanent and cannot be erased. Immutability is a rare feature in a digital world where things can easily be erased, and it will likely become an increasingly valuable attribute for Bitcoin over time.

This seems to have a few issues:

  1. As mentioned several times before in this review, “immutability” is only a characteristic of digital signatures, which are just one piece of a blockchain.  Recommend Gwern’s article entitled “Bitcoin-is-worse-is-better” for more details.
  2. Empirically lots of blockchains have had unexpected and expected block reorgs and hard forks, there is nothing fundamental to prevent this from happening to Bitcoin.  See this recent article discussing a spate of attacks on various PoW coins: Blockchain’s Once-Feared 51% Attack Is Now Becoming Regular
  3. The paragraph above ignores the reality that well over 1,000 blockchains are basically dead and Bitcoin itself had a centralized intervention on more than one occasion, such as the accidental hardfork in 2013 and the Bitcoin block size debate from 2015-2018.

On p. 15 they introduce us to the concept of proof-of-work but don’t really explain its own origin as a means of combating spam email in the 1990s.

For instance, while several Bitcoin evangelists frequently (mistakenly) point to Hashcash as the original PoW progenitor, that claim actually legitimately goes to a 1993 paper entitled Pricing via Processing or Combatting Junk Mail by Cynthia Dwork and Moni Naor.  There are others as well, perhaps worth adding in the next edition.27

On p. 16 they write:

Competition for a financial rewad is also what keeps Bitcoin’s blockchain secure.  If any ill-motivated actors wanted to change Bitcoin’s blockchain, they would need to compete with all the other miners distributed globally who have in total invested hundreds of millions of dollars into the machinery necessary to perform PoW.

This is only true for a Maginot Line attack (e.g., attack via hashrate).28 There are  cheaper and more effective out of band attacks, like hacking BGP or DNS.  Or hacking into intermediaries such as exchanges and hosted wallets.  Sure the attacker doesn’t directly change the blocks, but they do set in motion a series of actions that inevitably result in thefts that end up in blocks further down the chain, when the transactions otherwise wouldn’t have taken place.

On p. 17 they write:

The hardware runs an operating system (OS); in the case of Bitcoin, the operating system is the open-source software that facilitates everything described earlier.  This software is developed by a volunteer group of developers, just as Linux, the operating system that underlies much of the cloud, is maintained by a volunteer group of developers.

This isn’t quite right in at least two areas:

  1. Linux is not financial market infrastructure software; Bitcoin originally attempted to be at the very least, a payments network.  There are reasons why building and maintaining FMI is regulated whereas building an operating system typically isn’t.  It has to do with risk and accountability when accidents happen.  That’s why PFMI exists.
  2. At least in the case of Bitcoin (and typically in most other cryptocurrencies), only one group of developers calls the shots via gating the BIP / EIP process.  If you don’t submit your proposals and get it approved through this process, it won’t become part of Bitcoin Core.  For more on this, see: Bitcoin Is Now Just A Ticker Symbol and Stopped Being Permissionless Years Ago

On p. 17 they discuss “private versus public blockchains”:

The difference between public and private blockchains is similar to that between the Internet and intranets.  The internet is a public resource.  Anyone can tap into it; there’s not gate keepers.

This is wrong.  All ISPs gate their customers via KYC.  Not just anyone can set up an account with an ISP, in fact, customers can and do get kicked off for violating Terms of Service.

“The Internet” is just an amalgamation of thousands of ISPs, each of whom have their own Terms of Service.  About a year ago I published an in-depth article about why this analogy is bad and should not be use: Intranets and the Internet.

On p. 18 they write:

Public systems are ones like BItcoin, where anyone with the right hardware and software can connect to the network and access the information therein.  There is no bouncer checking IDs at the door.

This is not quite right.  The “permissionless” characteristic has to do with block making: who has the right to vote on creating/adding a new block… not who has the ability to download a copy of the blockchain.  Theoretically there is no gatekeeper for block making in Bitcoin. Although, there are explicit KYC checks on the edges (primarily at exchanges).

In practice, the capital and knowledge requirements to actually create a new mining pool and aggregate hashpower that is sufficiently capable of generating the right hash and “winning” the scratch-off lottery is very high, such that on a given month just 20 or so block makers are actually involved.29

While there is no strict permissioning of these participants (some come and go over the years), it is arguably a de facto oligopoly based on capital expenditures and not some type of feel-good meritocracy described in this book.30

On p. 18 they write:

Private systems, on the other hand, employ a bouncer at the door. Only entities that have the proper permissions can become part of the network. These private systems came about after Bitcoin did, when enterprises and businesses realized they liked the utility of Bitcoin’s blockchain, but weren’t comfortable or legally allowed to be as open with he information propagated among public entities.

This is not nuanced enough.  What precisely is permissioned on a “permissioned” blockchain is: who gets to do the validation.

While there are likely dozens of “permissioned” blockchain vendors — each of which may have different characteristics — the common one is that the validators are KYC’ed participants.  That way they can be held accountable if there is a problem (like a fork).

For example, many enterprises and businesses tried to use Bitcoin, Ethereum, and other cryptocurrencies but because these blockchains were not built with their use cases in mind, unsurprisingly found that they were not a good fit.

This is not an insult: the “comfort” refrain is tiring because there have been a couple hundred proofs-of-concept on Bitcoin – and variants thereof – to look into whether those chains were fit-for-purpose… and they weren’t.  This passage should be reworded in the second edition.

On p. 18 they write:

Within financial services, these private blockchains are largely solutions by incumbents in a fight to remain incumbents.

Maybe that is the motivation of some stakeholders, but I don’t think I’ve ever been in a meeting in which the participants (banks) specifically said that.  It would be good to have a citation added in the next edition.  Otherwise, as Hitchens said: what can be presented without evidence can be dismissed without evidence.

On p. 18 they write:

While there is merit to many of these solutions, some claim the greatest revolution has been getting large and secretive entities to work together, sharing information and best practices, which will ultimately lower the cost of services to the end consumer. We believe that over time the implementation of private blockchains will erode the position held by centralized powerhouses because of the tendency toward open networks. In other words, it’s a foot in the door for further decentralization and the use of public blockchains.

This is a “proletariat” narrative that is frequently used in many cryptocurrency books.  While there is a certain truth to an angle – collaboration of regulated entities that normally compete with one another – many of the vendors and platforms that they are piloting are actually “open.”

Which brings up the euphemism that some vocal public blockchain promoters like to stake a claim in… the ill-defined “open.”  For instance, coin lobbyists such as Coin Center and coin promoters such as Andreas Antonopoulos regularly advertise that they are experts and advocates of “open” chains but their language is typically filled with strawmen.

For instance, enterprise-specific platforms such as Fabric, Corda, and Quorum are all open sourced, anyone can download and run the code without the permission of the vendors that contribute code or support to the platforms.

Thus, it could be argued that these platforms are “open” too… which they are.

But it is highly unlikely that ideological advocates would ever defend or promote these platforms, because of their disdain and aversion to platforms built by financial organizations. 31

Lastly, this “foot in the door” comment comes in all shapes and sizes; sometimes coin promoters use “Trojan horse” as well.  Either way it misses the point: enterprises will use technology that solves problems for them and will not use technology that doesn’t solve their problem.

In practice, most cryptocurrencies were not designed – on purpose – to solve problems that regulated institutions have… so it is not a surprise they do not use coin-based platforms as FMI.  It has nothing to do with the way the coin platforms are marketed and everything to do with the problems the coins solve.

On p. 19 they write:

Throughout this book, we will focus on public blockchains and their native assets, or what we will define as cryptoassets, because we believe this is where the greatest opportunity awaits the innovative investor.

The authors use the term “innovative investor” a dozen or more times in the book.  It’s not a particularly useful term.32

Either way, later in the book they don’t really discuss the opportunity cost of capital: what are the tradeoffs of an accredited investor who puts their money long term into a coin versus buys equity in a company.  Though, to be fair, part of the problem is that most of the companies that actually have equity to buy, do not publish usage or valuation numbers because they are still private… so it is hard to accurately gauge that specific trade-off.33

On p. 19 they write about Bitcoin maximalism (without calling it that):

We disagree with that exclusive worldview, as there are many other interesting consensus mechanisms being developed, such as proof-of-stake, proof-of-existence, proof-of-elapsed time, and so on.

Proof-of-existence is not a consensus mechanism.  PoE simply verifies the existence of a file at a specific time based on a hash from a specific blockchain.  It does not provide consensus.  This should be reworded in the next edition.

Furthermore, neither proof-of-stake or proof-of-elapsed-time are actual consensus mechanisms either… they are vote ordering mechanisms — a mechanism to prevent or control sybil attacks. 34  See this excellent thread from Emin Gun Sirer.

Chapter 3

On p. 22 they write:

Launched in February 2011, the Silk Road provided a rules-free decentralized marketplace for any product one could imagine, and it used bitcoin as the means of payment.

This isn’t quite true.  Certain guns and explosives were considered off-limits and as a result “The Armory” was spun off.

On p. 22 they write:

Clearly, this was one way that Bitcoin developed its dark reputation, though it’s important to know that this was not endorsed by Bitcoin and its development team.

Isn’t Bitcoin — like all cryptocurrences — supposed to be decentralized?  So how can there be a singular “it” to not endorse something?35

On p. 22 they write:

The drivers behind this bitcoin demand were more opaque than the Gawker spike, though many point to the bailout of Cyprus and the associated losses that citizens took on their bank account balances as the core driver.

This is mostly hearsay as several independent researchers have tried to identify the actual flows coming into and going out of Cyprus that are directly tied to cryptocurrencies and so far, have been unable to.36

On p. 23 they write about Google Search Trends:

We recommend orienting with this tool even beyond cryptoassets, as it’s a fascinating window into the global mesh of minds.

Incidentally, despite the authors preference to the term “cryptoassets” —  according to Google Search Trends, that term isn’t frequently used in search’s yet.

Source: Google

On p. 24 they write:

This diversity has led to tension among players as some  of these cryptoassets compete, but this is nothing like the tension that exists between Bitcoin and the second movement.

Another frequent name typically used to call “the second movement” was Bitcoin 2.0.

For example, back in 2014 and 2015 I interviewed a number of project organizers and attempted to categorize them into buckets, including things like “commodities” and “assets.”  See for instance my guest presentation in 2014 at Plug and Play: (video) (slides).

This label isn’t frequently used as much anymore, but that’s a different topic entirely.

On p. 25 they write an entire section entitled: Blockchain, Not Bitcoin

The authors stated:

Articles like one from the Bank of England in the third quarter of 2014 argued, “The key innovation of digital currencies is the ‘distributed ledger,’ which allows a payment system to operate in an entirely decentralized way, without intermediaries such as banks. In emphasizing the technology and not the native asset, the Bank of England left an open question whether the native asset was needed

[…]

The term blockchain, independent of Bitcoin, began to be used more widely in North America in the fall of 2015 when two prominent financial magazines catalyzed awareness of the concept.

Let’s pull apart the problems here.

First, the “blockchain not bitcoin” mantra was actually something that VCs such as Adam Draper pushed in the fall of 2015.

For instance, in an interview with Coindesk in October 2015 he said:

“We use the word blockchain now. I say bitcoin, and they think that’s the worst thing ever. It just feels like they put up a guard. Then, I switch to blockchain and they’re very attentive and they’re very interested.”

Draper seems ambivalent to the change, though he said he was initially against using it, mostly because he believes it’s superficial. After all, companies that use the blockchain as a payments rail, the argument goes, still need to interface with its digital currency, which is the mechanism for transactions on the bitcoin blockchain.

“When we talk about blockchain, I mean bitcoin,” Draper clarifies. “Bitcoin and the blockchain are so interspersed together, the incentive structure of blockchain is bitcoin.”

Draper believes it’s mostly a “vernacular change”, noting the ecosystem has been through several such transitions before. He rifles off the list of terms that have come and gone including cryptocurrency, digital currency and altcoin.

“It’s moved from bitcoin to blockchain, which makes sense, it’s the underlying tech of all these things,” he added. “I think in a lot of ways blockchain is FinTech, so it will become FinTech.”

If you’re looking for more specific examples of companies that began using “blockchain” as a euphemism for “bitcoin” be sure to check out my post: “The Great Pivot.”

The authors also fail to identify that there were lots of early stage vendors and entrepreneurs working in the background on educating policy makers and institutions on what the vocabulary was and how the various moving pieces worked throughout 2015.

Want evidence?

Check out my own paper covering this topic and a handful of vendors in April 2015: Consensus-as-a-service.  This paper has been cited dozens of times by a slew of academics, banks, regulators, and so forth.  And contra Draper: you don’t necessarily need a coin or token to incentivize participants to operate a blockchain.37

On p. 26 they write:

A private blockchain is typically used to expedite and make existing processes more efficient, thereby rewarding the entities that have crafted the software and maintain the computers. In other words, the value creation is in the cost savings, and the entities that own the computers enjoy these savings. The entities don’t need to get paid in a native asset as reward for their work, as is the case with public blockchains.

First, not all private blockchains are alike or commoditized.

Two, this statement is mostly true.  At least those were the initially pitches to financial institutions.  Remember the frequently cited Oliver Wyman / Santander paper from 2015?  It was about cost savings.  Since then, the story has evolved to also include revenue generation.

For more up-to-date info on the “enterprise” blockchain world, recommend reading:

On p. 26 they write:

On the other hand, for Bitcoin to incentivize a self-selecting group of global volunteers, known as miners, to deploy capital into the mining machines that validate and secure bitcoin transactions, there needs to be a native asset that can be paid out to the miners for their work. The native asset builds out support for the service from the bottom up in a truly decentralized manner.

This may have been true in January 2009 but is not true in July 2018.  There are no “volunteers” in Bitcoin mining as running farms and pools have become professionalized and scaled in industrial-sized facilities.

Also, that last sentence is also false: virtually every vertical of involvement is dominated by centralized entities (e.g., exchanges, hosted wallets, mining manufacturing, etc.).

On p. 27 they write:

Beyond questioning the need for native cryptoassets – which would naturally infuriate communities that very much value their cryptoassets – tensions also exist because public blockchain advocates believe the private blockchain movement bastardizes the ethos of blockchain technology. For example, instead of aiming to decentralize and democratize aspects of the existing financial services, Masters’s Digital Asset Holdings aims to assist existing financial services companies in adopting this new technology, thereby helping the incumbents fight back the rebels who seek to disrupt the status quo.

Ironically, virtually all major cryptocurrency exchanges now have institutional investors and/or partnerships with regulated financial institutions.38 Like it or not, but the cryptocurrency world is deep in bed with the very establishment that it likes to rail at on social media.

Also, Bitcoin again is at most a payments network and does not actually solve problems for existing financial service providers on their many other lines of business.

On p. 27 they write:

General purpose technologies are pervasive, eventually affecting all consumers and companies. They improve over time in line with the deflationary progression of technology, and most important, they are a platform upon which future innovations are built. Some of the more famous examples include steam, electricity, internal combustion engines, and information technology. We would add blockchain technology to this list. While such a claim may appear grand to some, that is the scale of the innovation before us.

If you’re not familiar with hyperbole and technology, I recommend watching and reading the PR for the Segway when it first came out.  Promoters and enthusiasts repeatedly claimed it would change the way cities are built.  Instead, it is used as a toy vehicle to shuffle tourists around at national parks and patrol suburban malls.

Maybe something related to “blockchains” is integrated into various types of infrastructure (such as trade finance), but the next edition should provide proof of some actual user adoption.

For example, the authors in the following paragraph say that “public blockchains beyond Bitcoin that are growing like gangbusters.”

Which ones?  In the approximately 9 months since this book was published, most “traction” has been issuing ICOs on these public blockchains.  Currently the top 3 Dapps at the time of this writings, run decentralized exchanges… which trade ICO tokens.  Now maybe that changes, that is totally within the realm of possibility.39  But let’s take the hype down a few notches until consistent measurable user growth is observed.

On p. 28 they write:

The realm of public blockchains and their native assets is most relevant to the innovative investor, as private blockchains have not yielded an entirely new asset class that is investable to the public.

The wording and attitude should be changed for the next edition.  This makes it sound as if the only real innovation that exists are network-based coins that a group of issuers continually create and that you, the reader, should buy.

By downplaying opportunities being tackled by enterprise vendors, the statement glosses over the operating environment enterprise clients reside in and how they must conduct unsexy due diligence and mundane requirements gathering because they have to follow laws and regulations otherwise their customers won’t use their specific platforms.

These same vendors could end up “tokenizing” existing financial instruments, it just takes a lot longer because there are real legal consequences if something breaks or forks.40

On p. 28 and 29 they ask “where is blockchain technology in the hype cycle.”

This section could be strengthened by revisiting and reflecting on the huge expectations that these coin projects have raised and were raising at the time the book was first being written.  How were expectations eventually managed?

Specifically, on p. 29 they write:

While it’s hard to predict where blockchain technology currently falls on Gartner’s Hype Cycle (these things are always easier in retrospect), we would posit that Bitcoin is emerging from the Trough of Disillusionment. At the same time, blockchain technology stripped of native assets (private blockchain) is descending from the Peak of Inflated Expectations, which it reached in the summer of 2016 just before The DAO hack occurred (which we will discuss in detail in Chapter 5).

The first part is probably wrong if measured by actual usage and interest (as shown by the Google Search image a few sections above).41

The second part of the paragraph is probably right, though the timing was probably a little later: likely in the last quarter of 2016 when the first set of pilots turned out to require substantially larger budgets.  That is to say, in order to be put platforms into production most small vendors with short runways realized they needed more capital and time to integrate solutions into legacy systems.  In some cases, that was too much work and a few vendors pivoted out of enterprise and created a coin or two instead.42

Chapter 4

On p. 31 they write:

Yes, the numbers have changed a lot since.  Crypto moves fast.

This isn’t a hill I want to die on, but historically “crypto” means cryptography.  Calling cryptocurrencies “crypto” is basically slang, but maybe that’s the way it evolves towards.

On p. 32 they write:

Historically, crypotassets have most commonly been referred to as cryptocurrencies, which we think confuses new users and constrains the conversation on the future of these assets. We would not classify the majority of cryptoassets as currencies, but rather most are either digital commodities (cryptocommodities), provisioning raw digital resources, or digital tokens (cryptotokens), provisioning finished digital goods and services.

They have a point but a literature review could have been helpful at showing this categorization is neither new nor novel.

For instance, the title of my last book was: The Anatomy of a Money-like Informational Commodity.  A bit long-winded?

Where did I come up with that odd title?

In 2014, an academic paper was published that attempted to categorize Bitcoin from an ontological perspective. Based on the thought process presented in that paper, the Dutch authors concluded that Bitcoin is a money-like informational commodity.  It isn’t money and isn’t a currency (e.g., isn’t actually used).434445

On p. 32 they write:

In an increasingly digital world, it only makes sense that we have digital commodities, such as computer power, storage capacity, and network bandwidth.

This book only superficially explains each of these and doesn’t drill down into why these “digital commodities” can’t be priced in good old fashioned money or why an internet coin is needed.  If this is a good use case, is it just a matter of time before Blizzard and Steam get on board?  Maybe worth looking at what entertainment companies do for the next edition.

On p. 33 they write about “why crypto” as shorthand for “cryptoassets” instead of “cryptography.”

For historical purposes, Matt Blaze, the most recent owner of crypto.com, provides a good explanation that could be included or cited next edition: Exhaustive Search Has Moved.

On p. 35 they write:

Except for Karma, the problem with all these attempts at digital money was that they weren’t purely decentralized — one way or another they relied on a centralized entity, and that presented the opportunity for corruption and weak points for attack.

This seems to be conflating two separate things: anonymity with electronic cash.  You can have one without the other and do.46

Also, the BIP process is arguably a weak point for attack.47

On p. 35 they write:

One of the most miraculous aspects of bitcoin is how it bootstrapped support in a decentralized manner.

The fundamental problem with this statement is that it is inaccurate.48 Large amounts of centralization continues to exist: mining, exchanges, BIP vetting, etc.

On p. 35 they write:

Together, the combination of current use cases and investors buying bitcoin based on the expectation for even greater future use cases creates market demand for bitcoin.

Is that a Freudian slip?

Speculators buy bitcoin because they think can sell bitcoins at a higher price because a new buyer will come in at a later date and acquire the coins from them.49

For example, last month Hyun Song Shin, the BIS’s economic adviser and head of research, said:

“If people pay to hold the tokens for financial gain, then arguably they should be treated as a security and come under the same rigorous documentation requirements and regulation as other securities offered to investors for a return.”

In the United States, recall that one condition for what a security is under the Howey framework is an expectation of profit.

Whether Bitcoin is a security or not is a topic for a different post.50

On p. 36 they write:

For the first four years of Bitcoin’s life, a coinbase transaction would issue 50 bitcoin to the lucky miner.

[…]

On November 28, 2012, the first halving of the block reward from 50 bitcoin to 25 bitcoin happened, and the second halving from 25 bitcoin to 12.5 bitcoin occurred on July 9, 2016.  The thrid will happen four years from that date, in July 2020. Thus far, this has made bitcoin’s supply schedule look somewhat linear, as shown in Figure 4.1.

Technically incorrect because of the inhomogeneous Poisson process and the relatively large amounts of hashrate that came online, the first “4 year epoch” was actually less than 4 years.

Whereas the genesis block was released in January 2009, the first halving should have occurred in January 2013, but instead it took place in November 2012.  Similarly, the second halving should have — if rigidly followed — taken place in November 2016, but actually occurred in July 2016 because even more hashrate had effectively accelerated block creation a bit faster than expected.

On p. 36 they write:

Based on our evolutionary past, a key driver for humans to recognize something as valuable is its scarcity. Satoshi knew that he couldn’t issue bitcoin at a rate of 2.6 million per year forever, because it would end up with no scarcity value.

This is a non sequitur.51

Maybe Satoshi did or did not think this way, but irrespective of his or her view, having a finite amount of something means there is some amount of scarcity… even if it is a relatively large amount.  Now this discussion obviously leads down the ideological road of maximalism which we don’t have time to go into today.52  Suffice to say that bitcoin is fundamentally not scarce due to its inability to prevent forks that could increase or decrease the money supply.

On p. 37 they write:

Long term, the thinking is that bitcoin will become so entrenched within the global economy that new bitcoin will not need to be issued to continue to gain support. At that point, miners will be compesnated for processing transaction and securing the network through fees on high transaction volumes.

This might happen but hasn’t yet.

For instance, Kerem Kaskaloglu (see p. 71) created a cartoon model to show what this should look like.

But the actual curves do not exist (yet).

Recommended reading: Analysing Costs & Benefits of Public Blockchains (with Data!) by Colin Platt.

Notice how reality doesn’t stack up to the idealized version (yet)?

On p. 39 they write about BitDNS, Namecoin, and NameID:

Namecoin acts as its own DNS service, and provides users with more control and privacy.

In the next edition they should mention how Namecoin ended up having one mining pool that consistently had over 51% of the network hashrate and as a result, projects like Onename moved over to Bitcoin and then eventually its own separate network altogether (Blockstack).

On p. 41 they write:

This is an important lesson, because all cryptocurrencies differ in their supply schedules, and thus the direct price of each cryptoasset should not be compared if trying to ascertain the appreciation potential of the asset.

One way to strengthen this section is to provide a consistent model or methodology to systemically value a coin that doesn’t necessarily involve future demand from new investors.  Maybe in the second edition they could provide a way to compare or at least say that no valuation model works yet, but here is a possible alternative?

On p. 42 they write:

A word to the wise for the innovative investor: with a new cryptocurrency, it’s always important to understand how it’s being distributed and to whom (we’ll discuss further in Chapter 12). If the core community feels the distribution is unfair, that may forever plague the growth of the cryptocurrency.

Two things:

  1. If a cryptocurrency or “cryptoasset” is supposed to be decentralized, how can it have a singular “core” community too?
  2. In practice, most retail buyers of coins don’t seem to care about centralization or even coin distribution.  Later in the book they mention Dash and its rapid coin creation done in the first month.  Few investors seem to care. 53

On p. 42 they write:

Ripple has since pivoted away from being a transaction mechanism for the common person and instead now “enables banks to send real-time international payments across network.” This focus plays to Ripple’s strengths, as it aims to be a speedy payment system that rethinks correspondent banking but still requires some trust, for which banks are well suited.

If readers have time, I recommend looking through the marketing material of OpenCoin, Ripple Labs, and Ripple from 2013-2018 because it has changed several times.54 Currently there are a couple of different products including xRapid and xCurrent which are aimed at different types of users and as a result, the passage above should be updated.

On p. 43 they write:

Markus used Litecoin’s code to derive Dogecoin, thereby making it one more degree of separation removed from Bitcoin.

This is incorrect.  Dogecoin was first based off of Luckycoin and Luckycoin was based on a fork of Litecoin.  The key difference involved the erratic, random block reward sizes.

On p. 45 they write about Auroracoin.

Auroracoin is a cautionary tale for both investors and developers. What began as a seemingly powerful and compelling use case for a cryptoasset suffered from its inability to provide value to the audience it sought to impact. Incelanders were given a cryptocurrency with little education and means to use it. Unsurprisingly, the value of the asset collapsed and most considered it dead. Nevertheless, cryptocurrencies rarely die entirely, and Auroracoin may have interesting times ahead if its developer team can figure out a way forward.

A few problems:

  1. Auroracoin is still basically dead
  2. Over 1,000 other coins have died, so “rarely” should be changed in the next edition
  3. Why does a decentralized cryptocurrency have a singular development team, isn’t that centralization?

On p. 46 they write:

Meanwhile, Zcash uses some of the most bleeding-edge cryptography in the world, but it is one of the youngest cryptoassets in the book and suitable only for the most experienced cryptoasset investors.

In the next edition it would be helpful to specifically detail what makes someone an experienced “cryptoasset” investor.

On p. 46 they write:

Adam Back is considered the inspiration for Satoshi’s proof-of-work algorithm and is president of Blockstream, one of the most important companies in the Bitcoin space.

While Hashcash was cited in the original Satoshi whitepaper, recall above, that the original idea can be directly linked to a 1993 paper entitled Pricing via Processing or Combatting Junk Mail by Cynthia Dwork and Moni Naor.  Also, it is debatable whether or not Blockstream is an important company, but that’s a different discussion altogether.

On p. 46 they write:

Bitcoin and the permissionless blockchain movement was founded on principles of egalitarian transparency, so premines are widely frowned upon.

What are the founding principles?  Where can we find them?   Maybe it exists, but at least provide a footnote.55

On p. 47 they write:

While many are suspicious of such privacy, it should be noted that it has tremendous benefits for fungibility.  Fungibility refers to the fact that any unit of currency is as valuable as another unit of equal denomination.

Cryptocurrencies such as Bitcoin are not fungible.  Be sure to listen to this interview with Jonathan Levin from May.  See also: Bitcoin’s lien problem and also nemo dat.

On p. 48 they write:

Monero’s supply schedule is a hybrid of Litecoin and Dogecoin. For monero, a new block is appended to its blockchain every 2 minutes, similar to Litecoin’s 2.5 minutes.

In the next edition I’d tighten the language a little because a new monero block is added roughly or approximately every 2 minutes, not exactly 2 minutes.

On p. 48 they write:

By the end of 2016, Monero had the fifth largest network value of any cryptocurrency and was the top performing digital currency in 2016, with a price increase over the year of 2,760 percent. This clearly demonstrates the level of interest in privacy protecting cryptocurrency. Some of that interest, no doubt, comes from less than savory sources.

That is a non sequitur.

Where are the surveys of actual Monero purchasers during this time frame and their opinions for why they bought it? 56

For instance, in looking at the two-year chart above, how much on-chain activity in 2016 was due to speculators interest in “privacy” versus coin flipping?  It is impossible to tell.  Even with analytics all you will be able to is link specific users with purchases.  Intent and motivation would require  surveys and subpoenas; worth adding if available in the next edition.

On p. 48 they write:

Another cryptocurrency targeting privacy and fungiblity is Dash.

Is Dash really fungible though?  That isn’t explored in this section.  Plus Dash has a CEO… how is that decentralized?

On p. 49 they write:

In fact, Duffield easily could have relaunched Dash, especially considering the network was only days old when the instamine began to be widely talked about, but he chose not to.  It would have been unusual to relaunch, given that other cyrptocurrencies have done so via the forking of original code. The creators of Monero, for example, specifically chose not to continue building off Bytecoin because the premine distribution had been perceived as unfair.

How is this not problematic: for a “decentralized” cryptocurrency to be controlled and run by one person who can unilaterally stop and restart a chain?

It actually is common, that’s the confusing part.  Why have regulators such as FinCEN and the SEC not provided specific guidance (or enforcement) on the fact that one or a handful of individuals actually are unlicensed / non-exempted administrators of financial networks?

On p. 49 they write:

The Bitcoin and blockchain community has always been excited by new developments in anonymity and privacy, but Zcash took that excitement to a new level, which upon issuance drove the price through the roof.

Putting aside the irrational exuberance for Zcash itself, why do the authors think so many folks are vocal about privacy and anonymity?

Could it be that a significant portion of the coins are held by thieves of exchanges and hosted wallets who want to launder them?  Here are a few recent examples:

On p. 49 they write:

Through his time at DigiCash and longstanding involvement in cryptography and cryptoassets, Zooko has become one of the most respected members in the community.

Let’s put aside Zooko and Zcash.  The phrase, “the community” frequently appears in this book and similar books.  It is an opaque, ill-defined (and cliquish) term that is frequently used by coin promoters to shun certain people that do not promote specific policies (and coins).57  It’s a term that should be clearly defined in the next edition.

On p. 50 they write:

While it is still early days for Zcash, we are of the belief that the ethics and technology chops of Zooko and his team are top-tier, implying that good things lie in wait for this budding cryptocurrency.

The statement above seems like an endorsement.  Did either of the authors own Zcash just as the book came out?  And what are the specific ethics they speak of?  And why do the authors call it a cryptocurrency instead of a “cryptoasset”?

Chapter 5

On p. 51 they write:

For example, the largest cryptocommodity, Ethereum, is a decentralized world computer upon which globally accessible and uncensored applications can be built.

How is it a commodity?  Maybe it is and while they use a lot of words in this chapter, they never really precisely why it is in a way that makes much sense.  Recommend modifying the first few pages of this chapter.

On p. 52 they write about “smart contracts” and mention Nick Szabo.

For a future edition I recommend diving deeper into the different uses and definitions of smart contracts.  Also could be worth following Tony Arcieri suggestion:

I really like “authorization programs” but people really seem married to the “smart contract” terminology. Never mind Martin Abadi’s work on authorization languages (e.g. Binder) predates Nick Szabo’s “smart contracts” by half a decade…

For instance, there has been a lot of work done via the Accord Project with Clause.io and others such as IBM and R3.  Also worth looking into Barclay’s and UCL’s effort with the Smart Contract Templates.  A second edition that aims to be up-to-date should look at these developments and how they have evolved from what Abadi and Szabo first proposed.

On p. 53 they mentioned that Counterparty “was launched in January 2014.”  Technically that is not true.  The fundraising (“proof-of-burn”) took place in January and it was the following month that it “launched.”

On p. 54 they write:

The reason Bitcoin developers haven’t added extra functionality and flexibility directly into its software is that they have prioritized security over complexity. The more complex transactions become, the more vectors there are to exploit and attack these transactions, which can affect the network as a whole. With a focus on being a decentralized currency, Bitcoin developers have decided bitcoin transactions don’t need all the bells and whistles.

This is kind of true but also misses a little history.

For instance, Zerocoin was first proposed as an enhancement directly built into Bitcoin but key, influential Bitcoin developers who maintained the repository, pushed back on that for various technological and philosophical reasons.  As a result, the main authors of that proposal went on to form and launch Zcash.58

On p. 56 they write:

Buterin understood that building a system from the ground up required a significant amount of work, and his announcement in January 2014 involved the collaboration of a community of more than 15 developers and dozens of community members that had already bought into the idea.

I assume the authors mean, following the Bitcoin Miami announcement in January 2014, but they don’t really say.  I’m not sure how they arrive at the specific headcount numbers they did above, would be good to add a footnote in the future.

On p. 56 they write:

The ensuing development of the Bitcoin software before launch mostly involved just two people, Satoshi and Hal Finney.

This assumes that Satoshi is not Hal Finney, maybe he was.  But it should also include the contributions of Ray Dillinger and others.

On p. 56 they write:

Buterin also knew that while Ethereum could run on ether, the people who designed it couldn’t, and Ethereum was still over a year away from being ready for release. So he found funding through the prestigious Thiel Fellowship.

This is inaccurate.

After reading this, I reached out to Vitalik Buterin and he said:59

That’s totally incorrect. Like the $100k made very little difference.

So that should be corrected in the next version.

On p. 57 they write:

Ethereum democratized that process beyond VCs. For perspective on the price of ether in this crowdsale, consider that at the start of April 2017, ether was worth $50 per unit, implying returns over 160x in under three years. Just over 9,000 people bought ether during the presale, placing the average initial investment at $2,000, which has since grown to over $320,000.

There are a few issues with this:

  1. Ethereum did a small private and a larger public sale.  We do have the Terms and Conditions of the public sale but we do not know how many participated in the private sale and under what terms (perhaps the T&Cs were identical).
  2. Over the past 12 months there has been a trend for the “top shelf” ICOs to eschew a public sale (like Ethereum did) and instead, conduct private placement offerings with a few dozen participants at most… typically VCs and HNWIs.
  3. There are lots of dead ICOs.  One recent study found that, “56% of crypto startups that raise money through token sales die within four months of their initial coin offerings.”  Ethereum is definitely an exception to that and should be highlighted as such.

On p. 57 they write:

The extra allocation of 12 million ether for the early contributors and Ethereum Foundation has proved problematic for Ethereum over time, as some feel it represented double dipping. In our view, with 15 talented developers involved prior to the public sale, 6 million ether translated to just  north of $100,000 per developer at the presale rate, which is reasonable given the market rate of such software developers.

Who are these 15 developers, why is that the number the authors have identified?

Also, how much should FOSS developers be compensated and/or the business model around that is a topic that isn’t really addressed at all in this book, yet it is a glaring omission since virtually all of the projects they talk about are set up around funding and maintaining a FOSS team(s).  Maybe some findings will be available for the next version.

On p. 57 they write:

That said, the allocation of capital into founders’ pockets is an important aspect of crowdsales. Called a “founder’s reward,” the key distinction between understandable and a red flag is that founders should be focused on building and growing the network, not fattening their pockets at the expense of investors.

Because coins do not typically provide coin holders any type of voting rights, it is legally dubious how you can hold issuers and “founders” accountable.60

That is why, as mentioned above, there has been an evolution of terms and conditions such that early investors in a private placement for coins may have certain rights and that the founders have certain duties that are all legally enforceable (in theory).

Because no one is publishing these T&Cs, it is hard to comment on what are globally accepted practices… aside from allowing early investors liquidity on secondary markets where they can quickly dump coins.61

Without the ability to legally hold “founders” accountable for enriching themselves at the expense of the project(s), the an interim solution has been to get on social media and yell alot… which is really unprofessional and hit or miss.  Another solution is class action lawsuits, but that’s a different topic.

Also, I put the “founders” into quotes because these seem to be administrators of a network, maybe in the next edition they will be described as such?

On p. 58 they write:

Everyone trusts the system because it runs in the open and is automated by code.

There is lots of different types of open source code that runs on systems that are automated.  For instance, the entire Linux, Apache, and Mozilla worlds predate Bitcoin.  That isn’t new here.62

Also, as mentioned in the previous chapter: Researchers: Last Year’s ICOs Had Five Security Vulnerabilities on Average.  As a result, this has led to the loss of nearly $400 million in ICO funds.

Readers and investors shouldn’t just trust code because someone created a GitHub repo and said their blockchain is open and automated.63

On p. 59 they write:

Most cryptotokens are not supported by their own blockchain.

This is actually true and problematic because it creates centralization risks and the ability for one party to unilaterally censor transactions and/or act as administrators.

For instance, a few days ago, Bancor had a bug that was exploited and about $13.5 million in ETH were stolen… and Bancor was able to freeze the BNT.  That’s because BNT is effectively a centrally administered ERC20 token on top of Ethereum.

Ignoring for the moment whether or not BNT is or is not a security, this is not the first time such issuance and centralization has occurred.  See the colored coin mania from 2014-2015.

On p. 60 they write about The DAO:

Over time, investors in these projects would be rewarded through dividends or appreciation of the service provided.

They mention regulators briefly later on – about SEC views – but most of the content surrounding crowdsales was non-critical and borderline promotional.64  Might be worth adding more meat around this in the next edition.

On p. 61 they write about The DAO:

The hack had nothing to do with an exchange, as had been the case with Mt. Gox and other widely publicized Bitcoin-related hacks. Insted, the flaw existed in the software of The DAO.

Is it really possible to call it a “flaw” or “hack” and not a feature?  See also: “Code is not law” as well as “Cracking MtGox.”

On p. 61 they write:

However, a hard fork would run counter to what many in the Bitcoin and Ethereum communities felt was the power of a decentralized ledger.  Forcefully removing funds from an account violated the concept of immutability.

Just a few pages earlier the authors were saying that the lead developer behind Dash should have restarted the network because that was common and now they’re saying that doing a block reorg is no bueno.  Which is it?

Why should the reader care what a nebulously defined “community” says, if it is is not defined?

The reason we have codes of conduct, terms of service, and EULAs is to specifically answer these types of problems when they arise.

Since public blockchains are supposed to be anarchic, the lack of formal governance is supposed to be a feature, right?   That’s a whole other topic but suffice to say that these two sentences should be reworded in the next edition to incorporate the wisdom found in the Lexicon paper.

On p. 62 they write:

Many complained of moral hazard, and that this would set a precdent for the U.S. government or other powerful entities to come in someday and demand the same of Ethereum for their own interests. It was a tough decision for all involved, including Buterin, who while not directly on The DAO developer team, was an admistrator.

This is the first and only time they point out that key participants collectively making governance decisions are administrators… a point I have been highlighting throughout this review.

I don’t think it is fair to label Vitalik Buterin as a singular administrator, because if he was, he wouldn’t have had to ask exchanges to stop trading ether and/or The DAO token.  Perhaps he was collectively involved in that process, but mining pool operators and exchange managers are arguably just as important if not more so.  See also: Sufficiently Decentralized Howeycoins

On p. 62 they write:

While hard fork are often used to upgrade a blockchain architecture, they are typically employed in situations where the community agrees entirely on the beneficial updates to the architecture. Ethereum’s situation was different, as many in the community opposed a hard fork. Contentious hard forks are dangerous, because when new software updates are released for a blockchain in the form of a hard fork, there are then two different operating systems.

A few things:

  1. Notice the continued use of an ill-defined “the community”
  2. How is agreement or disagreement measured?  During the Bitcoin block size debate, folks tried to use various means to express interest, most of which resulted in sybil attacks such as retweets and upvotes on social media by an army of bots.
  3. Is any fork non-contentious.  Surely if we looked hard enough, we could always find more than a handful of coin owners and/or developers that disagreed with the proposal.  Does that mean you should ignore them?  Whose opinion matters?  These types of questions were never really formally answered either in the case of the Bitcoin Segwit / Bitcoin Cash fork… or in the Ethereum / Ethereum Classic / The DAO fork.  Governance is pretty much an off-chain popularity contest, just like voting for politicians.65

On p. 63 they write:

The site for Ethereum Classic defines the cryptoasset as “a continuation of the original Ethereum blockchain–the classic version preserving untampered history; free from external interference and subjecitve tampering of transactions.”

This could be revised since Ethereum Classic itself has now had multiple forks.

As mentioned in a previous post last year:

Ethereum Classic: this small community has held public events to discuss how they plan to change the money supply; they video taped this coordination and their real legal names are used; only one large company (DCG) is active in its leadership; they sponsor events; they run various social media accounts

There has been lots of external interference, that’s been the lifeblood of public blockchains… because they don’t run themselves, people run and administer them.

Continuing on p. 63 they write:

While many merchants understably complain about credit card fees of 2 to 3 percent, the “platform fees” of Airbnb, Uber, and similar platform services are borderline egregious.

Maybe they are, maybe they are not.66 What is the right fee they should be?  Miners take a cut, exchanges take a cut, developers take a cut via “founder’s funds.”

The next edition should give a step-by-step comparison to show why fee structures are egregious (maybe they are, it just is not clear in this book).

On p. 64 they wrote about Augur.  Incidentally, Augur finally launched in early July while writing this review.  I have an origin story but will keep that for later.

On p. 65 they wrote about Filecoin:

For example, a dApp may use a decentralized cloud storage system like Filecoin to store large amounts of data, and another cryptocommodity for anonymized bandwidth, in addition to using Ethereum to process certain operations.

A couple thoughts:

  1. That’s the theory, though Filecoin hasn’t launched yet — why do they get the benefit of the doubt yet other projects don’t?
  2. There is no price or use comparison in this chapter or elsewhere… the book could be strengthened if it provided more evidence of adoption because we have seen that running decentralized services such as Tor or Freenet have been less than spectacular.

On p. 65 they write:

Returning to the fundamentals of investment theory will allow innovative investors to properly position their overarching portfolio to take advantage of the growth of cryptoassets responsibly.

It is still unclear what an “innovative investor” is — at least the way these authors describe it.67

Chapter 6

On p. 69 Tatar writes:

Not only did I decide to inveset in bitcoin, I decided to place the entirety of that year’s allocation for my Simplified Employee Pension (SEP) plan into bitcoin. When I announced what I had done in my article “Do Bitcoin Belong in your Retirement Portfolio?,” it created a stir online and in the financial planning community.

This was one of just a couple places where the authors actually disclose that they own specific coins, next edition they should put it up front.

On p. 70 Tatar writes:

Was I chasing a similar crash-and-burn scenario with bitcoin? Even my technologically and investment savvy son, Eric, initially criticized me about bitcoin. “They have these things called dollar bills, Dad. Stick to using those.”

Eric is probably right: that the authors of this book accepted traditional money for their book (Amazon doesn’t currently accept cryptocurrencies).

Based on their views presented in this book, the authors probably don’t spend (many) coins they may have in the portfolio, instead holding on to them with the belief that other investors will bid up the price (measured in actual money).

On p. 77 they write about the GFC prior to 2008:

Becoming a hedge fund manager became all the rage for business-minded students when it was revealed that the top 25 hedge fund managers earned a total of $22.3 billion in 2007 and $11.6 billion in 2008.

Coincidentally a similar “rage” for running cryptocurrency-related funds has occured in the past 18 months, especially for ICOs.

More than two hundred “funds” quickly popped up in order to gobble up coins during coin mania.  At least 9 have closed down through April and many more were down double digits due to a bear market (and not hedging).

Chapter 7

On p. 83 they write:

Bitcoin is the most exciting alternative asset in the twenty-first century, and it has paved the way for its digital siblings to enjoy similar success.

It is their opinion that this is the case, but the authors don’t really provide a lot of data to reinforce it yet, other than the fact that there have been some bull runs due to exuberance.68 Worth rewording in the next edition.

On p. 83 they write:

Because bitcoin can claim the title of being the oldest cryptoasset…

Historically it is not.  It may be the oldest coin listed on a liquid secondary market, but there were cryptocurrencies before bitcoin.

On p. 85 Berniske writes:

Similarly, I (Chris) didn’t even consider investing in bitcoin when I first heard about it in 2012. By the time I began considering bitcoin for my portfolio in late 2014, the price was in the mid $300s, having increased 460,000-fold from the initial exchange rate.

I believe this is the only time in the book that Burniske discloses any coin holdings.

On p. 85 they make some ridiculous comparison with the S&P 500, DJIA, NASDAQ 100… and Bitcoin.

The former three are indices of multiple regulated securities.  The latter is just one coin that is easily influenced and manipulated by external unaccountable parties.  How is that an apples to apples comparison?

On p. 87 they continue by comparing Bitcoin with Facebook, Google, Amazon, and Netflix.

Again, these are regulated securities that reflect cash flows and the financial health of multinational companies… Bitcoin has no cash flows and isn’t (yet) setup to be a company… and isn’t regulated (no KYC/AML at the mining farm or mining pool level).

Bitcoin was originally built to be an e-cash transmission network, a decentralized MSB.69 How is comparing it with non-MSBs a useful comparison?

On p. 88 they write:

Remember that, as of January 2017, bitcoin’s network value was 1/20, 1/22, 1/3, and 1/33 that of the FANG stocks respectively. Therefore, if bitcoin is to grow to a similar size much opportunity remains.

This whole section should be probably be modified because these aren’t apples-to-apples comparisons.  FANG stocks represent companies that have to build and ship multiple products in order to generate continuous revenue.

With Bitcoin, it is bitcoin that is the product, nothing else is being shipped nor is revenue being generated70

Maybe the price of a bitcoin — as measured with actual money — does reach a 1:1 or even surpass the stocks above.  But a new version of this book could be strengthened with an outline on how it could do so sustainably.

Also, the whole “market cap” topic should be removed from next edition as well.  About 20% of all bitcoins have been lost or destroyed and this is never reflected in those exuberant “market cap” stories.  See: Nearly 4 Million Bitcoins Lost Forever, New Study Says

On p. 92 they write about volatility:

Upon launch, cryptoassest tend to be extremely volatile because they are thinly traded markets.

Actually, basically all cryptocurrencies including the ones that the authors endorse throughout the book — are still very volatile.

Below is one illustration:

Source: JP Koning

The authors do have a couple narrow, daily volatility charts in the book, but none that provide a similar wideview comparison with something that is remotely comparable (Bitcoin versus Twitter doesn’t make any sense).

On p. 101 they write:

Cryptoassets have near-zero correlation to other captial market assets.

That’s loosey goosey at best.71

For instance, as pointed out in multiple articles this year: Bitcoin and other cryptocurrencies tend to be locked together – and that’s a big problem

On p. 102 they write:

In contrast, the past few years have been more nuanced: bitcoin’s volatily has calmed, yet it retains a low correlation with other assets.

That first part is untrue, as shown by the chart above from JP Koning.  The second part is relative.72

Chapter 8

On p. 107 they write:

The Securities and Exchange Commission has thus far steered clear of applying a specific label to all cryptoassets, though in late July 2017 it did release a report detailing how some cryptoassets can be classified as securities, with the most notable example being The DAO.

That’s pretty much the extent of the authors analysis of the issue.  Granted they aren’t lawyers but this is a pretty big deal, maybe in the next edition beef this up?

On p. 107 they write:

While it’s a great validation of cryptoassets that regulators are working to provide clarity on how to classify at least some of them, most of the existing laws set forth suffer from the same flaw: agencies are interpereting cryptoassets through the lens of the past.

From this wording it seems that the authors want laws changed or modified to protect their interests and the financial interests of their LPs.  This isn’t the first or last time that someone with a vested interest lobbies to get carve outs, exceptions, or entire moratoriums.

Maybe that it is deserved, but it’s not well-articulated in this chapter other than to basically call regulators “old-fashioned” and out of touch with technology.73 Could be worth rethinking the wording here.

On p. 107 they write:

Just as there is diversity in equities, with analsts segmenting companies depending on their market capitalization, sector, or geography, so too is there diversity in cryptoassets. Bitcoin, litecoin, monero, dash, and zcash fulfill the three definitions of a currency: serving as a means of exchange, store of value and unit of account.

This is empirically incorrect.  None of these coins functions as a unit of account, they all depend on and are priced in… actual money.74

There are lots of reasons for why this is case but that is beyond the scope of this review. 7576

On p. 110 they write about ETFs:

It should be noted that when we talk about asset classes we are not doing so in the context of the investment vehicle that may “house” the underlying asset, whether that vehicle is a mutual fund, ETF, or separately managed account.

They don’t really discuss it in the book, but just so readers are aware, there have been about 10 Bitcoin-only ETFs proposed in the US, all of which have been rejected by the SEC (or applications were voluntarily removed).

Curious to know why?  See the March 10, 2017 explanation from the SEC.

Note: this hasn’t stopped sponsors from re-applying.  In the process of writing this review, the CBOE filed for a Bitcoin ETF.

On p. 111 they write:

Much of the thinking in this chapter grew out of a collaboration between ARK Invest and Coinbase through late 2015 and into 2016 when the two firms first made the claims that bitcoin was ringing the bell for a new asset class.

Just to be clear: the joint paper they published in that time frame was a bit superficial as it lacked actual user data from Coinbase exchanges (both GDAX and the consumer wallet).  I pointed that out back then and this book is basically an expanded form of that paper: where is specific usage data on Coinbase?  The only way we have learned any real user numbers about Coinbase is from an IRS lawsuit.

For instance, a future edition should try to differentiate on-chain activity that is say, gambling winnings or miners payouts from exchange arbitrage or even coin shuffling.  Their analysis should be redone once they remove the noise from the signal (e.g., not all transactional activity is the same).

This is a real challenge and not a new issue.  For instance, see: Slicing data.

On p. 112 they write:

Cryptoassets adhere to a twenty-first century model of governance unique from all other asset classes and largely inspired by the open source software movement. The procurers of the asset and associated use cases are three pronged. First, a group of talented software developers decide to create the blockchain protocol or distributed application that utilizes a native asset. These developers adhere to an open contributor model, which means that over time any new developer can earn his or her way onto the development team through merit.

There is no new governance model.

In practice, changes are done via social media popularity contests.  We saw that with the Bitcoin blocksize debate and Ethereum hard fork.  And in some ways, strong vocal personalities (and cults of personality) is how other FOSS projects (like Python) are managed and administered.

The fluffy meritocracy feel-goodism is often not the order of the day and we see this in many projects such as Bitcoin where the commit access and BIP approval process is limited to a small insular clique.

Source: Jake Smith (section 3)

The 4 point plan above is a much more accurate break down of how most coin projects are setup.

On p. 112 they write:

However, the developers are not the only ones in charge of procuring a cryptoasset; they only provide the code. The people who own and maintain the computers that run the code–the-miners–also have a say in the development of the code because they have to download new software updates. The developers can’t force miners to update software. Instead, they must convince them that it makes sense for the health of the overall blockchain, and the economic health of the miner, to do so.

But in many projects: developers and miners are one in the same.  This is why it is so confusing to not have seen additional clarity or guidance from FinCEN because of how centralized most projects are in practice.

Be sure to look at “arewedecentralizedyet.”77

On p. 113 they write:

These companies often employ some of the core developers, but even if they don’t, they can assert significant influence over the system if they are a large force behind user adoption.

Maybe that is the case for some cryptocurrencies.78  Should “core” developers be licensed like professional engineers are?

Also, isn’t their statement above evidence that most projects are fairly centralized because the division of labor results in specialization?

On p. 113 they write:

These users are constantly providing feedback to the developers, miners, and companies, in whose interest it is to listen, because if users stop using the cryptoasset, then demand will go down and so too will the price.  Therefore, the procurers are constantly held accountable by the users.

Except this isn’t what happens in practice.

Relatively little activity takes place at all on most of these coin platforms and most of what does occur involves arbitrage trading and/or illicit activity.

This activity seems to have little direct connection to the price of the coin because the price of the coin is still largely determined by the whims of speculative demand.

For instance, above is a two-year transactional volume chart for bitcoin.  The price of bitcoin in the summer of 2016 was in the $600-$700 range whereas it is 10x that today.  Yet daily transaction volume is actually lower than it was back then.  Which means: the two are separate phenomenon.

Also, arguably the only direct way coin owners can — in practice —  hold maintainers accountable is via antics on social media.  That is why control of a specific reddit, Telegram, or Twitter account is very important and why hackers target those channels in order to influence prices.

On p. 113 they write about supply schedules:

For example, with oil, there’s the famous Organization of the Petroleum Exporting Countries (OPEC), which has had considerable control over the supply levels of oil.

Inadvertently they actually described how basically all proof-of-work coins operate: via a small clique of known miners and mining pools.  A cartel?

Source: Jameson Lopp

While these miners have not yet increased or decreased the supply of bitcoins, mining is a specialized task that requires certain capital and connections in order to be successful at.  These participants could easily collude to change the money supply, censor transactions, etc. and there would be no immediate legal recourse.

On p. 115 they write:

Cryptoassets, like gold, are often constructed to be scarce in their supply. Many will be even more scarce than gold and other precious metals. The supply schedule of cryptoassets typically is metered mathematically and set in code at the genesis of the underlying protocol or distributed application.

How to measure scarcity here?

Despite what alchemists tried for centuries to do: aside from particle accelators, on Earth the only way of increasing the supply of gold and silver is via digging it out of the ground.  For cryptocurrencies, it is relatively easy to fork and clone both code and chains.  Digital scarcity for most — if not all — public chains, seems to be is a myth.

In the next edition, maybe remove the “backed by maths” trope?  None of these chains run themselves, they all depend on humans to run the equipment and maintain the code.

On p. 115 they write:

As discussed earlier, Satoshi crafted the system this way because he needed initially to bootstrap support for Bitcoin which he did by issuing large amounts of the coin for the earliest contributors.  As Bitcoin matured, the value of its native asset appreciated, which means less Bitcoin is over eight years old, it provides strong utility to the world beyond as an investment, which drive demand.

Satoshi likely mined around 1 million bitcoins for himself/herself.  Because of how centralized and small the network originally was in 2009, he/she probably could have unilaterally stopped the network and relaunched it and effectively removed that insta-mine. 79

In addition, there was almost no risk to either be a developer or a miner… the entry/exit costs were very low… so why did he issue large amounts of coins for these contributors?80

Also, how does it provide strong demand beyond investment?  How many people do the authors know regularly use Bitcoin itself for retail payments?81

Also, through Bitcoin’s evolution, arguably some of its utility was removed by going down a specific block size path.  The counterargument is that payments will be done via some other networks (such as Lightning) attached to Bitcoin, but as of this writing, that hasn’t panned out.

One last comment about this passage, FOSS is historically charity work and difficult to build a sustainable operation. A couple notable exceptions are Red Hat and SUSE (which was just acquired by EQT).

On p. 115 they write:

The Ethereum team is currently rethinking that issuance strategy due to an intended change in its consensus mechanism.

In the second edition is it possible to be consistent on this one point: how is an “official” or “centralized” development team congruent with the idea of having a “decentralized ecosystem”?

Also, the administrators of Ethereum Classic modified the money supply last year and most folks were blasé.  Where is the relevant FinCEN guidance?

On p. 115 they write:

Steemit’s team pursued a far more complicated monetary policy with its platform, composed of steem (STEEM), steem power (SP), and steem dollars (SMD).

[…]

They have also chosen to modify their monetary policy post-inception.

The authors of this book need to be consistent in their wording because in other places they criticize centralized financial institutions but do not criticize centralized monetary supply decision of coin makers.  Also, again, why or how does a decentralized project have a singular team?

On p. 116 they write:

Crypotassets can be likened to silicon. They have come upon the scene due to the rise of technology, and their use cases will grow and change as technology evolves.  Currently, bitcoin is the most straightforward, with its use case being that of a decentralized global currency. Ether is more flexible, as developers use it for computational gas within a decentralized world computer.

This isn’t a good analogy.  Silicon exists as a naturally occurring element… whereas cryptocurrencies do not naturally arise — humans create them.

In addition, bitcoin is arguably not the most straightforward due to a long divorce and schism process the past three years.  One distinct group of promoters calls it “digital gold” and another distinct group calls it a “payment system” — the two groups are almost violently opposed to one another’s existence.

On p. 116 they write:

Then there are the trading markets, which trade 24/7, 365 days a year. These global and eternally open markets also differentiate cryptoassets from other assets discussed herein.

The FX markets are open globally almost 24/6 for most of the year, so that’s not really a braggable claim.82 There are legal, regulatory, and practical reasons why most capital markets operate in the time windows they do… it is not because of some technological limitation.  Worth rewording in the next edition.

On p. 116 they write:

In short, the use cases for cryptoassets are more dynamic than any preexisting asset class. Furthermore, since they’re brought into the world and then controlled by open-source software, the ability for cryptoassets to evolve is unbounded.

In the next edition, maybe remove the pomp and circumstance unless there is actual data to back up the platitudes.  We can all easily conjure up lots of potential use cases for just about any type of technology, but unless they are built and used, the hype should be turned down a few notches.

Also, there are many other open source software projects that have actually shipped frequently used productivity tools and no one is yelling from the mountain tops about how they have unbounded potential.  How are internet coins any different?

On p. 117 they write:

Cryptoassets have two drivers of their basis of value: utility and speculative.

In theory, perhaps.  But in practice, most coins just have potential utility because with few exceptions, most buyers typically hold with the expectation the coin will appreciate.  Maybe that change in the future.

On p. 117 the write:

For example, Bitcoin’s blockchain is used to transact bitcoin and therefore much of the value is driven by demand to use bitcoin as a means of exchange.

Perhaps, though in the next edition recommend modifying the wording to include: “… as a means of exchange or investment…”  Currently, we know a large portion of activity is likely movement (arbitrage) between exchanges.8384

But even ignoring this data (from analytics companies) this scenario has been diced-up elsewhere:

On p. 117 they write:

Speculative value is driven by people trying to predict how widely used a particular cryptoasset will be in the future.

If there are systematic surveys of actual buyers and sellers perhaps add those in the second edition.85

On p. 118 they write:

With cryptoassets, much of the speculative value can be derived from the development team. People will have more faith that a cryptoasset will be widely adopted if it is crafted by a talented and focused development team. Furthermore, if the development team has a grand vision for the widespread use of the cryptoasset, then that can increase the speculative value of the asset.

This is false.

For starters, the value of a new coin is almost entirely a function of the marketing effort from the coin issuers: that’s why nearly all ICOs carve out a portion of their funding pie to market, promote, and advertise… spreading the sexy gospel of the new coin.

This is a big bucks opaque industry, with all sorts of shenanigans that take place just to get listed on secondary markets… with coin issuers paying more than $1 million to get listed.

While $1 million or even $3 million may sound like a lot to get listed, the issuers know it is worth it because the retail speculators on the other end will at least temporarily pump the coin price up often long enough for the original insiders and investors to cash out.

Now the coin issuers may talk a big game and at eloquent length about how their grand vision: that their coin will end world hunger and save the environment, but they often have no ability to execute and build the product(s) they claimed in their whitepaper.

As mentioned above, one recent study found that, “56% of crypto startups that raise money through token sales die within four months of their initial coin offerings.”

Also, how does a decentralized cryptocurrency have an official singular development team?

On p. 118 they write:

As each cryptoasset matures, it will converge on its utility value. Right now, bitcoin is the furthest along the transition from speculative price support to uility price support because it has been around the longest and people are using it regularly for its intended utility use case.

And what is its intended use case?  The maximalist vision (digital gold) or the originalist payments vision?

On p. 118 they write:

For example, in 2016, $100,000 of bitcoin was transacted every minute, which creates real demand for the utility of the asset beyond its trading demand. A great illustration of bitcoin’s price support increasingly being tied to utility came from Pantera Capital, a well-respected investment firm solely focused on cryptoassets and technology. in Figure 8.2 we can see that in November 2013 bitcoin’s speculative value skyrocketed beyond its utility value, which is represented here by transactions per day using Bitcoin’s blockchain (CAGR is the compound annual growth rate).

But this didn’t happen.

Pantera has a habit of cherry picking dates and using different types of graphs (such as log versus linear) in order to talk its book.

For instance, they conjured up and pushed the “bitcoin absorbs the value of gold” narrative back in late 2014.  Then a year later, they became part of the “great pivot” by rebranding everything “blockchain” instead of bitcoin.

Putting those aside, the transactional part of the graph (Figure 8.2) from Pantera was published in early 2017 and has not held up to further scrutiny by mid-2018.

Source: Pantera

Compare that with the actual transactional volume for the past two years, including the most recent bull run:

Perhaps for some unknown reason the up-and-to-the-right hockey stick graph that Pantera tried to create with its dotted lines will germinate.  But for now, as of this writing, their transactional / utility thesis is incorrect.

Why?  Because the assumptions were the same as the authors of this book: they assume retail or institutional users will flock to using bitcoin for non-speculative reasons, but that has not occurred yet.

On p. 119 they write:

Speculative value diminishes as a cryptoasset matures because there is less speculation regarding the future markets the cryptoasset will penetrate. This means people will understand more clearly that demand for the asset will look like going forward. The younger the cryptoasset is, the more its value will be driven by speculative vlaue, as shown in Figure 8.3. While we expect cryptoassets to ossify into their primary use cases over time, especially as they become large system that supports significant amounts of value, their open-source nature leaves open the possiblity that they will be tweaked to pursue new tangential use cases, which could once again add speculative value to the asset.

Their wording in this and other passages has definitive certainty without any hedging.

This is unfounded.  Recall, what can be presented without evidence can be dismissed without evidence.  This also makes a circular argument that the next edition needs to provide evidence for (or just remove it).

Chapter 9

On p. 122 the write:

For example, currently the bond markets are undergoing significant changes, as a surprising amount of bond trading is still a “voice and paper market,” where trades are made by institutions calling one another and tangible paper is processed. This makes the bond market much more illiquid and opaque than the stock market, where most transactions are done almost entirely electronically: With the growing wave of digitalization, the bond markets are becoming increasingly liquid and transparent. The same can be said of markets for commodities, art, fine wine, and so on.

In re-reading this I can’t tell if the authors recognize that the bond market, as well as all of the other markets listed, started out in pre-electronic and even pre-industrial times.

That’s not to defend the status quo, only that if modern day trading platforms and automation existed a couple hundreds years ago, it is likely that bonds trading would have migrated much earlier than 2018… maybe even on a blockchain!

On p. 122 they write:

Cryptoassets have an inherent advantage in their liquidity and trading volume profile, because they are digital natives. As digital natives, cryptoassets have no physical form, and can be moved as quickly as the Internet can move the 1s and 0s that convey ownership.

This is conflating digitization/digitalization with blockchains.  You can have one without the other and in fact, do.

For instance, with US equities, beginning in the ’60s through the ’70s, stocks were dematerialized then immobilized in CSDs and ownership is now transferred electronically.86

Perhaps there is something to be said about this market infrastructure further evolving in time with a blockchain of some kind.

For example in the US, the DTCC (a large CSD) has:

Virtually every major CSD, stock exchange, and clearing house has likewise publicly opined or participated in some blockchain-related initiatives.  But that is a separate topic maybe worth looking into for the next edition.

On p. 123 they write:

Even though they are growing at an incredible clip, separation between cryptoasset markets and traditional investor capital pools still largely remains the case.

How much real money has actually entered the cryptocurrency market?

There have been several attempts to quantify it and it is still rather small, maybe up to $10 billion came in during 2017.

On p. 125 they write:

For example, in 2016, Monero experienced a sizeable increase in notoriety–largely because its privacy features began to be utilized by a well-known dark market–which sent its average trading volume skyrocketing. In December 2015, daily volume for the asset was $27,300, but by December 2016 it was $3.25M, well over a hunderfold increase. The price of the asset had appreciated more than 20-fold in the same period, so some of the increase in trading volume was due to price appreciation, but clearly a large amount was due to increased interest and trading activity in the asset.

But how do the authors know this “clearly” was the case?  Did they do some random sample surveys?  The next edition they need to prove their assumption, not just make them.  After all, it is hard — perhaps impossible — to externally ascertain what is going on at an exchange simply by looking at self-published volumes.

Also, the exchanges that these coins trade on are still typically unregulated, with little optics into how often manipulation occurs.  That is why a number of them have been subpoenaed by various governmental bodies; in the US this includes the SEC, CFTC, IRS, FBI, and even separate states acting in coordination.

On p. 129 they write:

From these trends, we can infer that this declining volatility is a result of increased market maturity. Certainly, the trend is not a straight line, and there are significant bumps in the road, depending on particular events. For example, monero had a spike in volatility in late 2016 because it experienced a significant price rise. This shows volatility is not only associated with a tanking price but also a skyrocketing price. The general trend, nonetheless, is of dampening volatility […].

This is not true either.  Maybe there are cherry picked dates in which there is relatively lower volatility than normal, but this year alone prices as measured in real money, declined between 60-100% for basically all crypotocurrencies and this involved a roller coaster to achieve.

In fact, in the process of writing this review, there were multiple days in which prices increased 5-10% for most coins and then a few days later, saw the same size of loses.  Erratic volatility has not disappeared.

On p. 133 they write:

Despite the many PBOC interventions, Chinese citizens used bitcoin to protect themselves against the erosion in value of their national currency.

Who in China did this?

I have spent an enormous amount of time visiting China the past several years on business trips and not once did someone say they had shifted their wealth from RMB into bitcoin because of RMB depreciation.  There are many speculators and miners, but to my knowledge there has not been a formal survey of buyers and their motivations… and the result being because of RMB depreciation.

The next edition should either remove this statement or add a citation.

On p. 134 they write:

As bitcoin rose and fell, so too did these assets. This reinforces the need for the innovative investor to become knowledgeable about these assets’ specific characteristics and recognize where correlations may or may not occur.

Recommend removing “innovative investor” in this location.87

Chapter 10

On p. 137 they write:

On its path to maturity, bitcoin’s price has experienced euphoric rise and harrowing drops, as have many cryptoassets. One of the most common complaints among bitcoin and cryptoasset naysayers is that these fluctuations are driven by the Wild West nature of the markets, implying that cryptoassets are a strange new breed that can’t be trusted. While each cryptoasset and its associated markets are at varying levels of maturity, associating Wild West behavior as unique to cryptoasset markets is misleading at best.

No it isn’t.  The authors do not even define or provide some kind of way to measure “maturity.”  This paragraph creates a strawman.

The burden-of-proof rests on the party making the positive claim.  In this case, the party claiming that a coin is becoming mature must provide objective evidence this is taking place.  Should reword in the next edition.

On p. 138 they write:

Broadly, we categorize five main patterns that lead to markets destabilizing: the speculation of crowds, “This time is different,” Ponzi schemes, Misleading information from asset issuers, Cornering.

Those are valid patterns, in full agreement here.  But this edition does not help in dispelling these problems and arguably even contributes to some of the speculative frenzy.

On p. 138 they write:

Sometimes they do this to capitalize on short-term information they believe will move the market, other times they do it because they expect to ride the momentum of the market, regardless of its fundamentals. In short, they try to profit within the roller-coaster ride.

What are the fundamentals of any coin described in this book?  Next edition, clearly write out 5-10 if possible.

On p. 139 they write:

As America was struggling through the Great Depression, which many pinned on the stock market crash of 1929, there was strong resentment against speculators. Every crisis loves a scapegoat.

And in Bitcoinland there is no difference.  Bitcoiners love to blame: bankers, the Illuminati, naysayers, concern trolls, academics, the government, Jamie Dimon, big blockers, small blockers, weak hands, statists, other coins, China, George Soros, Warren Buffett, Mike Hearn… virtually every month there is a new boogeyman to blame something on.  I’ve even been blamed many times and I’m not involved at all in the market.

On p. 143 they write:

Cheap credit often fuels asset bubbles, as seen with the housing bubble that led to the financial crisis of 2008. Similarly, cryptoasset bubbles can be created using extreme margin on some exchanges, where investors are effectively gambling with money they don’t have.

Fully agree, good point.

On p. 144 they write:

The best way to avoid getting burned in this manner is to do proper due diligence and have an investment plan that is adhered to.

Fully agree, good point.

On p. 145 they write:

The key to understanding bitcoin’s value is recognizing it has utility as “Money-over-Internet-Protocol”( MoIP)–allowing it to move large amounts of value to anyone anywhere in the world in a matter of minutes–which drives demand for it beyond mere speculation.

This might be partially true but is has the same feel-good narrative that folks like Andreas Antonopoulos have been getting paid handsomly to regurgitate.  Bitcoin (the network) does not move anything beyond bitcoins (the coin).  Users still have to convert bitcoins into actual money at end points.

Converting a large amount — greater than $10,000 — will likely require KYC and AML and maybe even sanctions checks.  This adds time and money which is one of the reason why the remittance use-case didn’t really get much traction after the hype in 2014 – 2015 and why companies such as Abra had to pivot a few times.

With that said, their metapoint is valid on the edges: despite the frictions that may exist, some participants are willing to go through this experience in order to gain more anonymity for uses they might not otherwise be able to do using traditional methods.88

Over the past three years there has also been an expansion of country- and region-based payment schemes worldwide to achieve near-real-time transfers, with Europe being one of the most significant accomplishments.89

In parallel, there are on-going experimentation and scaling of private blockchain-based ‘rails’ like Swift gpi or Alipay with GCash which have a potential to surpass volumes of the Bitcoin network.90

On p. 145 they write:

When Mt. Gox was established, bitcoin finally became accessible to the mainstream.

One nitpick:

Up until recently it was difficult for even diehard users to get onboarded onto most exchanges.  And specifically in 2010 with the launch of Mt. Gox, Jed McCaleb used Paypal to help facilitate the transfer of money… until Paypal dropped Mt. Gox because of too many chargebacks.  To get money into and out of Mt. Gox often was a frictionfull task, unless you lived in Japan.

On p. 149 they write:

As shown in Figure 10.4, steem’s price in bitcoin terms would fall from its mid-July peak by 94 percent three months later, and by 97 percent at the end of the year. This doesn’t mean the platform is bad. Rather, it shows the speculation and excitement about its prospects fueled a sharp rise and fall in price.

In hindsight, everything is 20-20.  The same truism in their last sentence can be said just about with every coin that sees the meteoric rise that Steemit did in 2016.91

On p. 150 they write:

While zcash has since stabilized and continues to hold great promise as a cryptoasset, its rocky start was caused by mass speculation.

Two comments:

  • Do the authors own any Zcash (or other cryptocurrencies mentioned in this book besides bitcoin)?
  • In late 2016 there were oodles of “thought leaders” talking about how Zcash was — for a moment — valued at a trillion dollars because of the very thin supply that was trading on exchanges.  It was a headscratching meme that illustrates a shortcoming to the common “market cap” valuation mehtod.92

On p. 152 they write:

The idea of valuation, which we will tackle in the next chapters, is a particularly challenging one for cryptoassets. Since they are a new asset class, they cannot be valued as companies are, and while valuing them based on supply and demand characteristics like that of commodiites has some validity, it doesn’t quite suffice.

Then why spend an entire chapter (Chapter 7) comparing coins such as bitcoin, to companies and their stock?

You can’t have it both ways.  Either heavily modify Chapter 7 in the next edition, or remove this comment.

Chapter 11

On p. 155 they write:

Given the emerging nature of the cryptoasset markets, it’s important to recognize that there is less regulation (some would say none) in this arena, and therefore bad behavior can persist for longer than it may in more mature markets.

And there are now full-time lobbyists and trade associations — sponsored by donors whom have benefited from this unregulated / underregulated market — that actively push back against sensible regulations being applied.  But that’s a different conversation beyond this post.

On p. 155 they write:

As activity grows in bitcoin and crypotasset markets, investors must look beyond the madness of the crowd and recognize that there are bad actors who seek easy prey in these young markets.

Even for a book published in late 2017, this is pretty much lip service.  Volumes of books can be written about the shenanigans within nearly every public ICO and high-profile coin project.  The authors should either modify the statement above or ideally expand it to detail specific egregious examples besides just OneCoin.

For instance, a new study found that: More Than Three-Quarters of ICOs Were Scams.  And these were ICOs done in 2017.

On p. 158 they write:

While a truly innovative crypotasset and its associated architecture requires a heroic coding effort from talented developers, because the software is open source, it can be downloaded and duplicated. From there, a new cryptoasset can be issued wrapped in slick marketing. If the innovative investors doesn’t do proper due diligence on the underlying code of read other trusted sources who have, then it’s possible to fall victim to a Ponzi scheme.

Enough with the “heroic” adjectives, let’s not put anyone on a pedestal, especially if the platform is not being used by anyone besides speculators and illicit actors.

Secondly, a minor grammar question: other uses of “open-source” in this book have a dash and the one above does not.

Lastly, recommend readers look into “Nakomoto Schemes” described in this article: The Problem with Calling Bitcoin a “Ponzi Scheme”

On p. 158 they write:

Millions of dollars poured into OneCoin, whose technology ran counter to the values of the cryptoasset community: its software was not open source (perhaps out of fear that developers would see the holes in its design), and it was not based on a public ledger, so no transactions could be tracked.

First, what are the “values” that the “community” has?  Are these explicity written somewhere?  Who decided those?

Second, those actually don’t sound too uncommon.

For instance, one recent study found: “Security researchers have found, on average, five security flaws in each cryptocurrency ICO (Initial Coin Offering) held last year. Only one ICO held in 2017 did not contain any critical flaws.”

And remember, these projects are “open source” yet most buyers and investors didn’t bother looking at the code.  OneCoin is par for the course.

On p. 159 they write:

The swift action revealed the strength of a self-policing, open-source community in pursuit of the truth.

In my most popular post last year, I went through in detail explaining how self-policing is an oxymoron in the cryptocurrency world.

For example, “the community” actively listed OneCoin on secondary markets and profited from its trading.  Did exchange operators return those gains to victims?  In addition, “the community” has thus far, not set up any self-regulating organization (SRO) that has any ability or teeth to enforce a code-of-conduct.

In fact, it was agencies from Sweden, the UK, and other governments that acted and cracked down on OneCoin… not a collective effort from exchanges or VCs or twitter personalities.

On p. 159 they explain googling for code on GitHub:

If nothing pops up with signs of the code on GitHub, then the cryptoasset is likely not open source, which is an immediate red flag that a cryptoasset and investment should be avoided.

Sure, but it doesn’t include the fact(s) that even in 2017 we knew that many coin projects had bugs in it… because there is no incentive to independently audit this code or to publish it in an objective manner.

For example, often when someone tries to help highlight problems, they are demonized as a “concern troll” as the coin tribes brigade their Twitter and reddit threads.  There are a couple of sites like ConcourseQ that now do help highlight problems, but most “crypto thought leaders” on social media spend their time rallying retail investors to buy coins instead of busting or calling out the legitimate coin scams.

On p. 161 they write about John Law:

Fortunately, today it’s quite easy to find information on just about anyone through Google searches.

Yes and no.  And that still doesn’t act as a shield against fraud.  The founders of Centra had shady, criminal pasts but were still able to raise more than $30 million in an ICO.  Their misdeeds only became widely known after a New York Times article explored it… this was not a story that was investigated by any of the “coin media” who collectively have a vested interested not to “self-police” the market they cover.

Furthermore, prior to getting busted and sued, Centra became a dues paying member of: Hyperledger, the Enterprise Ethereum Alliance, and the Chamber of Digital Commerce.  What are the filtering mechanisms in place at these types of organizations?  How do they determine who can join and if a coin is a security?

On p. 165 they write:

As with most panics, the contagion spread from the Gold Exchange.  Because of Gould’s cornering of the market, stock prices dropped 20 percent, a variety of agricultural exports fell 50 percent in value, and the national economy was disrupted for several months. Gould exited with a cool $11 million profit from the debacle, and scot-free from legal charges. It is all too common that character like Gould escape unscathed by the havoc they create, which then allows them to carry on with their machinations in other markets.

These kinds of panics and manipulation are part and parcel to retail traders on cryptocurrency exchanges.  Scapegoats and the blame game consist of a myriad of boogeymen — but typically the culprits are never found.93

On p. 167 they write:

In addition to miners, in Dash there are entities called masternodes, which are also controlled by people or groups of people. Masternodes play an integral role in performing near instant and anonymous transaction with Dash.

Putting aside whether Dash is or is not anonymous… the fact that the authors state that humans play a direct role in running the infrastructure raises a bunch of questions that I have repeated in this review.

How are these participants held accountable?  How is governance managed?  Have these participants registered with FinCEN?  Why or why not?

On p. 168 they write about the Bitcoin Rich List:

Another 116 addresses hold a total of 2.87 million bitcoin, or 19 percent of the total outstanding, which is sizeable. Unlike dash, however, these holders aren’t necessarily receiving half the newly minted bitcoin, and so their ability to push the price upward is less.

Should there be a thorough investigation of how any one party or set of parties can artificially move prices around based on control of the money supply?  In our current real-world framework, there are frequent public hearings and audits done.  When will minters of cryptocurrencies be publicly audited?

Chapter 12

On p. 171 they write:

Each cryptoasset is different, as are the goals, objectives, and risk profiles of each investor. Therefore, while this chapter will provide a starting point, it is by no means comprehensive. It’s also not investment advice.

Throughout the book the authors have repeatedly endorsed or not-endorsed specific coins.  The second edition needs to be a lot more consistent.

On p. 172 they write:

Currently, there is no such thing as sell-side research for cryptoassets, and this will require innovative investors to scour through the details on their own or rely on recognized thought leaders in the space.

This is a sad truth: it is nearly impossible to get neutral, objective research on any coin that has been created.

Why?  Because all coin holders basically have an incentive to promote and advertise the coins they own and talk down other coins they perceive as competition.  Paying “researchers” has happened and will continue to do so.

Also, here’s another appearance of “innovative investor” — can that be removed altogether?

And lastly, how to know who the “recognized thought leaders” are?  Based on the amount of twitter followers they have?  That has been gamed.  Based on how popular their Youtube account is?  That has been gamed.

For example, these two article explain some of this payola world:

Another instance, a couple weeks ago a government department in China (CCID) released its second ranking table of coins: China’s Crypto Ratings Index Puts EOS in Top Slot, Drops Bitcoin

It’s unclear if this is due to lobbying efforts or maybe the researchers owned a bunch of EOS coins.  At this time, the EOS block producing and arbitrator framework are both broken.  Block producers paused the network a few weeks ago and the arbitrators / constitutions will probably be scrapped.

How can this rating system be trusted?

On p. 173 they write about white papers:

Any cryptoasset worth its mustard has an origination white paper. A white paper is a document that’s often used in business to outline a proposal, typically written by a thought leader or someone knowledgeable on a topic. As it relates to cryptoassets, a white paper is the stake in the ground, outlining the problem the asset addresses, where the asset stands in the competitive landscape, and what the technical details are.

During the Consensus event this past May, someone accidentally dropped a napkin on the floor and someone loudly said: watch out, that’s the latest multimillion dollar white paper.

And that’s the situation where we are in now.  Readers: the passage above was not at all critical of the real mess we are in today.  For instance, Tron literally plagiarized in its whitepaper, raised a ton of money in its ICO and recently bought BitTorrent.

There is no direct connection between a “good” or “bad” whitepaper and the performance of the coin.  Retail investors do not typically care and haven’t done much research.  Yet another reason agencies such as the SEC will be overwhelmed in the coming years due to rampant fraud and deceit.  Worth looking into the next edition.

On p. 173 they write:

Some of these white papers can be highly technical, though at the very least perusing the introduction and conclusion is valuable.

This seems like an incongruent statement compared to other advice in the book about doing deep research.  Recommend revising.

On p. 174 they write:

A number of cryptoasset-based projects focus on social networks, such as Steemit and Yours, the latter of which uses litecoin. While we admire these projects, we also ask: Will these networks and their associated assets gain traction with competitors like Reddit and Facebook? Similarly, a cryptoasset service called Swarm City (formerly Arcade City) aims to decentralize Uber, which is already a highly efficient service. What edge will the decentralized Swarm City have over the centralized Uber?

And that in a nutshell is why the second edition of the book arguably needs to be slimmed down by 25%+.  Virtually all of the use cases in this book are simply potential use cases and have shown little or even no traction in reality.  For example, if the authors were as critical to Bitcoin and Zcash as they were to Swarm City then the second edition might be perceived as more balanced.

Specifically, in their promotion of Bitcoin as a payments platform, they have not done a deep dive into other existing payment networks, such as Visa or an RTGS from a central bank.94 They should do that in the next edition otherwise these come across as one-sided arguments.

Also, Yours switched from Litecoin over to Bitcoin Cash last year (around the time the book was published) and Swarm City is still not very active at the time this review was written.

On p. 175 they write about The Lindy Effect

The same applies to cryptoassets. The longest-lived cryptoasset, bitcoin, now has an entire ecosystem of hardware, software developers, companies, and users built around it. Essentially, it has created its own economy, and while a superior cryptocurrency could slowly gain share, it would have an uphill battle given the foothold bitcoin has gained.

This is untrue in theory and practice.

While maximalists would vocally claim that there can only be one-chain-to-rule-them-all, there is no real moat that Bitcoin has to prevent users from exiting or switching to other platforms (see discussion on substitute goods).

In practice, effectively all proof-of-work cryptocurrencies depend on external capital to stay afloat, often in the form of venture capital. ((See Robert Sams on rehypothecation, deflation, inelastic money supply and altcoins)) Part of the reason is that miners need to pay their bills in traditional currency and therefore must liquidate some or all of their coins to do so.  Another issue is that because many participants think or believe that coin prices as measured in real money will increase in the future, they hold.  Yet the expenses of service providers (exchanges, wallets, etc.) typically need to be paid with traditional money.

As a result, this creates sell-side pressure.  And unlike the traditional FX market which has “natural” buyers in the form of international merchants and multinational corporations: there still is no “natural” buyers of cryptocurrencies outside of illicit activity (e.g., darknet market participants).

To compound this situation is that there is still no real circular flow of income, no real economy for any of these cryptocurrencies.95  And with the exception of a few cases each year, miners typically do not directly invest their coin holdings into companies, so crypotcurrency-related startups are dependent on foreign currency.

On p. 175 they write:

The demise of The DAO significantly impacted Ethereum (which The DAO was built on), but through leadership and community involvement, the major issues were addressed, and as of April 2017 Ethereum stands solidly as the second largest cryptoasset in terms of network value.

In the second edition, could the authors explicitly lay out how they define “leadership” in this context as well as what the “community” is?  If it is singular and centralized, how is that fitting for an entity that is supposed to be decentralized?

Also, for readers interested in The DAO, here’s a short fiery thread on that topic.

On p. 176 they discuss “utility value and speculative value”

For bitcoin, its utility is that it can safely, quickly, and efficiently transfer value to anyone, anywhere in the world.

That may have been the original vision expressed in the whitepaper but it is not what the maximalists now claim Bitcoin is.  Who’s promotion around utility is something we should take into consideration?

Also, considering how easy and common it is to hack cryptocurrency intermediaries such as exchanges, I think it is debatable that Bitcoin is “safe” for unsophisticated retail users, but that’s a separate topic.

On p. 176 they write:

The merchants wants to use bitcoin because it will allow her to transfer that money within an hour as opposed to waiting a week or more. Therefore, the Brazilian merchant buys US$100,000 worth of bitcoin and sends it ot the Chinese manufacture.

They explain a little more but the difficulties with this example starts here.  The authors only focus on the bitcoins themselves, they don’t explore the actual full lifecycle that international merchants and manufacturers have to go through in order to exchange bitcoins into real money that they can use to pay bills.

That is to say: the Brazilian merchant and Chinese manufacture do not hold onto coins, so it is not just a matter of how fast they can send or receive the coins.  What ultimately matters to them is how quickly they can receive the real money from a bank.

So the next edition needs to include the full roundtrip costs and frictions including the on-ramps and off-ramps into the traditional financial system.  This is why many Bitcoin remittance companies struggled and ultimately had to pivot out of that cross-border use case (such as Abra).  For the next edition, a side-by-side cost comparison would be helpful.96

On p. 177 they write:

That means on average each of these addresses is holding US$5.5 million worth of bitcoin, and it’s fair to assume that these balances are not those of merchants waiting for their transactions to complete. Instead, these are likely balances of bitcoin that entities are holding for the long term based on what they think bitcoin’s future utility value will be. Future utility value can be thought of as speculative value, and for this speculative value investors are keeping 5.5 million bitcoin out of the supply.

This seems like euphemisms.  We understand that time preferences and discounted utility come into dramatic effect here.  Maybe worth rewording?

For example, a large portion of those coins could be permanently destroyed (e.g., someone deleted the private key or threw away the hard drive).  Though a significant portion could also be maximalists holding onto their coins with the hope that other investors create sufficient demand to move the price — as measured in real money — upward and upward.  So they can then cash out.

If daily and weekly anecdotes on twitter and reddit are any indication, that’s arguably the real utility value of most coins, not just bitcoin.  And there is some analytics to back up that argument too.

On p. 177 they write:

At the start of April 2017, there were just over 16 million bitcoin outstanding. Between international merchants needing 10 million bitcoin, and 5.5 million bitcoin held by the top 1,000 investors, there are only roughly 500,000 bitcoin free for people to use.

Citation needed. If the authors have any specific information that can share with the audience about any of these numbers, that’d be very helpful.  Especially regarding the merchants needing 10 million bitcoin.  If anything, there may be fewer merchants actively accepting bitcoin today than there were a couple years ago.

On p. 177 they write:

If demand continues to go up for bitcoin, then with a disinflationary supply schedule, so too will its price (or velocity).

Couple of things:

  • Bitcoin’s current supply schedule is perfectly inelastic (whereas say gold, is elastic).
  • It would be good to see what the authors think the velocity of bitcoin is.  I’ve tried to track down and write about it in the past.  See all of Chapter 9.

On p. 177 they write:

In other words, those investors no longer feel bitcoin has any speculative value left, and instead its price is only supported by current utility value.

As mentioned above, it would be helpful in the next edition if the authors included specific definitions and characteristics in a chart for what utility versus speculative value are.

Also, I don’t endorse the post in its entirety, but about five years ago Rick Falkvinge wrote an interesting note about the transactional value from illicit activity as it relates to Bitcoin.  That has some actual data in it (though very old now).

On p. 178 they write:

For bitcoin, instead of looking at the “domestically produced goods and services” it will purchase in a period, the innovative investor must look at the internationally produced goods and services it will prucahse. The global remittances market–currently dominated by companies that provide the ability for people to send money to one another internationally–is an easy graspable example of service within which bitcoin could be used.

This whole section should probably be culled because this isn’t really a viable, scalable use case that bitcoin itself can solve.

For example, between 2014-2016, tens of millions of dollars were invested in more than a dozen “rebittance” companies (Bitcoin-focused remittance) and most either failed or pivoted.

Those that still exist had to build additional services and bitcoin were a means to an end.  In all cases, these companies had to build their own cryptocurrency exchange and/or partner with several cryptocurrency exchanges in order to liquidate the coins — they need to hedge and limit their exposure to volatility.  Bitcoin also doesn’t solve for the last-mile problem at all… but that is a separate topic.97

On p. 179 they write:

If each bitcoin needs to be worth $952 to service 20 percent of the remittance market and $11,430 to service the demand for it as digital gold, then in total it needs to be worth $12,382. There is no limit to the number of use cases that can be added in this process, but what is extremely tricky is figuring out the percent share of the market that bitcoin will ultimately fulfill and what the velocity of bitcoin will be in each use case.

This is highly debatable.  And it is exactly what Pantera stated four years ago.  Sources should be cited in the next edition; and also provide a velocity estimate for the potential use cases.

On p. 180 they write:

Taking the concepts of supply and demand, velocity, and discounting, we can figure out what bitcoin’s value should be today, assuming it is to serve certain utility purposes 10 years from now. However, this is much easier said than done, as it involves figuring out the sizes of those markets in the future, the percent share that bitcoin will take, what bitcoin’s velocity will be, and what an appropriate discount rate is.

An actual asset would certainly need these blanks filled, but Bitcoin doesn’t behave like a normal asset.  For instance, it goes through enormous speculative bubbles and busts.  It reached just under $20,000 per coin in mid-December last year not for any utility reason but pure speculation… yet many of the “thought leaders” at the time said it was because new buyers were going to use it for its utility.

On p. 180 they write:

Already there have been reports, such as those from Spence Bogart at Needham & Company, as well as Gil Luria at Webush, that look at the fundamental value of bitcoin.

I’ve read most of their reports, they’re nearly all based on edge-case assumptions or one-off anecdotes that never saw much traction (such as remittances).  In addition, arguably both of their analysis may have been colored by their coin investments at the time they published their work.  That’s not to say their material is discredited but I would discount some of their cryptocurrency-related reports.98

On p. 180 they write:

The valuations these analysts produce can be useful guides for the innovative investor, but they should not be considered absolute dictations of the truth. Remember, “Garbage in, garbage out.” We suspect that as opposed to these reports remaining proprietary, as is currently the case with much of the research of equities and bonds, many of these reports will become open-source and widely accessible to all levels of investors in line with the ethos of cryptoassets.

This has not happened.  If anything, the market has been flooded with junk marketing material that masquerades as “research.”  Universities are now getting funded by coin issuers and asked to co-publish papers.  Even if there are no explicit shenanigans going on, there is now a shadow of doubt that hangs over these organizations.

Also, the next edition needs to define what “the ethos of cryptoassets” is somewhere up front.  And dispense with “innovative investor”?99

On p. 182 they write about getting to know “the community and the developers”:

In getting to know the community better, consider a few key points. How committed is the developer team, and what is their background? Have they worked on a previous cryptoasset and in that processrefined their ideas so that they now want to alunch another?

[…]

If information cannot be found on the developers, or the developers are overtly anonymous, then this is a red flag because there is no accountability if things go wrong.

Satoshi clearly wouldn’t have been able to pass this test.  Nor BitDNS originally (which later became Namecoin).

It is a double-standard to want accountability here yet promote an ill-defined “decentralization” throughout this book.  You really can’t have it both ways.

Remember, the reason why administrators and operators of financial market infrastructure are heavily regulated is to hold participants legally responsible and accountable for when mistakes and accidents occur.

Cryptocurrencies were designed to be anarchic and purposefully were designed to not make a single participant accountabile.  Trying to merge those two worlds creates the worst of both: permissioned-on-permissionless.

On p. 183 they write:

If Ethereum gets big enough, there may eventually be those who call themselves Ethereum Maximalists!

Yes, they exist and largely self-selected themselves into the Ethereum Classic world… you can see that by their antics on social media.

On p. 183 they write about issuance models:

Next, consider if the distribution is fair. Remember that a premine (where the assets are mined before the network is made widely available, as was the case with bytecoin) or an instamine (where many of the assets are mined at the start, as was the case with dash) are both bad signs because assets and power will accrue to a few, as opposed to being widely distributed in line with the egalitarian ethos.

Let’s tone down the talk on egalitarianism in a market fueled by greed and a perpetually high Gini coefficient.

In practice as of July 2018, many ICOs are pre-mined or pre-allocated, most as ERC20 tokens that are controlled by a singular entity (usually an off-shore foundation).100

Is this a “bad sign”?  It would be helpful to see what the explicit criteria around token distribution should be in the next edition.101

On p. 183 they write:

For example, Ethereum started with one planned issuance model, but is deciding to go with another a couple years into launch. Such changes in the issuance model may occur for other assets, or impact those assets that are significatnly tied to the Ethereum network.

Those decision are made by individuals.  Perhaps by the next edition we will know what FinCEN and other regulatory positions on individuals creating monetary policy and running financial market infrastructure.

On p. 184 they write:

With Dogecoin we saw that it needed lots of units outstanding for it to function as a tipping service, which justifies it currently having over 100 billion units outstanding, a significantly larger amount than Bitcoin. With many people turning to bitcoin as gold 2.0, an issuance model like Dogecoin’s would be a terrible idea.

What?  Why?  This passage conflates many different things.

  1. As Jackson Palmer has repeatedly said: Dogecoin was set up as a joke, based on a meme.  The authors seem to be taking its existence a little too seriously.
  2. Dogecoin was originally based on Luckycoin which had a random money supply, so its original hashrate charts were all over the map, bipolar.
  3. Its money supply was changed in part because it ran into an exitential crisis that it later (mostly) solved by merge mining with Litecoin in 2014

How does any of this have to do with maximalist narrative of “gold 2.0”?

On p. 186 they write:

The only way attackers can process invald transactions is if they own over half of the computer power of the network, so it’s critical that no single entity ever exceeds 50 percent ownership.

Technically this is not quite right.

The actual figure to sucessfully censor and/or reorg the chain may be as low as 33% and perhaps even 25% (dubbed “selfish mining“).102  More than 50% would mean the participants could do so repeatedly until their hashrate declines and/or a permanent fork occurs.

Aside from pressure on social media, there is nothing to prevent such “ownership” from taking place.  And there is no legal recourse or accountability in the event it happens.  And such “attacks” have occured on many different cryptocurrencies.103

On p. 186 they write:

In other words, miners are purley economically rational individuals–mercenaries of computer power–and their profit is largely driven by the value of the crypotasset as well as by transaction fees.

This should be reworded from the next edition because it is not true.  Miners and mining pools are operated by people and they have various incentives, including to attack networks or abandon them altogether.

On p. 186 they write:

A clearly positively reinforcing cycle sets in that ensures that the larger the asset grows, the more secure it becomes–as it should be.

This is not true for proof-of-work coins.

If anything, mining and development have both trended towards centralization.  For instance, it is estimated that Bitmain-manufactured hashing equipment currently generates 60-80% of the network hashrate and Bitmain-affiliated mining pools comprise about 50%+ of the current Bitcoin network.  Maybe that is just momentary but singular entities on the mining side dominate many other cryptocurrencies as well.  Perhaps that changes later in the year so it is worth revisiting in the next edition.

Recommended reading:

On p. 187 they write:

At the risk of being repetitive, more hash rate signifies more computers are being added to support the network, which signifies greater security.

This is a non sequitur.  A new hashing machine capable of generating 10 times the amount of hashes as the previous machine could — ceteris paribus — result in other machines being turned off.  In practice, you often have the Red Queen Effect take place (see Chapter 3).

Either way, depending on the costs of more efficient ASIC design, there could actually be fewer (or more) hashing machines added to a network depending on the expected price of the coin minus operating costs.

And in some cases, the network may become more centralized and therefore arguably less secure.  Worth revising in next edition.

On p. 188 they write:

While hash rate often follows price, sometimes price can follow hash rate. This happens in situations where miners expect good things of the asset in the future, and therefore proactively connect machines to help secure the network. This instills confidence, and perhaps the expected good news has also traveled to the market, so the price start going up.

This passage has entered Rube Goldberg territory, where a series of specific events turn into a virtuous cycle in which prices go up and up but not down?  How can we ever know what caused certain price increases or decreases with this type of asymmetric information occurring in the background?  Suggest scrapping it in the next edition.

On p. 188 they write:

Ethereum’s mining network, on the other hand, is less built out because it’s a younger ecosystem that stores less value. As of March 2017, a 230 megahash per second (MH/s) mining machine could be purchased for $4,195, and it would take 70,000 of these machines to recreate Ethereum’s hash rate, totaling $294 million in value. Also, because Ethereum is supported by GPUs and not ASICs, the machines can more easily be constructed piecemeal by a hobbyist on a budget.

There are a few issues with this:

  1. How do the authors measure or quantify “less built out”?  Is there a line that is crossed in which Ethereum or other coins are “more built out” or the right size?
  2. About a year ago a coin reporter asked me to detail the hypothetical lower bound costs for recreating the hashrate of the Bitcoin network.  I provided those numbers based on Bitmain’s latest device… but the article instead ignored any of that and instead quoted some random conspiracy theory from a Twitter personality.  Rather than rehashing the full story here, keep in mind that the geographic distribution and control of mining equipment is arguably as important as the aggregate network hashrate.
  3. Their last sentence does not make much sense.  How to define a hobbyist?  If a hobbyist is defined as an individual who can afford to spend $4,195… then they can probably also buy ASIC equipment as well for other cryptocurrencies, including Ethereum today.

On p. 188 they write:

This range is a good baseline for the innovative investor to use for other cryptoassets to ensure they are secured with a similar level of cpaital spend as Bitcoin and Ethereum, which are the two best secured assets in the blockchain ecosystem.

There is another appearance of the “innovative investor,” remove in next edition?

Also, if security is solely measured by hashrate then yes, Bitcoin (BTC) and Ethereum (ETH) might be the “best secured.”  But that assumes a purely Maginot Line attack and not a BGP or wrench attack.

On p. 189 they write:

Overall, hash rate is important, but so too is decentralization. After all, if the hash rate is extremely high but 75 percent of it is controlled by a single entity, then that is not a decentralized system. It is actually a highly centralized system and therefore vulnerable to the whims of that one entity.

This probably should come at the beginning of the chapter, not in this location.  Also recommend adding some citations to the Onename and BGP posts.

On p. 189 they write:

It’s apparent that Litecoin is the most centralized, while Bitcoin is the most decentralized. A way to quanitfy the decentralization is the Herfindahl Hirschman Index (HHI), which is a metric to measure competition and market concentration.

HHI is used with known, legally identifiable parties.  With cryptocurrencies such as Bitcoin, Litecoin, and Ethereum — the mining entities were not originally supposed to be known at all — over time they self-doxxed themselves.104

Should the Department of Justice and similar organizations coordinate and carry out HHI analysis on mining pools to prevent monopolization, oligopolization, and/or coordination?   What happens if participants refuse to comply?

On p. 191 they write:

Blockchain networks should never classify as a highly concentrated marketplace, and ideally, should always fall into the competitive market place category.

Okay, but what if they don’t and no one cares?  Who should enforce this?

Recommend reading a relevant paper published this past winter: Decentralization in Bitcoin and Ethereum Networks

On p. 193 they write:

At times, Bitcoin has been a moderately concentrated marketplace, just as Litecoin mining is currently a moderately concentrated marketplace. Litecoin recognizes the impact that large mining pools can have on the health of its ecosystem and the quality of its coin. To that point, Litecoin developers have instituted an awareness campaign called “Spread the Hashes” for those mining litecoin to consider spreading out their mining activies. The campaign recommends that litecoin computers mine with a variety of mining pools rather than concentraing solely in one.

The anthropomorphism needs to be removed in the second edition.  “Litecoin” does not recognize anything because Litecoin is not a singular autonomous entity.

There are individual people, developers who work on a certain implementation of Litecoin that may promote something — and if they coordinate (which they do) then perhaps they could be classified as administrators.

Either way, this “Spread the Hashes” campaign didn’t seem to work:

Source: Litecoinpool.org visited on July 11, 2018

As the pie chart above illustrates, just 5 entities currently account for about 90% of the network hashrate.  And the largest 3 effectively could coordinate to control the network if they wanted to.

Worth noting that similar marketing campaigns to “spread the hashes” have been done on other networks.  Back in 2014 when GHash.io reached the 50% mark, reddit was filled with discussions imploring miners to switch to P2Pool.

Why don’t miners move to smaller pools?  Two words: reliable revenue.  Recommended reading: The Gambler’s Guide To Bitcoin Mining

On p. 194 they write:

Not all nodes are made equal. A single node could have a large number of mining computers behind it, hence capturing a large percentage of the overall network’s hash rate, while another node could have mining computer supporting it, amounting to a tiny fraction of Bitcoin’s hash rate.

Sort of.  There are two different nodes: nodes that fully validate and attempt to append the blockchain by submitting a proof-of-work that meets the necessary difficulty threshold… and nodes that don’t.  In practice, today we call the former “mining pools” and the latter, just nodes.

For instance, in Bitcoinland there was a vicious war of words from 2015-2017 waged by several parties who did not operate mining pools, or nodes that generated proofs-of-work.105  One subset of these parties used various means and channels to insist that miners did not ultimately matter, that it was “users” who truly controlled the network and they labeled themselves “UASF.”  And some of the most vocal members of this “populism wing” insisted that the nodes run by mining pools were no more important than the nodes run by some hobbyist in an apartment.

The views were irreconcilable and the ultimate result is that one group involved in that battle, forked off and created a new chain called Bitcoin Cash (BCH), whereas many of the other parties coalesced with what is called Bitcoin (BTC).  There is a lot more to the story, a messy emotional divorce that still continues today.

Technically the decision to fork or not fork is made by mining pools and the nodes they each manage, but there are more nuances and politics involved that go beyond the scope of this review.

On p. 194 they write:

William Mougayar, author of The Business Blockchain, has written extensively about how to identify and evaluate new blockchain ventures and sums up the importance of developers succinctly: “Before users can trust the protocol, they need to trust the people who created it.” As we touched upon in the prior chapter, investigate the prior qualifications of lead developers for a protocol as much as possible.

Two problems with this:

  1. I wrote a lengthy book review of Mougayar’s book and found it disappointing and do not recommend because of statements like the one above.
  2. What were Satoshi’s qualifications?  No one knows, but no one really cares either.  Similarly, what were Vitalik Buterin’s qualifications?  He was 19 when he announced Ethereum at Bitcoin Miami and had recently dropped out of college.  Similarly, Gavin Wood was a 34 year-old developer building music-related apps prior to co-founding Ethereum.  Would these two key guys been deemed qualified?  What are the qualifications necessary to be a blockchain wizard?

On p. 194 they write:

Developers have their own network effect: the more smart developers there are working on a project, the more useful and intriguing that project becomes to other developers. These developers are then drawn to the project, and a positively reinforcing flywheel is created. On the other hand, if developers are exiting a project, then it quickly becomes less and less interesting to other developers, ultimately leaving no one to captain the software ship.

A couple of thoughts:

  1. This is a nice sounding theory, but that’s not really what happens with most of these projects.  Generally developers are attracted due to the compensation they can receive… they do a risk-reward analysis.  I’ve met and spoken to dozens, perhaps north of 100 cryptocurrency-related teams in the past 12 months across the globe.  Attracting talented developers is not nearly as easy and clear cut as the authors make it sound above.
  2. Also, having a single “captain of the ship” seems like a single point of failure and a centralization risk.  Is that part of the undefined ethos?

On p. 195 they write:

Recall that this is how Litecoin, Dash, and Zcash were created from Bitcoin: developers forked Bitcoin’s code, modified it, and then re-released the software with different functionality. Subscribers refer to people wanting to stay actively involved with the code. In short, the more code repository points, the more developer activity has occured around the cryptoasset’s code.

That’s not necessarily true, and in fact, has been gamed by coin issuers who want to make it look like there is a lot of independent activity and traction with developers… by creating spam accounts and very small changes to simple documents (like grammar).

It can be a helpful metric but you need someone technically inclined to dive into the code that is being added/removed/modified.  See: Increased Github Scrutiny Means Lazy ICO Developers Have No Place to Hide

Readers may also be interested in CoinGecko to see how this acitivity is weighted.

On p. 198 they write:

A different approach is to monitor the number of companies supporting a cryptoasset, which can be done by tracking venture capital investments. CoinDesk provides some of this information as seen in Figure 13.13. Though as we will address in Chapter 16 on ICOs, the trend in this space is moving away from venture funding and toward crowdfunding.

Actually, as mentioned a couple time earlier, there has been a noticeable divergence the past 12 months: coin sales that are done as private placements versus coin sales that have a public facing sale.

In general, most of the coins that have raised capital through private placement deals typically have less than 100 investors, many of which are the aforementioned “crypto hedge funds” and coin-focused venture funds such as Andreessen Horowitz and Union Square Ventures.

The public facing sales are generally eschewed by venture funds.  If venture funds are involved in a coin that does a public sale, they typically are involved in what is called a “pre-sale” where they receive preferential terms and conditions, such as discounted coins.

Upon the conclusion of the “pre-sale” the actual public sale begins with heavy marketing on social media towards retail investors.  Sometimes these sales have hundreds or even thousands of individual participants.  That could be called a “crowdsale” and these participants typically get worse terms than those who participated in the pre-sale.

On p. 199 they write:

Another good proxy for the increased acceptance of a cryptoasset and its growing offering by highly regulated exchanges is the amount of fiat currency used to purchase it.

Maybe consider revising because we have all been told that cryptocurrencies would not only displace “fiat currency” but also topple and replace the existing financial system… how does measuring these new internet coins with old money help achieve that?

For instance, at the time of this writing none of the US-based retail exchanges with domestic bank accounts have recently listed an ICO (with the exception of ETH and ETC).  This includes: itBit, Bitflyer, Coinbase, and Gemini.106  Kraken’s retail exchange uses payment processors and banking partners outside of the US.107

On p. 199 they write:

in the one-year period from March 2016 to March 2017, ether went from being traded 12 percent of the time with fiat currency to 50 percent of the time. This is a good sign of the maturation of an asset, and shows it is gaining wider recognition and acceptance.

Why is that specific ratio or percentage deemed good?  The next edition should include a table explaining this in further because it is unclear why it is good, neutral, or bad.

On p. 201 they write about wallets from Blockchain.info:

Clearly, having more users that can hold a cryptoasset is good for that asset: more users, more usage, more acceptance. While the chart shows an exponential trend, there are a few drawbacks for this metric. For one, it only shows the growth of Blockchain.info’s wallet users, but many other wallet providers exist. For example, as of March 2017, Coinbase had 14.2 million wallets, on par with Blockchain.info. Second, an individual can have more than one wallet, so some of these numbers could be due to users creating many wallets, a flaw which extends to other wallet providers and their metrics as well.

In the past I have written extensively on how these headline wallet numbers are basically gimmicks and don’t accurately measure users or user activity.

Why?  Because it costs nothing to open one.  And often there is no KYC or AML involved in creating one as well.  As a result, bots can be used to create many each day to inflate the metric.

Coinbase has actually removed usage data in the past and they still don’t define what the difference between a user or wallet is.  Nor do either company provide traditional DAU / MAU metrics.  It’s not hard to do and it is unclear why they don’t.  The only way we have some semblance of an idea of what Coinbase user numbers were between 2013-2015 is because of the IRS lawsuit mentioned above.

On p. 201 they write about a search trend, “BTC USD,” first described by Willy Woo:

If we assume this to be true, then Woo’s analysis indicating a doubling in bitcoin users every year and an order of magnitude growth every 3.375 years. He calls this Woo’s Law in honor of Moore’s Law […] It will be interesting to see how Woo’s Law holds up over time.

How has it done?  “Woo’s Law” has thus far not held up.

For instance, below is a 5 year trend chart of the same search term promoted by Woo and others last year:

As we can see above, this term has some correlation between interest in coins specifically during price bubbles.  But this has not translated into large quantities of new daily users.108

The next edition of this book should remove this faux eponym because it has not withstood the test of time and doesn’t measure actual users.

On p. 202 they write:

Figure 13.17 shows the hyper growth of Ethereum’s unique address count. With Ethereum, an address can either store a balance of either, like Bitcoin, or it can store a smart contract. Either denotes an increase in use.

Below is a screenshot of a recent address count:

Source: Etherscan

The next edition should include a caveat because it is unclear from this chart alone what kind of use is taking place.  Is it coin shuffling, miner payouts, gambling payouts, Crypokitty activity, etc.?  Maybe it is just someone spamming the network?

For instance, according to DappRadar which tracks 650 ethereum Dapps, over the past 24 hours there have only been 9,926 users sending 43,652 transactions.  That may sound intriguing but… nearly about 2/3rd of all these users are using decentralized exchanges (DEX).  If trading and arbitraging are the “killer apps” of cryptocurrencies, then the next edition of this book could be a lot slimmer than it is now.

As described in “Slicing data,” not all transactions are the same and a deep dive needs to be done to fully describe the behavior taking place.

On p. 204 they cite a “Dollar Value of Transactions” chart:

Source: Blockchain.info

But this is just an estimate from Blockchain.info and is likely widely exaggerated because Blockchain.info — like most wallet providers — probably has no idea what the intent behind those transactions are.  We need data from all of the exchanges, payment processors, and merchants that accept coins in order to conclusively know what activity was commercial versus non-commercial in nature.

For instance, a large portion of those transactions could simply be “change address.”

Not to get too technical, but with Bitcoin, in order to manually send X amount of bitcoin on-chain, users typically must enter a “change address” unless the whole amount of UTXO is consumed.  It’s kind of like a bank teller moving money from one till to another between shifts.  No new economic activity is actually taking place in the bank or in the real economy, but in this specific chart above, there is no way to differentiate “change address” activity with real commercial activity and so it all gets mixed and muddied.

On p. 204 they write:

If the network value has outpaced the transactional volume of that asset, then this ratio will grow larger, which could imply the price of the asset has outpaced its utility. We call this the crypto “PE ratio,” taking inspiration from the common ratio used for equities.

Except, without a thorough deep dive from an analytics provider who has mapped out activity into all of the exchanges, payment processors, and merchants — it is very difficult to actually differentiate the noise from the actual transactional utility.109

Here the authors take all on-chain transaction volume at face value.  The next edition should scrap this section unless they get access to a thorough deep dive.

On p. 204 they write:

One would assume that an efficient price for an asset would indicate a steadiness of network value to the transaction volume of the asset. Increasing transactional volume of an asset should be met by a similar increase in the value of that asset. Upside swings in pricing without similar swings in transaction volume could indicate an overheating of the market and thus, overvaluation of an asset.

That is a popular model but could be incorrect.

I recommend readers check-out this excellent recent thread started by Nathaniel Popper as well as Debunking Bitcoin’s Remittance Valuation. Featuring a Lead Pipe by Anshuman Mehta.

On p. 207 they write about technical analysis:

In Figure 13.22 the top line is called the resistance line, indicating a price that bitcoin is having trouble breaking through. Often these lines can be numbers of psychological weight, in this case the $300 mark.

I looked it up and couldn’t find a definition for what “psychological weight” is, so this should either be defined in the book or removed in the next edition.110

On p. 209 they write:

You’ll find many instances of newer cryptoassets experiencing wild price swings after their creation, but over time these younger assets begin to follow the rules of technical analysis. This is a sign that these assets are maturing, and as such, are being followed by a broader group of traders. This indicates they can be more fully analyzed and evaluated using technical analysis, allowing the innovative investor to better time the market and identify buy and sell opportunities.

Technical analysis may have its uses but by itself it is basically cargo cult science.

Recommend rephrasing it and maybe inserting this great reference: The Vomiting Camel has escaped from Bitcoin zoo

Chapter 14

On p. 211 they write:

Since cryptoassets are digital bearer instruments, they are unlike many other investments that are held by a centralized custodian. For example, regardless of which platform an investor uses to buy stocks, there is a centralized custodian who is “housing” the assets and keeping track of the investor’s balance. With cryptoassets, the innovative investor can opt for a similar situation or can have full autonomy and control in storage. The avenue chosen depends on what the innovative investor most values, and as with much of life there are always trade-offs.

This is true: there are many choice.  But in practice, as noted above by Jonathan Levin, a significant majority of transactions typically involves a 3rd party intermediary.

Why?  Because Securing a bearer instrument can be a major hassle, as a result companies like Coinbase and Xapo offer custodial services.  While re-introducing an intermediary helps with coin management that kind of defeats the purpose of having a pseudonymous bearer asset in the first place.111 But that’s a different discussion.112

On p. 212 they write:

Anyone with a computer can connect to Bitcoin’s network, download past blocks, keep track of new transactions, and crunch the necessary data in pursuit of the gold hash. Such open architecture is one of Bitcoin’s strongest points.

It may sound like a irrelevant nitpick but this is not unique to Bitcoin.  Nearly every cryptocurrency listed on Coinmarketcap has the same set of “features.”  Similarly, many enterprise vendors also are open source and anyone could set up their own network with the software.  Future editions should include a more nuanced definition of “open.”

On p. 213 they write:

The first computer – or mining rig – with ASIC chips that were specifically manufactured for the process was connected in January 2013.

The citation the authors included was for Avalon.  This is true insomuch as these systems were available for purchase to the general retail public.  But the first known ASIC-mining system was launched in late 2012: ASICMiner privately run out of Hong Kong (from BitQuan and BitFountain). 113

On p. 214 they write:

For perspective, the combined compute power of Bitcoin’s network is over 100,000 times faster than the top 500 supercomputers in the world combined.

This type of stat is frequently repeated throughout the Bitcoin world but it is not an apples-to-apples comparison and should be removed in the next edition.  The supercomputers are largely comprised of CPUs and GPUs which — as their names suggest — are flexible and capable of handling many different types of general purpose tasks.

ASICs on the other hand, are focused and specialized: capable of doing just one set of tasks over and over.  ASICs found in a Bitcoin mining farm are not even capable of creating blocks to propagate on the network: they simply generate hashes.  That is how limited they are in functionality.

On p. 214 they write:

Conceptually, mining networks are a perfect competition, and thus as margins increase, new participants will flood in until economic equilibrium is once again achieved. Thus the greater the value of the asset, the more money miners make, which draws new miners into the ecosystem, thereby increasing the security of the network. It’s a virtuous cycle that ensures the bigger the network value of a cryptoasset, the more security there is to support it.

I think this could be rewritten in the next edition to be closer with what happens in practice.114

For instance, as coin prices decrease, margins are squeezed and “marginal” operators exit, leaving fewer overall miners.  In the past this has led to bankruptcies, such as KnC and HashFast.

Does this lead to a less secure network?

Maybe, maybe not.  Depends on how we define secure and insecure.  Pure hashrate is just one attribute… geographical location, amount of participants, and diversity of participants could be others as well.  For example, see the discussion earlier on selfish-mining.

On p. 215 they write:

Before investing in a cloud-based mining pool, conduct research on the potential investment. If it sounds too good to be true, it probably is.

This is good advice.

Also worth mentioning that “cloud-based mining” kind of the defeats the purpose of pseudonymous mining.  If you have to trust the infrastructure provider to manage and operate the hashing equipment, why not just buy the coins?  Why take that risk and also have to divulge your identity?

Incidentally, NiceHash is one of the most well-known cloud mining services available today.  It partly cemented its notoriety (this is not an endorsement) as its mining units have been rented and used to attack several different cryptocurrencies.  A site called Crypto51.app categorizes the costs of doing a brute force attack on dozens of coins and even lists the amount of hashrate NiceHash has in order to perform a hypothetical attack.

On p. 216 they write:

However, Ethereum will potentially switch to proof-of-stake early in 2018, as it is more efficient from an energy perspective, and therefore many claim is more scalable.

Quick note: this transition has been delayed again until at least the end of 2018 and more likely sometime in 2019 (although it has been moved many times before as well).

On p. 217 they write:

To this end, today numerous quality exchange are available to investors looking to gain and transact the more than 800 cryptoassets that currently exist.

In the next edition it is worth clarifying and defining what “quality” means because just about every retail / consumer-facing exchange has had its share of problems, including hacks and thefts.115 This is one of the reasons the SEC has denied ETF proposals.

With that said, there are a number of OTC trading desks run by reputable financial organizations that enable investors to trade, however, typically the minimum order size (buy/sell) is $100,000.116

On p. 218 they write:

Cryptoasset transactions are irreversible; therefore chargebacks are impossible. While an irreversible transaction may sound scary, it actually benefits the efficiency of the overall system. With credit card chargebacks, everyone has to bear the cost, whereas with cryptoassets only those who are careless bear the cost.

Two comments worth considering for the next edition:

  1. Transactions in cryptocurrencies are possible through block reversals, which can and do happen.  Often times they are relatively expensive to do, but during a “51% attack” it can occur, thus it is not impossible.  In fact, as part of the Nano class action lawsuit, one of the suggested remedies is a roll-back.
  2. As far as credit card chargebacks: this is largely borne by the merchant (not everybody).  In fact, charge backs are largely a consumer-friendly feature, a type of insurance.117

On p. 221 they discuss insurance at exchanges.

At this time, no retail cryptocurrency exchange actually insures a users coin deposit.  As a result, most custodians and intermediaries have had to self-insure (e.g., create their own insurance entity).  There are institutional products (vaults) which are attempting to get 3rd party insurance.

For example, see: Insurers gingerly test bitcoin business with heist policies

On p. 224 they write:

Prior to the hack, Bitfinex had settled with the CFTC for $75,000 primarily because its cold storage of bitcoin ran afoul of CFTC regulations. The move to place all clients’ assets into hot wallets is cited by many as due to the fine and CFTC regulations. Either way, this hack proved that no matter the security protocols put in place, hot wallets are always more insecure than properly executed cold storage because the hot wallet can be accesssed from afar by anyone with an Internet connection.

This passage should be revised in the next edition for a few reasons:

First, as mentioned earlier, Bitcoiners like to find a good boogeyman and in this hacking incident, they blamed the CFTC.

For example, Andreas Antonopoulos tweeted:

Source: Twitter

Several people told him he got the facts wrong.

For instance, I reached out to Zane Tackett who — at the time — was head of communications for Bitfinex.

According to Tackett: “We migrated to the bitgo setup before any discussions or anything with the CFTC happened”

I then publicly pointed out, to Antonopoulos and others, that the CFTC blame game was false.  But instead of deleting that tweet and focusing on who actually hacked Bitfinex, the ideological wing of the Bitcoin tribe continues to push this false narrative.

Tackett even explicitly answered this question in detail on reddit that same day.

So either Tackett is lying or Antonopoulos is wrong.  In this case, it is likely the latter.

The second point worth adding to the passage above in the book is that after nearly two years we still haven’t been told exactly what happened with the hack and theft.  This, despite the fact that Bitfinex has said on more than one occasion that it would provide an audit and public explanation.

Incidentally, this hack and the response, set in motion a series of events that included socialized loses, a lost correspondent banking relationship, and even a heightened reliance on Tether.118 For more, see: How newer regtech could be used to help audit cryptocurrency organizations

Chapter 15

On p. 231 they write:

Founded by Barry Silbert, a serial entrepreneur and influential figure in the Bitcoin community, some would say that DCG is in the early stages of becoming the Berkshire Hathaway of Bitcoin.

Perhaps DCG achieves that, however it hasn’t been done in a classy manner.  For example, see: Ex-banker cheerleads his way to cryptocurrency riches and Barry Silbert and the Cost of Bitcoin’s Malfeasance Culture

On p. 235 they write

An ETF is arguably the best investment vehicle to house bitcoin.

This is debatable.  Last year Jack Bogle – founder of Vanguard, a firm that popularized broad market index ETFs – implored the public to avoid bitcoin like the plague for several reasons.  Critics say he is out of touch, but even if that were true that doesn’t mean his expert views on structuring ETFs should be dismissed.

On p. 238 they write:

Regardless of what people expected going into the SEC decision most everyone was taken aback by the rigidity of the SEC’s rejection. Notably the SEC didn’t spend much time on the specifics of the Winklevoss ETF but focused more on the overarching nature of the bitcoin markets. Saying that these markets were unregulated was an extra slap to the Winklevosses, who had spent significant time and money on setting up the stringently regulated Gemini exchange. In focusing on the bitcoin markets at large, the rejection implied that an ETF will not happen in the United States for some time.

For the next edition, this paragraph should probably be removed.

The facts of the Bitcoin markets today are as follows:

  1. Mining is the process of minting new coins as well as processing transactions and… is largely unregulated in any jurisdiction.
  2. Many exchanges, in particular those outside the US, comply with a hodge podge of regulations, often without the same strict KYC / AML / sanctions checks required for US exchanges.

Gemini and the Winklevoss have no ability to police these unregulated trading venues and unregulated coin minters.  That probably won’t change in the near future.

Perhaps the SEC will eventually approve an ETF, but they arguably were not being rigid — they were being practical.  In their view: why allow an unregulated asset whose underlying genesis and trading market is still very opaque and frequently is used for illicit activity?

Lastly the next edition should include a citation for who “most everyone” includes, because in my own anecdotal experience, the majority of traders at US exchanges I interact with did not think it would be allowed at that time.  Note: my deep dive on the COIN ETF and its ever changing history, can be found here.

On p. 238 they write:

On Monday, naysarers were faced with the reality that bitcoin was once again back over $1,200, and the network for all cryptoassets had increased $4 billion since the SEC decision. Yes, $4 billion in three days.

A couple of thoughts:

  1. Typo: naysarers should be naysayers
  2. Recommend removing this sentence in the next edition because the attitude comes off as a little smug and has an ad hominem.  People are allowed to have different views on the adoption of technology which is separate from what the price of a coin will be.  And justifying a trading position based on price movements which are based on the mood of retail investors should probably not be the takeaway message for a mainstream book.

On p. 240 they write:

By purchasing XBT Provider, GABI strengthened the reliability of the counterparty to the bitcoin ETNs and added a nice asset to its growing bitcoin investing platform for institutions.

For the next edition, recommend removing “nice” because that is a subjective word.  There are other ways to describe this acquisition.

On p. 242 they write:

It also created an independent advisory committee, including bitcoin evangelist Andreas Antonopoulos to oversee its pricing model, which utilized prices from various exchanges throughout the world.

Why is this specific person considered an expert on futures?  There are a lot of articulate developers involved in promoting cryptocurrencies, but their expertise is typically not in finance.  If anything, this specific person has a vocal disdain for regulators, financial institutions, and regulated instruments… just see his tweet above in Chapter 14.119

Maybe in the next edition discuss the controversy of having a futures contract that is not physically deliverable.  Could also include how the CFTC has subpoenaed the four partner exchanges working with the CME: Coinbase, Kraken, itBit, and Bitstamp.  These four exchanges create the price used in bitcoin futures by the CME.

Chapter 16

On p. 249 they write:

For first-time founders who want to approach venture capitalists for an investment, often they must know someone-who-knows-someone. Having such a connection allows for a warm introduction as opposed to being among the hundreds of cold calls that venture capitalists inevitably receive. To know someone-who-knows-someone requires already being in the know, which creates a catch-22.

This is a very good point.  However, it would be worth adding in the next version how most ICOs and coin sales now require knowing someone because most private sales involve roughly the same insular, exclusive set of funds and investors as the “old method” did.

On p. 252 they write:

Before we dive into the specifics of how a cryptoasset offering is carried out, the innovative investor needs to understand that the model of crowdfunding cryptoassets is doubly disruptive. By leveraging crowdfunding, cryptoasset offering are creating room for the average investor to stand alongside venture capitalists, and the crowdfunding structure is potentially obviating the need for venture capitalists and the capital markets entirely.

In the next edition, worth mentioning that this was the general pitch for ICOs starting with Mastercoin (2013) all the way up through 2016.  But over the past two years and certainly in the past 12 months it has dramatically shifted back towards the traditional venture route.

One of the reasons why is because of the filtering and diligence process.  Those that don’t get selected and/or those ICOs that don’t meet the requirements of this small group of funds often decide to do a public sale.  And many of these ideas were half-baked and sometimes fraudulent, according to one recent report: More Than Three-Quarters of ICOs Were Scams

On p. 253 they write:

Monegro’s thesis is as follows: The Web is supported by protocols like the transmission control protocol/Internet protocol (TCP/IP), the hypertext transfer protocol (HTTP), and simple mail transfer protocol (SMTP), all of which have become standards for routing information around the internet. However, these protocols are commotidized, in that while they form the backbone of our internet, they are poorly monetized.

It could be argued that Monegro’s thesis has failed to live up to its hype thus far.  And counterfactually, if “tcpipcoin” existed, it may have actually stunted the growth of the internet as Vinton Cerf and Bob Kahn would have allocated more time promoting the coin rather than the technology.    We can disagree about this alternative scenario, but I have mentioned it before in Section 8.

For example, we frequently see that dozens of nonsensical conferences and meetups conducted on a weekly basis globally try to promote a shiny new protocol coin of some kind.  Trying to monetize a public good with a coin thus far has not removed the traditional incentive and sustainability issues around a public good.  That would also be worth discussing in the next edition.120

On p. 253 they write:

All the applications like Coinbase, OpenBazaar, and Purse.io rely on Bitcoin, which drives up the value of bitcoin.

Worth updating this because Purse.io added support to Bitcoin Cash.  And OpenBazaar switched over to Bitcoin Cash altogether.

Also, Coinbase has become less maximalist over time and now provides trading support for four different coins.121  Though it probably wouldn’t be technically correct to call Coinbase or Purse a Bitcoin application.  In the case of Coinbase, users use an off-chain database to interact and Coinbase controls the private key as a custodian / deposit-taking institution.

On p. 254 they write:

Interestingly, once these blockchain protocols are released, they take on lives of their own. While some are supported by foundations, like the Ethereum Foundation or Zcash Foundation, the protocols themselves are not companies. They don’t have income statements, cash flows, or shareholders they report to. The creation of these foundations is intended to help the protocol by providing some level structure and organization, but the protocol’s value does not depend on the foundation.

This is another reason to heavily modify chapter 7 in future versions because it is not an apples-to-apples comparison: coins and coin foundations are not the same thing as for-profit companies that issue regulated instruments (stocks, bonds, etc.).

Also, the very last sentence is highly debatable because of how often foundation and foundation staff are integral to the longevity of a coin.

Recall that blockchains do not maintain or market themselves, people do.  And is often the case: staff and contractors of these foundations frequently use social media to promote potential upgrades as well as publicize the coins attributes to a wider audience.  In many cases it could be the case that the protocol’s value does depend on the work and efforts of others including specifically those at a coin foundation.122

On p. 254 they write:

Furthermore, as open-source software projects, anyone with the proper merits can join the protocol development team. These protocols have not need for the capital markets because they create self-reinforcing economic ecosystems. The more people use the protocol, the more valuable the native assets within it become, drawing more people to use the protocol, creating a self-reinforcing positive feedback loop. Often, core protocol developers will also work for a company that provides application(s) that use the protocol, and that is a way for the protocol developers to get paid over the long term. They can also benefit from holding the native asset since inception.

There are several points here that should be modified or removed in the next edition:

For instance, with Bitcoin, due to a variety of political fights and personality conflicts, multiple “core” developers have had their access rights removed including: Jeff Garzik, Mike Hearn, Gavin Andresen, and Alex Waters.  Thus it is not true that anyone can join a team.  It is also unclear what those merits may be as most of the projects don’t explicitly provide those in written format yet.

In addition, internet coins are often traded on secondary markets in order to provide liquidity to coin holders such as developers.  They all need access to capital markets to stay afloat.  No project is self-sustainable at this time because no coin is being used as a unit of account — miners and developers must liquidate coins in order to pay their bills which are denominated in foreign currency.

Lastly, in practice, there are many coins that have died or lost any developer support yet initially they may have had a small army of programmers and media attention.  According to Coinopsy, more than 1,000 coins are dead.  Thus in the next edition the “self-reinforcing” loop should probably be removed too.

On p. 256 they write:

ICOs have a fixed start and end date, and often there is a bonus structure involved with investing earlier. For instance, investing at an early stage may get an investor 10 to 20 percent more of a cryptoasset. The bonus structure is meant to incentivize people to buy in early, which helps to assure that the ICO will hit its target offering. There’s nothing like bonuses followed by scarcity to drive people to buy.

This should definitely be removed.  In May, the SEC released a parody website called “HoweyCoins” which explicitly points to this precise FOMO behavior as a big no-no for both issuers and investors alike.

Also recommend the inclusion of the Munchee Order in this chapter as it would help illustrate what regulators such as the SEC perceive as improper fundraising techniques.  Specifically, include this in the “announcing the ICO” section.

On p. 258 and 259 they discuss the Howey Test.  It is strongly recommended that these two pages be reworded and modified based on the enforcement actions and guidance from the SEC and other securities regulators.

For instance, they write:

A joint effort by Coinbase, Coin Center, ConsenSys, and Union Square Ventures with the legal assistance of Debevoise & Plimpton LLP, produced a document called, “A Securities Law Framework for Blockchain Tokens.” It is especially important for the team behind an ICO to utilize this document in conjunction with a lawyer to determine if a cryptoasset sale falls under SEC jurisdiction. The SEC made it clear in July 2017 that some cryptoassets can be considered securities.

The first sentence should probably be moved into a footnote and the second sentence removed altogether because this document did not age well.

In fact, the current version of the document – as it exists on Coinbase – informs readers in bright red that:

Please note that since this document was originally published on December 7, 2016, the regulatory landscape has changed. The information contained in this document, including the Framework may no longer be accurate. You should not rely on this document as legal advice and you should seek advice from your own counsel, who is familiar with the particular facts and circumstances of what you intend and can give you tailored advice. This Framework is provided “as is” with no representations, warranties or obligations to update, although we reserve the right to modify or change this Framework from time to time. No attorney-client relationship or privilege is created, nor is this intended to be attorney advertising in any jurisdiction.

On p. 259 they write:

Does the token sale tout itself as an investment? It should instead be promoted for its functionality and use case and include appropriate disclaimers that identify it as a product, not an investment.

This is arguably not good advice and should be removed.  Why?  Courts in the US will likely see through this euphemism.  For other things not to do, recommend reading the ICO Whitepaper Whitepaper from Stephen Palley.

On p. 260 they write:

One of the oldest groups of angel investors in the blockchain and bitcoin space is called BitAngels. Michael Terpin of BitAngels has been active in angel investing in blockchain companies for as long as the opportunities have existed. Terpin’s annual conference, CoinAgenda, is one of the best opportunities for investors to see and hear management from blockchain startups present their ideas and business models.

For the next edition, I’d reconsider including this type of endorsement.123 There are some interesting stories that involving these specific entities worthy of a different post.

Chapter 17

On p. 263 they write:

For instance, if Bitcoin influences how remittances are handled, what impact may that have on stocks like Western Union, a remittances kingpin? If Ethereum takes off as a decentralized world computer, will that have any effect on companies with cloud computing offerings, such as Amazon, Microsoft, and Google? If companies can get paid more quickly with lower transaction fees using the latest cryptocurrency, will that have an impact on credit card providers like Visa and American Express.

For the next edition, this paragraph — or at least argument — should come earlier, perhaps even in Chapter 7 (since there is a discussion of specific publicly traded companies).

Another thing that should have been added to this section is actual stock prices for say, the past five years of the companies mentioned: Western Union, Visa, and American Express.

I have included those three below:

If the narrative is that Bitcoin or the “latest cryptocurrency” will erode the margins and even business models of existing payment providers, then at some point that should be reflected in their share prices.

As shown above, that does not seem to be the case (yet).

Perhaps that will change in the future, but consider this: all three of the companies above have either directly invested in and/or are collaborating in blockchain-related platforms — most of which do not involve any coin.  Perhaps these firms never use a blockchain.  In fact, maybe they find blockchains to be unhelpful as infrastructure altogether.

That is possible, hence the need to update this chapter to reflect the actual realities.

In addition, the other three companies listed by the authors have publicly discussed various blockchain-related efforts beyond just pilot offerings.

For instance, both Amazon and Microsoft have supported blockchain-as-a-service (BaaS) offerings in production for over a year.  Google has been a laggard but has internal projects attempting to leverage some of these ideas as well.

On p. 266 they write:

In 2016, the father-son team of Don and Alex Tapscott published the book Blockchain Revolution: How the Technology behind Bitcoin Is Changing Money, Business, and the World, and William Mougayar published the book, The Business Blockchain: Promise, Practice, and Application of the Next Internet Technology.

I wrote lengthy reviews of both.  The short summary is that both were fairly superficial in their dive into use cases and vendors.  The Mougayar book felt like it could use a lot more detailed meat.  The Tapscott book was riddled with errors and unproven assertions.  Would reconsider citing them in the next edition (unless they each dramatically update their content).

On p. 266 they write:

For companies pursuing a DLT strategy, they will utilize many of the innovations put forth by the developers of public blockchains, but they don’t have to associate themselves with those groups or share their networks. They pick and choose the parts of the software they want to use and run it on their own hardware in their own networks, similar to intranets (earlier referred to as private, permissioned blockchains).

These are pretty broad sweeping comments that should be modified in the next edition.  Not every vendor or platform provider uses the same type of chain or ledger.  These are not commoditized (yet).

There are many nuances and trade-offs for each platform.  For the next edition, it would be helpful worth doing a comparison of: Fabric, Pantheon, Quorum, Corda, and other enterprise-focused platforms.  In some cases, they may have an on-premise requirement and in others, nodes can run in a public cloud.

But the language of “intranets and the internet” should not be used in the next edition as it is a misleading analogy.

On p. 267 they write:

We see many DLT solutions as band-aids to the coming disruption. While DLT will help streamline existing processes–which will help profit margins in the short term–for the most part these solutions operate within what will become increasingly outdated business models.

Perhaps that it is true, but again, this language is very broad sweeping and definitive.  It needs citations and references in the next edition.

On p. 267 they write:

The incumbents protect themselves by dismissing cryptoassets, a popular example being JPMorgan’s Jamie Dimon, who famously claimed bitcoin was “going to be stopped.” Mr. Dimon and other financial incumbents who dismiss cryptoassets are playing exactly to the precarious mold that Christensen outlines:

[…]

Disruptive technologies like cryptoassets initially gain traction because they’re “cheaper, simpler, smaller.” This early traction occurs on the fringe, not in the mainstream, which allows incumbents like Mr. Dimon to dismiss them. But cheaper, simpler, smaller things rarely stay on the fringe, and the shift to mainstream can be swift, catching the incumbents off guard.

For the next edition it would be good to remove the misconceptions repeated in the statement above.  Jamie Dimon was specifically dismissing the exuberance of coin mania, not the idea of enhancing IT operations with something like a blockchain.

Worth adding to future versions: JPMorgan has financial sponsored Quorum, an open-source fork of Ethereum modified for enterprise-related uses.  The bank has also invested in Digital Asset.  It is also a member of three industry organizations: EEA, Hyperledger, and IC3.  In addition, JP Morgan has filed blockchain-related patents, has launched a blockchain-based payment network with several banking partners, and also partnered with the parent company of Zcash to integrate ZSL into Quorum.

While Jamie Dimon may not share the same bullish views about coins as the authors do, the firm he is the CEO seems to be taking “blockchains” seriously.

On p. 267 they write:

One area long discussed as ripe for disruption is the personal remittances market, where individuals who work outside of their home countries send money back home to provide for their families.

This specific use case is a bit repetitive as it has been mentioned 5-6 times before in other chapters.  Should probably remove this in future editions unless there is something different to add that wasn’t already explained before.

On p. 268 they write:

It’s no stretch then to recognize that bitcoin, with its low cost, high speed, and a network that operates 24/7, could be the preferred currency for these types of international transactions. Of course, there are requirements to make this happen. The recipient needs to have a bitcoin wallet, or a business needs to serve as an intermediary, to ultimately get the funds to the recipient. While the latter option creates a new-age middleman–which potentially has its own set of problems–thus far these middlemen have provided to be much less costly than Western Union. The middleman can be a pawnshop owner with a cell phone, who receives the bitcoin and pays out local currency to the intended recipient.

This should be modified in the next versions because it is a stretch to make those claims.  That is the reason why multiple Bitcoin-focused remittance companies have pivoted or branched out because “moving” bitcoins across borders is the only easy part of the entire process.  For instance, the KYC / AML checks during the on- and off-ramps are costly and are required in most countries.  This should be included in any analysis.

Also, there are no citations in this paragraph.  And the last sentence is describing the pawnshop owner as a money transmitter / money service business which is a regulated operation.  Maybe the laws change, which is possible.  But for the next version, the authors should include specific corridors and the costs and margins for MSBs operating in those corridors.

Lastly, any future analysis on this topic should also include the online and app-based product offerings from traditional remittance players such as Western Union.  In nearly all cases, these products and services are faster and cheaper in the same corridors relative to traditional in-person visits.

Recommended reading:

On p. 268 they write:

The impact of this major disruption in teh remittance market should be recognized by the innovative investor not only because of the threat it creates to a publicly traded company like Western Union (WU) but for the opportunities it provides as well.

It is strange to hear this repeated multiple times without providing quantifiable specifics on how to measure this threat.

As mentioned a few pages earlier, if competitors (including, hypothetically cryptocurrencies) were to erode the margins of publicly traded companies, we should be able to see that eventually reflected in the share price.  But Western Union has been doing more or less the same as it has the past couple of years.

What about others?

Above is the five year performance of Moneygram, another remittance service provider.

What happened the past two years?  Did Bitcoin or another cryptocurrency pound its share value into the ground?  Nope.

What happened is that one of Alibaba’s affiliates – Ant Financial – attempted to acquire Moneygram.  First announced in early January 2017, Ant Financial wanted to acquire it for $880 million.  Despite approval from the Moneygram board, the deal faced scrutiny from US regulators.  Then in January 2018, the deal was axed as the US government blocked the transaction on national security grounds.

This hasn’t stopped Alibaba and its affiliates with finding other areas to grow.  For instance, last month Alipay (part of Ant Financial) announced it had partnered with G Cash to in the Hong Kong – Philippines corridor, using a blockchain platform for remittances.  No coin was needed in this process so far.

There may be some success stories of new and old MSBs that utilize cryptocurrencies in ways that make them more competitive, those should be included in the next edition along with more metrics readers can compare.124

On p. 270 they write:

For the long term investor, careful analysis should be undertaken to understand if insurance companies are pursing DLT use cases that will provide a lasting and meaningful solution. Lastly, some of the major consulting firms may be so entrenched in incumbent ideology that they too may be blind to the coming distruption.

A few comments that should be finnesed in the next version:

  1. What is the definition of “incumbent ideology”?
  2. Virtually every major insurance and reinsurance company is hands-on involved with some kind of blockchain-related consortium and/or enterprise-focused platform.  This includes both B3i and RiskBlock as well as Asia-based reinsurers.  Recommended reading: RiskBlock’s blockchain targets entire insurance industry
  3. Similarly, every major consulting company and systems integrator has a team or two dedicated to helping clients build and integrate applications with specific enterprise-related “blockchain” platforms.  Many of them have joined related consortia too.  There are too many to even list here so it is unlikely they will get collectively blind-sighted as alluded to in the passage above.

On pgs. 272 and 273 they write about consortia:

Another consortium, The Hyperledger Project, offers more open membership than R3. Remember, one of the strengths and defining aspects of an effective blockchain project is its open source ethos.

[…]

While the [EEA] consoritum will work on software outside of Ethereum’s public blockchain, the intent is for all software to remain interoperable in case companies want to utilize Ethereum’s open network in the future.

Based on the passages above the next edition should incorporate a few changes.

The Hyperledger Project (HLP) is a non-profit group that does not itself aim to commercialize or deploy or operate any technology.125 The membership dues are largely used to maintain code repositories and sponsor events which educate attendees on projects incubated within HLP.  It currently has around 200 members, including R3 which was a founding member.  There are more than 5 codebases that are officially incubated, the most well-known is Fabric.  However, HLP seeks to maintain a neutral position on which platform its members should use.  Other notable platforms incubated within HLP include Iroha and Sawtooth (Lake).

In contrast, R3 is a for-profit company that set up a consortium in order to commercialize and deploy technology within the regulated financial industry.126 Its membership model has changed over time and it is the main sponsor for Corda, an open source platform.  The consortium composition initially started with 42 banks and now includes about 200 entities including insurance companies, central banks, financial market infrastructure operators, and others.

The third most known consortium is the Enterprise Ethereum Alliance (EEA).  It is kind of like the combination of the two above.  It is a non-profit organization and itself does not aim to commercialize or deploy or operate any technology.  It seeks to be a neutral entity within the greater Ethereum ecosystem and has many different working groups that span topics similar as the other two consortia above.  It has hundreds of members and the main efforts have been around formalizing an enterprise-focused specification (EEA 1.0) that other vendors can create implementations of (such as Pantheon).

Like the members of the other two consortia above, nothing prevents an EEA member from using any other platform.  Thus the authors usage of “open network” is superfluous because all of the codebases in each of these three consortia is open, anyone can download and use.  The key differences are: what are the trade-offs with using each platform versus what are the benefits of membership for joining the consortia.  These are two separate points that could be discussed further in the next edition.

On p. 276 they write:

The CFTC Director of Enforcement, Aitan Goelman, tried to clarify his opinion with this satement, “While there is a lot of excitement surrounding bitcoin and other virtual currencies, innovation does not excuse those acting in this space from following the same rules applicable to all participants in the commodity derivatives markets.” It is clearly confusing that the Direct of Enforcement of the agency that ruled bitcoin a commodity also called it a “virtual currency.”

For the next edition the authors should remove the unnecessary attitude in the last sentence.

Up through 2017, most US and even foreign regulators used the term “virtual currency” — not as a slight against Bitcoin or cryptocurrencies, but because that was the catchall term of art used for many years.

For instance, in March 2013, FinCEN released its guidance and it was entitled: “Application of FinCEN’s Regulations to Persons Administering, Exchanging, or Using Virtual Currencies”

Throughout the guidance, the term “virtual currency” is used more than 30 times.

And one relevant passage – especially for this book review – involves the definition of an administrator.  According to FinCEN’s guidance:

“An administrator is a person engaged as a business in issuing (putting into circulation) a virtual currency, and who has the authority to redeem (to withdraw from circulation) such virtual currency.”

As it relates to the CFTC, earlier this year a federal judge in New York ruled that: “virtual currencies can be regulated by CFTC as a commodity.”

The ruling (pdf) specifically uses the phrase “virtual currency” not as a slight, but as a term of art.  Perhaps other terms are used over time.  For instance, in its new customer advisory issued this week, the CFTC mentioned potential scams that describe themselves as “utility coins” or “consumption coins.”  Worth revisiting in the next edition.

Chapter 18

On p. 280 they write:

Here’s another Burniske-Tatar Rule: Don’t invest in bitcoin, ether, or any other cryptoasset just because it’s doubled or tripled in the last week. Before investing, be able to explain the basics of the asset to a friend and ascertain if it fits well given the risk profile and goals of your investment portfolio.

This is good advice.  And while the eponymous rule was coined several chapters ago,  future editions should probably drop the name of that rule… because similar advice with slightly different wording has existed for decades (e.g., don’t invest more than you can afford to lose, do your own research, etc.).

On p. 282 they write:

Are millenials turning to bitcoin and cryptoassets for their investment? Is a Vanguard fund or a small investment in Apple any better?  Whereas the Vanguard fund has a minimum investment amount and buying an equity will require commission, millennials see cryptoasset markets as a way to begin investing with a modest amount of money and in small increments, which is is often not possible with stocks or funds.

They also include a footnote that reads:

Each bitcoin can be divided into 100 million units, making it easy to buy 1/2, 1/10, 1/100 or 1/1000 of a bitcoin

Would recommend removing this passage altogether because there really aren’t many good surveys that indicate who actually bought coins versus who was just interested in them.

For instance, a flawed Finder.com survey that is still being cited, says that 8% of Americans have invested in cryptocurrencies.127  While it says the majority of investors are “millenials,” the survey doesn’t ask the most important question: does the investor control the private key.  If you do not control the private key then you do not control the coin, someone else does.

In addition, there are online brokerages that do allow investors to invest with modest amounts, the most notable being Robinhood (which coincidentally also allows users to purchase several different cryptocurrencies).  There are also a variety of spare change investment apps and robo-advisor products that allow users to have some exposure to regulated capital market too.

Lastly, regarding the footnote they provide: due to the fees required by Bitcoin miners, in practice over the past several months 1/1000 of a bitcoin is typically the minimum transaction fee.  This is one reason why many investors simply leave coins on cryptocurrency exchanges: so they don’t have to pay fees to move them to other wallets.128

On p. 282 they write:

The important point is that at least they’re doing something to invest their funds and build the groundwork for a healthy financial future. We have seen firsthand millenials who have learned about investing from buying cryptoassets and have implemented investing approaches, such as taking profits at certain price points, seeking diversification into multiple assets, and so on.

This should probably be removed too because the same thing can be said to a new cohort of investors twenty years ago, such as the ones that invested in dotcom-related companies.  Who remembers Beenz?

Conclusion

I fully expect some reaction towards this review along the lines that it was too picky or too pedantic.  Perhaps this a little true but consider: what is the right size for a thorough book review in the age of so-so fact-checking?129 Also, most of my previous reviews were about the same length, or at least used the same page-by-page model.

There is obvious room for disagreement in areas involving opinions, but there are many technical and non-technical mistakes that the authors made, not just a small handful.  By highlighting these, not only could the next edition be significantly improved but it helps readers new to this space get a better understanding of what the prevalent themes versus realities are.

The goal of this review was not to be overbearing but to be dispassionate about supposed common wisdom promoted in the cryptocurrency world.

For example, just the other day I noticed in a chatroom the following statement from a maximalist:

HODLer = DAU.  Bitcoin has the most DAUs on any protocol.

HODLing is bitcoinspeak for “hoarding.”

Several people in the room agreed with those this statement and they are not alone.  If the reader is interested in learning about the sociology and subculture of many Bitcoin enthusiasts, its worth skimming reddit and twitter occasionally to see how passionate coin investors think.130

But for businesspeople who are not part of the inner sanctum of Bitcoinland, the statement above from the chatroom may make you shrug.

After all, HODLing a dollar doesn’t make you a dollar user.  HODLing a barrel of oil doesn’t make you a oil user.  HODLing a brick of gold doesn’t make you a gold user.  HODLing a digitized Pokemon card doesn’t make you a Pokemon user.  HODLing a Stradivarius violin doesn’t make you a violin player.  HODLing an Olympic medal doesn’t make you an Olympic athlete.  And so forth.  The valuation of an auction house isn’t measured by the amount of rare collectibles it sells in a day, why should internet coins and their platforms be an exception to that rule?131

Inactivity isn’t how activity is measured.  Or to look at this argument from another angle: HODLing is not ‘active’ anything.  If all an investor did was buy bitcoin and then lose their keys, they would accomplish the same thing described in the chatroom.132

Sure it is possible to redefine what Bitcoin or cryptocurrencies are supposed to do, but that’s after the fact.  For example, if Satoshi had wanted to explicitly build “digital gold” he/she would likely have mentioned it in the original paper at least once and even architected Bitcoin to be something different than what it looked like in 2009.133  As mentioned above, the first app he looked at building was for poker.

This is definitely a topic worth including in the next edition, but I digress.134

Other general areas for improvement:

  • Add a glossary.
  • Add financial disclosures of coins owned by each author.
  • Provide specific definitions for vague terms like “the community,” “administrator,” and the attributes of a target investor; ditch the “innovative” investor nomenclature.
  • Chapter 7 probably should be removed until more accurate comparisons can be found and Chapter 17 seemed a bit unfocused and covered a wide array of topics instead of just one or two… even dropping in thoughts about regulators. Future versions likely need an entire set of chapters focused on regulations, not just mentioned in passing.
  • Based on the incorrect view of financing mentioned in Chapter 5, interview Vitalik Buterin and other co-founders regarding how Ethereum was bootstrapped.
  • In one of the future regulatory chapters, would be good to have a discussion around PFMI, CBDCs, and settlement finality.
  • Provide a lot more references and citations regarding cryptocurrency-focused use cases, especially remittance providers.  This seemed to be the most repeated use case but nary a mention of a specific Bitcoin remittance company, its valuation, or volume corresponding to the use case.

Have a book or paper you’d like me to look at?  Feel free to send it across.  Also, it just came out but this one sounds like a doozy already.  See my other book reviews.

End notes

  1. To be fair, Burniske is not the only analyst-turned-VC who has not publicly disclosed his trading positions of coins, but that’s a separate topic. []
  2. One reviewer mentioned: “Likely it was partially intentional to release in late 2008 / early 2009, but did in fact coincide mainly with internal constraints. We could also argue that the GFC commenced in mid-2007 when BNP Paribas froze two mortgage-backed security funds which became the catalyst of the summer 2007 credit crunch, but that is neither here nor there. I also debate the argument that it was ‘intended’ as anything other than a solution to the double-spend problem, be it a payments system or an investment.” []
  3. As an aside, Brian Kelly, frequently promotes various coins on CNBC.  Unclear what his trading positions are on each coin at the time of recording.  While that may not be illegal, it’s arguably not classy. []
  4. One reviewer mentioned: “This was literally the ethos that led to the GFC. Securitization and Mark-to-model were heralded as “innovation” and championed for their ability to move faster than the academic foundation and until 2007 seen as a way to ‘completely engineer risk out of from the system.'” []
  5. See: Robert Sams on rehypothecation, deflation, inelastic money supply and altcoins []
  6. See tcpipcoin in Section 8 []
  7. See: Digitalization or Automation – Is There a Difference? from Gartner []
  8. One reviewer mentioned: “The authors also miss that “value” is still a function of ‘the market’, i.e. supply and demand. Simply by fixing supply does not equalize demand. I also take massive issue with the governance in “a [de]centralized and democratic manner.” Are the authors able to write C++ or GOLang protocol code for Bitcoin Core or GETH? Likely not. So if anything this walks us towards a new form of governance, except where we elect leaders in the US who ultimately appoint Fed governors in cryptocurrencies there are generally no elections. Long story short, in all cases, it ain’t democratic and it probably remained at least partially centralised at a given point in time.” []
  9. See Central bank digital currencies from the BIS.  I know, I’ll get spammed by all the “sound money” promoters out there who insist that Bitcoin will replace central banks — it’s a religious zeal to many. []
  10. For example, about a month ago, Jonathan Levin from Chainalysis did an interview and mentioned that: “So we can identify, it is quite hard to know how many people. I would say that 80% of transactions that occur on these cryptocurrency ledgers have a counterparty that is a 3rd party service. More than 80%.” []
  11. For instance, on p. xxvi they list “the top 50” coins at the end of 2016 and don’t disclose if they own any specific ones at all, but talk about many of them in positive ways.  Adding a disclosure would be helpful. []
  12. Bitcoin has ‘no intrinsic value,’ Brookfield CEO says: ‘It’s not for us’ from Financial Post []
  13. The Economist wrote a nice short article on this behavior — the greater fool – last year. []
  14. For example, on p. 9 they write: “Shortly thereafter, Satoshi vanished.  Some speculate it was for the good of Bitcoin. After all, being the creator of a technology that has the potential to replace much of the current financial system is bound to eventually invoke the wrath of powerful government and private sector forces.”  This seems like a strawman.  Bitcoin was designed for just one simple thing: payments.  The financial system is an interwoven network of hundreds of regulated and unregulated goods and services, not just payments.  Also, this paragraph, like a few others later, has elements of conspiratorial boogeymanism.  Just around the corner, the government is preparing to shut down Bitcoin!  Nothing like that has happened in the past 9+ years.  In fact, the opposite has been true as most jurisdictions have been pretty accommodating, arguably even too lenient on the issuance and usage of cryptocurrencies, but that is a topic for a different post. []
  15. See Layer 2 and settlement []
  16. See Breakthrough IT Banking from McKinsey and Bank IT spending to hit $241bn across four major global regions from ComputerWeekly []
  17. One reviewer mentioned: “Are the authors aware that CMOs first appeared in 1983, and that in many countries where they were heavily utilised including in the late 2000s they worked as advertised? In fact many CMOs in the US performed as modelled. The issue was, and is, always liquidity, over-leverage and most of all deteriorating lending standards. Cryptocurrencies will most likely be looked at as catalysts of these risks should their notional rise substantially, not their saviour.” []
  18. One reviewer commented: “Are they arguing that people would have been more able to pay their mortgages or that home values wouldn’t have fallen if CMOs were on a blockchain?” []
  19. One reviewer explained: “When someone claims that blockchain would have prevented the mortgage crisis, they are revealing their ignorance of their ignorance.  I worked with some of that CMO data. One former colleague works for one of the large consulting firms ‘blockchain’ practices. He posted something about how blockchain would address the problems with mortgage servicing . When I privately asked him how it would do so,and that the problems with mortgage servicing that I was aware of were either failure to do certain required activities or their failure to record that they did them, as opposed to someone changing the record after it was entered, he did not respond.” []
  20. See also: The Problem with Calling Bitcoin a “Ponzi Scheme” by Preston Byrne []
  21. For example, at the time of this writing, Coinmarketcap tracks 1641 different types of coins and tokens.  Many of these are likely ERC20 tokens and thus rely on Ethereum itself and are not independent blockchains. []
  22. Worth re-reading the recent DoJ indictment of GRU officers as the DoJ provides a reason for why Bitcoin was used versus other transmission methods. []
  23. Someone should create a website that tracks all of the gigantic bullish claims from Bitcoin promoters on how it will topple banks and destroy governments.  There are at least more than 100 such public predictions each month. []
  24. But “be your own payment processor” isn’t a catchy phrase. []
  25. Readers should check out: “The Path of the Blockchain Lexicon (and the Law)” by Angela Walch. []
  26. It ignores how mining pools can unilaterally determine what transactions to include and how much a fee a transaction should include in order to be included in a block. []
  27. For example, KARMA : A Secure Economic Framework for Peer-to-Peer Resource Sharing by Vivek Vishnumurthy, Sangeeth Chandrakumar and Emin Gun Sirer []
  28. Recommended reading: The Economic Limits of Bitcoin and the Blockchain by Eric Budish []
  29. Some literature describes the proof-of-work process used in Bitcoin as a “scratch-off puzzle.” []
  30. One reviewer mentioned: “A model that I like to describe this with is how the main professional soccer leagues are selected in Europe and other regions. For example, France specifically has an annual selection of the “League 1” after the Coupe de French. Basically any team can enter, but practically there is minimal turnover because a team from a town of 5,000 people is unlikely to reasonably beat a team like Paris or Lyon which has multi-million euro budgets. There are few upsets, but these can generally be modeled by statistical chance.” []
  31. For example, Coin Center circulated a borderline defamatory note to ESMA with regards to Corda – even before the Corda introductory whitepaper was released – likely because its author was unfamiliar with how the platform actually worked. []
  32. It seems to be a euphemism and code word for “someone with money who should buy coins.” []
  33. Based on public information, over the past four years pretty much the only cryptocurrency-related companies that probably were profitable equity investments were: exchanges and handful of mining companies operating outside of the US (e.g., some service providers have also generated steady income including several law firms and conference organizers). []
  34. In both cases, consensus is achieved by the longest chain rule. []
  35. May not be a Freudian slip here, but keep in mind all blockchains have operators and maintainers.  See “arewedecentralizedyet” for more. []
  36. It arguably could have been a self-fulfilling prophecy: investors outside of Cyprus hear news about the Cyprus bailout and bitcoin… thereby marketing bitcoin to new retail investors who then go out and buy bitcoins to try it out. []
  37. See also the background of R3 / DLG as well. []
  38. It is common to see Bitcoin promoters regularly demonize these companies who are trying to improve and automate infrastructure, vilified as a bourgeoisie activity that must be shunned.  Worth revisiting to see if this changes over time. []
  39. One of the few exceptions is the Brave browser. []
  40. Creating and marketing coins to retail investors is relatively easy… building infrastructure that customers actually regularly use for commerce is another level altogether. []
  41. If measured by price, there was a large bubble that popped in December 2017, but that was something that happened after publication. []
  42. I have given several public presentations in the past year explaining the “trough of disillusionment” phenomenon in this context, including in Seoul and Tokyo during July 2017. []
  43. See also: Tokens: Investment Vehicle or Medium of Exchange (Not Both) by Cathy Barrera and MV=P…Que? Love and Circularity in the Time of Crypto by Anshuman Mehta and Brian Koralewski []
  44. Furthermore, in September 2014 I gave a presentation (video) (slides) that similarly tried to bucket different types of proposed coins as “commodities” and the like.  And I know I wasn’t the first to try and do so.  Recommend readers do a bit more digging on this topic if they’d like to see a more thorough origin story. []
  45. One reviewer mentioned: “The native tokens / coins / assets inside a ledger are “cryptocurrencies”, they are currency in the single sense that they the only form of compensation accepted by the miner / staker in a network. This cryptoasset business really only makes sense in the context of units which are not used to pay for the security of a blockchain.” []
  46. But that doesn’t necessarily excite speculators and coin holders. []
  47. See: Bitcoin Is Now Just A Ticker Symbol and Stopped Being Permissionless Years Ago []
  48. There are few religious undertones here that could be removed in the next edition. []
  49. As mentioned above, The Economist wrote a nice short article on this behavior — the greater fool – last year. []
  50. The authors of this book are likely unintentionally promoting coin buying with a security-like mentality, the wording could be modified in the next edition. []
  51. One reviewer mentioned: “Unless the authors explain how ETH is worth precisely zero based on the same logic then their statement seems disingenuous. Not that I believe that is the case, but I am not the one stating that scarcity in the future is the reason for the value.” []
  52. See Saifedean Ammous: The Bitcoin Standard — making the Austrian School case for Bitcoin by David Gerard, The Bitcoin Standard – a critical review by Frances Coppola, and The Politics of Bitcoin by David Golumbia []
  53. Why?  Most probably are unaware and the typical retail investors seems to just want the USD number to go up so they can sell the coin to someone else. []
  54. Also worth reviewing Consensus-as-a-service and The Blockchain Threat Has Drastically Sped Up Cross-Border Payments []
  55. Since the authors are making this claim, would they be willing to disclose or be transparent about their own coin holdings for the date when they published this book? []
  56. The most likely answer is: speculators bought these coins because they knew others would buy it too thus driving the price higher. []
  57. Or conversely, you are considered “one of us” if you promote the policies and antics of said coin promoters. []
  58. Note: it should be apparent at this stage that “Bitcoin developers” should be in quotes because it is certain key individuals — and centralized organizations such as “Core” — who have the power to sway decisions such as BIP approval.  These are arguably administrators of financial market infrastructure.  See also: In Code(rs) We Trust: Software Developers as Fiduciaries in Public Blockchains []
  59. Personal correspondence on June 5, 2018 []
  60. This is mentioned in the new CFTC warning: CFTC Issues Customer Advisory on Digital Tokens []
  61. It is these types of passages that make a reader scratch their head as to whether or not the lessons for why equity ownership — and the rights afforded to equity holders — evolved to where they have in developed countries. []
  62. This narrative needs to be buried but probably won’t. []
  63. This is a common refrain that needs to stop being repeated. []
  64. A few months before Cryptoassets was published, the SEC published a report that said they found The DAO to have all the hallmarks of a security but they never enforced any specific legal action on its creators. []
  65. See Appendix A: Internal governance []
  66. On p. 63 they write: “For example, a fully functional decentralized insurance company, Airbnb, or Uber all hold great promise, and developer teams are working on similar use cases.”  Why do these hold great promise?  Because everyone else says that on stage? []
  67. One takeaway is that other speculators may buy your coins at a later date when the prices go up, so you should get in before they do. []
  68. One of the biggest flaws in Chapter 7 is that all of the pricing information for the coins are based on markets that are opaque and unregulated… some of whom may be considered bucket shops of yesteryear.  Lack of transparency is one of the reasons why all of the Bitcoin-related ETFs have been (so far) axed by the SEC.  See: Comments on the COIN ETF. []
  69. Are Public Blockchain Systems Unlicensed Money Services Businesses in Disguise? by Ciaran Murray []
  70. With the exception from maybe transaction fees to miners, but those could arguably also be classified as donations.  See p. 65 in The Anatomy []
  71. See: Spurious correlations []
  72. For example, later on p. 104 they write: “More surprisingly, the portfolio with bitcoin would have had lower volatility.” Because of the time period?  We could probably find other things with the same or lower volatility.  That seems like cherry picking. []
  73. Maybe they are both, but that still doesn’t mean that the coins, say that Placeholder Capital invested in, shouldn’t be classified as securities. []
  74. See also: Tokens: Investment Vehicle or Medium of Exchange (Not Both) by Cathy Barrera and MV=P…Que? Love and Circularity in the Time of Crypto by Anshuman Mehta and Brian Koralewski []
  75. Also, these are all arguably poor stores of value because of their relatively high volatility.  For instance, “number goes up” or rapid price increases is not the definition for a store of value.  Claiming bitcoin is a good store of value because it sees swift increases in price appreciation as measured by actual money is a contortionist view which ignores the empirical reality of how money is used. []
  76. For example, later on p. 110 they write: “While many cryptoassets are priced by the dynamics of supply and demand in markets, similar to more traditional C/T assets, for some holder of bitcoin — like holder of gold bars — it is solely a store of value. Other investors use cryptoassets beyond bitcoin in a similar way, holding the asset in the hope that it appreciated over time.” Spoiler alert: everyone that owns internet coins hope they appreciate over time. []
  77. And there are specific projects — such as Bitcoin — in which one clique of developers waged an effective propaganda campaign against miners.  For more on this, look into the actors and organizations behind the Segwit / Segwit2x / UASF online debates. []
  78. Not to rekindle the flames of the Bitcoin blocksize debate but in retrospect, several Blockstream employees and contractors were arguably more effective at swaying public opinion than Coinbase was, even though the latter generates significantly more revenue and has actual customers whereas the former is largely just a R&D dev shop. This discussion deserves its own post but neither company is very forthcoming about client or partnerbase… although Coinbase has published a bit more information over the years relative to Blockstream. []
  79. See also: The Problem with Calling Bitcoin a “Ponzi Scheme” by Preston Byrne []
  80. A large portion of blocks between 2009-2010 also included relatively few transactions, yet miners were being rewarded the same revenue irrespective of the volume or labor involved. []
  81. This is a topic I’ve written extensively about in the past, see (1) A pre-post-mortem on BitPay and (2) Looking at public information for quarterly usage []
  82. There is a small window between when FX markets in San Francisco close on a Friday afternoon and when FX markets open in New Zealand on Monday morning. []
  83. See Bitcoin’s $30 billion sell-off from Chainalysis []
  84. Does trading between exchanges represent 90+% of the total volume on- and off-exchanges?  Without full optics into all major intermediaries, that would be a tough claim to definitively prove. []
  85. In informal surveys most speculators of coins have the same mentality of speculators of other things that are traded on secondary markets: they think the number will go up. []
  86. See When Paper Paralyzed Wall Street: Remembering the 1960s Paperwork Crisis from Finra and The Remaking of Wall Street, 1967 to 1971 from HBS and Dole Food Had Too Many Shares from Matt Levine []
  87. Also recommend Spurious correlations []
  88. The book downplays illicit activity as if it is not a valid, reliable use case when it is.  For instance, the GRU allegedly used bitcoin to finance some of its operations focused on the 2016 US elections and they did so to obfuscate their tracks. []
  89. See The new TARGET instant payment settlement (TIPS) service from the ECB []
  90. For more on this, see: (1) Debunking Bitcoin’s Remittance Valuation. Featuring a Lead Pipe by Anshuman Mehta and (2) Does Bitcoin/Blockchain make sense for international money transfers? from SaveOnSend []
  91. A fundamental problem with this book is that it wants to have it both ways, with no clear goal posts for what a good or bad platform is and how to measure it.  How can an investor know if a coin is any good?  A table of attributes is recommended for the next edition. []
  92. Simply multiplying the amount of mined / pre-mined / pre-allocated coins by the market price to arrive at a “market cap” is a disservice to how market capitalization is actually determined.  See Section 6. []
  93. As an aside, even though there is no law preventing consumers and merchants from using or accepting gold (or silver) as a means of payment in the US, basically no one does because they’d rather hold it with the expectation of future price appreciation. I am sure lots of angry trolls will point out that legal tender laws in the US do not currently include precious metals and neither are cryptocurrencies.  Yet there are other economic reasons why people would rather hold onto an internet coin or a gold bar versus use it as money, and simply blaming legal tender laws is missing those. []
  94. Recommended reading: Distributed ledger technology in payments, clearing, and settlement by the Federal Reserve and Central bank digital currencies from the BIS []
  95. See several articles: The myth of a cheaper Bitcoin network: a note about transaction processing, currency conversion and BitcoinlandWhat is the “real” price of bitcoin?, and What impact have various investment pools had on Bitcoinland? []
  96. Also, as a pre-emption: one of the main reasons why these merchants and manufacturers do not hold on to these coins is because of… volatility.  As shown earlier in this review, that still hasn’t disappeared despite years of promotion that it has.  See also: (1) Debunking Bitcoin’s Remittance Valuation. Featuring a Lead Pipe by Anshuman Mehta and (2) Does Bitcoin/Blockchain make sense for international money transfers? from SaveOnSend []
  97. And as mentioned in the section above, both Zelle and Swift (gpi) will likely make a lot of inroads in the same national and international areas that cryptocurrency advocates were touting… but without needing a coin.  The struggle is real. []
  98. Note: both have since left those jobs.  Bogart became a partner at Blockchain Capital (a venture fund focused on coins) and Luria joined D.A. Davidson []
  99. In the next edition if possible, try to include Placeholder’s research so we can have an idea of the firm’s internal thinking on these issues. []
  100. Recommended: Digital Tulips? Returns to Investors in Initial Coin Offerings by Hugo Benedetti and Leonard Kostovetsky []
  101. Does Placeholder Capital invest in such ICOs? []
  102. Note that selfish mining has some odd game theoretic properties which may not hold up in the real world. But if the selfish mining pool manages to stay a block ahead on average, they can reveal a longer chain whenever they see transactions they want to censor.  It comes with the caveats that it’s not completely reliable in that they aren’t guaranteed to be a block ahead of the rest of the network 100% of the time (due to the inhomogenous Poisson process mentioned earlier). However, if they manage to effect a cohort of self-interested selfish miniers, they could… and that’s the equivalent of a “51% attack.” []
  103. Recommended reading: The Economic Limits of Bitcoin and the Blockchain by Eric Budish []
  104. Recommended: Analysing Costs & Benefits of Public Blockchains (with Data!) by Colin Platt. []
  105. Based on hash rate, the vast majority of mining pools supported Segwit2x and did not support UASF. []
  106. Coincidentally, these have all obtained a Bitlicense from NYS DFS. []
  107. Kraken uses Silvergate for its OTC trading. []
  108. A user can be defined as a person who controls their private keys without relying on a 3rd party intermediary. []
  109. Several analytics providers include: Chainalysis, Blockseer, Elliptic, Scorechain, and CipherTrace. []
  110. This is reminiscent of the BearWhale nonsense a few years ago. []
  111. Recall that historically, humanity went from only having to bearer assets up through the 19th century.  And that for a variety of reasons these became registered and immobilized and then later dematerialized altogether.  Cryptocurrencies recreates a financial order that had already existed. []
  112. See Learning from the past to build an improved future of fintech and Distributed Oversight: Custodians and Intermediaries []
  113. Butterfly Labs began accepting pre-orders in the summer of 2012 but delivered them late in 2013… and got sued by the FTC. []
  114. Regarding ‘perfect competition,’ four years ago Jonathan Levin opined that: “Another simple thing about this is that it is unsurprising that the bitcoin network got into this mess as it is economically rational to join the biggest pool. Minimises variance and ceteris paribus reduce orphans increasing expected return per hash. The other point is that there is still hardware bottlenecks so designing the theoretically most robust system may fail due to market imperfections. Implicitly in many arguments I hear about mining people assume perfect competition. Do we need to remind people what are the necessary conditions for perfect competition? Perfect information, equal access to markets, zero transportation costs, many players ……. this is clearly not going to be a perfectly competitive decentralised market but it certainly should not favour inherently the big players.”  See p. 114 of The Anatomy []
  115. Some of these are detailed in: Comments on the COIN ETF []
  116. For illustrative purposes, this includes: Circle, JUMP Trading, and Cumberland (DRW). []
  117. See also: New Visa chargeback system aims to speed dispute resolution by John Egan []
  118. See U.S. Regulators Subpoena Crypto Exchange Bitfinex, Tether from Bloomberg []
  119. In his public speaking events and social media accounts, Andreas Antonopoulos is quite candid about his dislike of the establishment. []
  120. See Chapter 2 in The Anatomy []
  121. See Brian Armstrong’s tweet in Section 5 []
  122. This raises questions that related to FinCEN and SEC purview but neither has opined at this time on this specific point. []
  123. CoinAgenda Singapore, which took place in June 2018, only had 168 attendees — with ticket prices up to $3,000 apiece. []
  124. Coins.ph and Luno come to mind as examples. []
  125. See What is the difference between Hyperledger and Hyperledger? []
  126. See A brief history of R3 – the Distributed Ledger Group []
  127. Needs a larger sample size conducted in a public venue, and/or with the help of an experienced sampling organization. []
  128. This then leads to incentives to attack and hack exchanges, because they end up acting as deposit-taking institutions, aka banks. []
  129. There were probably 50% more hand-written notes or comments that I could have added that I skipped over. []
  130. The HODLing “digital gold” meme which was only passingly mentioned in this book ultimately degenerates into goldbugism but that’s a topic for a different post. HODLing arguably became a thing once the ideologues realized Bitcoin itself wasn’t a competitive payment system.  An enormous amount of revisionism has taken place since 2014 regarding what Bitcoin was and is and should be. []
  131. Debunking Bitcoin’s Remittance Valuation. Featuring a Lead Pipe by Anshuman Mehta []
  132. One reviewer mentioned: “By hoarding then actively purchasing more coins to hoard, they might temporarily create an effect whereby each marginal contribution to Bitcoin through mining rewards in expanding the effective monetary base is partially neutralized.  In addition to marketing campaigns, this can lead to higher USD values and may incentivize additional mining power, which in turn creates higher hashrate.  However, you cannot make the same argument for gold because simply driving the price of gold up doesn’t make gold harder to find or more secure, and in fact we see the opposite.” []
  133. For instance, the supply of gold is actually elastic whereas many cryptocurrencies including Bitcoin have an inelastic money supply.  Where in the whitepaper does it talk about a store of value?  If that was the goal, surely it would’ve been mentioned in the whitepaper or the first few emails upon Bitcoin’s initial release. []
  134. Recommended reading: The Economic Limits of Bitcoin and the Blockchain by Eric Budish []

Predictions for 2018

As mentioned in my previous post, below are five thoughts for what could take place in 2018, categorized by degree of likelihood: most likely –> least likely.

(1) Continued mania

The euphoria around cryptocurrencies and ICOs continues due almost entirely because of retail sentiment, not just because of institutional action.  Every valuation model that has been proposed to gauge what the price of a certain coin will be, fails almost entirely because of the inability to model sentiment.  Contra Chris Burniske (note: he did not really disclose that he owned bitcoins while covering cryptocurrencies as an analyst), there are no ‘fundamentals’ to nearly any coin, in fact, many of the “top” coins don’t even do what they claim to do.

Want proof?  Look at the most talked about ICOs and altcoins and airdrops that were created in 2013-2014.  How many of them have actually delivered what they marketed?  Basically none.  Yet, if they are still listed on an exchange, odds are they are trading at near all-time highs because retail investors really don’t care about functionality or utility: they want narratives that paint pictures of Moonlambos in their near future.

This phenomenon is best described as “coin nihilism”:

Source: Twitter

So as long as there is free-entry to create and market a cryptocurrency to the masses, coin domination (who is the king of the castle) will be fluid.  The only entities capable of changing that is law enforcement via coordinated regulatory action (e.g., debanking of exchanges due to regulatory guidance).1

Or as one of my OTC trader friends recently remarked:

“This is why crypto is doomed for pump and dump because the market can’t react to increased demand with more supply. So if interest fades you just keep getting clobbered with new supply like 2014 redux.”

When you have free-entry and no gatekeepers when it comes to creating money supply, people will just create a new coin as it always has more financial upside.

Besides governments, what else could stop the pump train?  Hackers seem focused on low-hanging fruit – no one bothers to actually attack technical weaknesses in a blockchain.  “Early adopters,” old guard (OG) whales cashing out faster than demand can absorb the coin supply may be the only other large counterbalance to the mania.2

(2) Lawsuits

Both criminal and civil lawsuits will continue to be filed against issuers and developers of both cryptocurrencies and ICOs.  On the criminal side, the wrinkle will be that it will not just be securities and/or commodities regulators.  Law enforcement agencies involved with monitoring money transmission (such as FinCEN and FINTRAC) will announce more than one criminal suit against developers who either enabled money laundering to take place on their platforms and/or failed to comply with some other area of BSA (or other regional equivalent).3

Rather than go through the laundry list of all the areas for regulatory and law enforcement action, check out (attorney) Christine Duhaime’s explanation.

With that said, while a case could be made that entities like Bitcoin Core – and its vocal surrogates – behave a lot like administrators, there are few indications that the any development team will be sued right now.

(3) Pumpers and VCs are going to pump and won’t be held accountable

Pretty much the most popular twitter personalities nowadays are the shills and pumpers who benefits from one anothers antics.  It’s a non-stop contest to see who can say the most outrageous things about what cryptocurrencies will do to the world.  The winner gets to cash out on a secondary market and buy a Swiss resort. The loser who said Junkcoin would only jump 10x instead of 100x also gets to cash out and retire in the Hamptons.

Will bagholding be a line on a resume?4

Nope.  Few if any of these personalities will be debunked let alone dragged to court.  Consider this well-crafted title from Bloomberg last month: “The Hottest ICOs Are the Ones That Have Done the Least Amount of Work.”

How many of the most egregious examples of investors and advisors that promoted these will be held accountable?  Probably very few even though the SEC put out a press release specifically around the promotion of ICOs… we still regularly see ads for ICOs on social media (e.g., “general solicitation”).

For those hoping that techbros and their apologists will be held accountable, this is probably not that year.  This includes lobbying groups involved in disinformation campaigns for their own ideological purposes.

(4) Enterprise-related DLT efforts generate recurring enterprise license-based revenue

If we were to aggregate the amount of revenue generated by enterprise-focused DLT vendors, based on the known RFPs that were won last year and are currently being bid on, I’d guesstimate that about $100 – $200 million is at play this year.  This is based on the fact that most RFPs seem to be for less than $10 million.  It’ll take at least 6-12 months to build an MVP and then even longer to get approval for additional phases.

As mentioned in my previous post: unfortunately our sample size of big infrastructure builds on the enterprise side is still limited.  Examples include the the DA / ASX deal (which took 2 years for a final decision to be made).  Another large one is the DTC trade, the vendor of which is IBM.  If built and put into production, these will eventually recoup costs but the bigger revenue will likely come from actual enterprise-licenses: seats to use the network.

For an inside perspective, I reached out to one of my close friends working at a DLT vendor who provided the following view:

This year’s revenue is one thing. There is also recurring revenue (run vs build).  There is also the fact that last year some/many deals were “bought” for marketing and credential building purposes (so they are subsidized).  But I think this year suppliers are less willing to buy the business and bid low on price. We (the industry) could be in steady state production by year end for some implementations.  I think $100-200m is broadly right for revenue to play for this year.

His estimate included Q/A support and SLAs.

I also would predict that, just like last year, there will be very few new enterprise-focused vendors entering the market from the early stage startup world.  And that enterprise vendors struggle as a whole to attract and retain junior developers because they have to compete with cryptocurrency-related projects that may provide higher compensation during this bull market.

(5) Cryptocurrencies as financial market infrastructure

I think this is the least likely theme to occur this – and we should thank the gods – is using a cryptocurrency (anarchic) chain as FMI.  Despite the mud that coin lobbyists and evangelists throw at enterprise-focused DLT vendors, cryptocurrency networks are systemic risks to the financial world and should be avoided at this time.

It is one thing to have a coin bubble driven by unsophisticated retail investors.  It is another to have a coin bubble because of leverage and integration with some real financial instruments.  And it is another to have a coin bubble – and the mission critical systems of the world’s financial intermediaries – directly impacted by these coin fluctuations and not be able to hold any of the validating nodes accountable… because they are pseudonymous miners in a jurisdiction that doesn’t recognize the standing of a foreign lawsuit.

If you are reading this, you are probably not terribly sympathetic to anyone who loses their shirt at this time for buying some random coin.  On the other hand, you would be justified if you are worried that a national payment or securities depository is being run on top of Bitcoin via some kind of colored coin Rube Goldberg system.  Reducing systemic risks to the financial world has been a top priority of financial regulators since 2008.

At the time of this writing, none of the existing cryptocurrencies being built seems to have gone through or respects a PFMI check-off.  Or maybe that is a risk regulators and regulated financial institutions will be willing to take?

Final remarks

As a friend recently said, with cryptocurrencies you always have to expect the unexpected.  People are quick to forget the bear market of 2014-2015.  Will the irrational exuberance die down once most of these cryptocurrency and ICO projects fail to deliver on their promises?  Maybe not, but then again, check out the coin rankings over time on these four charts.

I am actually kind of optimistic for new ideas being tested out in certain ecosystems, like Ethereum (note: this is not an endorsement of Ethereum or ETH/ETC).  Now that proof-of-stake, via Casper, is being brought out of the lab and onto a testnet, we might be able to scratch off the environmental impact issue that is a blight on proof-of-work networks.  CryptoKitties, via ERC721, is a neat demonstration of how to potentially create non-fungible property (assuming courts recognize it as such).  I have been giving this some thought on other areas that this could be reused and commercialized.  Note: there is an entire, virtual zoo of copy cats that has now arrived, including puppies and other animals.

What do you think, will heads begin to roll as law enforcement learns what shenanigans are going on?  Will an ETF-based on bitcoin futures be approved?  It seems likely that the CME and CBOE will add futures trading for ether, what about other coins? Coinbase and several other former bitcoin-only exchanges have already announced that they will add more altcoins and everybody is guessing which one will be next.  Will 2018 be a repeat of 2014 with altcoin mania again dominating mindshare?

Endnotes

  1. One reviewer who works at an OTC desk commented: “Almost all of the OTC trading counterparties and exchange we have use just a couple banks.  It would be trivial to cut the spigot off overnight.  Also if I’m a regulator and want to go after the toxic sludge flowing through the fiat side of this world I hit one of these banks that provides the liquidity.” []
  2. One trader at an OTC desk commented that: “Real institutional liquidity, beyond what we have now, would help. I’d argue part of the reason why things get so out of hand so fast is because the market infrastructure isn’t there to handle it correctly.” []
  3. One reviewer at an exchange commented: “I think regulatory scrutiny is actually gonna land next year from CFTC and SEC in a real way.  The CFTC in particular has a duty now to police spot, wait till we get the first settlement of CME or CBOE where someone intentionally puts the auction in the tank or DoS’s the exchanges.” []
  4. Most traders only brag about their winning trades, not their losses. []

Six bedtime stories from 2017

[Note: I neither own nor have any trading position on any cryptocurrency.  I was not compensated by any party to write this.  The views expressed below are solely my own and do not necessarily represent the views of my employer or any organization I advise.  See Post Oak Labs for more information.]

2017 taught us many things, including the fact that no one reads (or writes) or pays for long-form content any more.  Even with lovable memes and animated gifs, keeping an audience’s attention is hard.

Already too distracted to read further?  How about a quick video from JP Sears on how to appropriately Bitcoin Shame your friends and family:

The other takeaway for 2017 is that, if in doubt, open up hundreds of social media accounts and shill your way to riches.  The worst thing that could happen is no one buys your coin.  The best thing that happens is that someone buys your coin and you can then convert the coin into real money, retire, and act like you are super-wise thought leader with oodles of entrepreneurial and investing experience.

Some other stories with revisiting from the past year:

(1) “Legitimization”

If we were being intellectually honest we would say that the only goal post anyone cared about this year was that the price of cryptocurrencies, as measured in real money, and how high they soared.1 And that the main reason this occurred is because Bob knew Alice and Carol were both going to buy a lot of say, bitcoin, thereby pushing up the price, so he did too.  The Economist called it “the greater fool theory.”  But The Economist are great fools for not buying in at $1, so let’s ignore them.

Basically none of the feel-good goals about lowering remittance fees or increasing financial inclusion promoted in previous years by enthusiasts have really materialized.  In fact, at-risk users and buyers in developing economies probably got screwed on the ICO bandwagon as insiders and sophisticated investors who were given privileged early access to pre-sales, dumped the coins on secondary markets and hoi polloi ended up holding the bag on dozens of quarter-baked ICOs.2

Oh, but transaction fees for Bitcoin are at all-time highs, that’s a real milestone right?

There are many reasons for this, including the fact that Bitcoin Core’s scaling roadmap has thus far failed to achieve its advertised deadlines (see section 5 below).3 Maybe that will change at some point.

Shouldn’t higher fees be a cause for celebration with “champaign” (sic)? 4

Some Bitcoin Core representatives and surrogates have created an ever expanding bingo card of scapegoats and bogeymen for why fees have gone up, ranging from:

  • blaming Roger Ver and Jihan Wu as demonic-fueled enemies of Bitcoin
  • to labeling large chunks of transactions as ‘spam attacks’ from nefarious Lizard-led governments5
  • to flat out bitcoinsplaining: higher fees is what to expect when mass adoption takes place!

I’m sure you’ll be on their bingo card at some point too.

Just like Visa and other widely used payment network operators charge higher and higher rates as more and more users join on… oh they don’t.6 But that’s because they censor your freedom loving transactions!  Right?

So what’s the interim solution during this era of higher fees?  Need to send a bitcoin payment to someone?

You know how supermarkets used to hold items on layaway?  They still do, but it’s not as common to use, hence why you googled the term.  Well, in light of high fees, some Bitcoin Core developers are publicly advising people to open up a “tab” with the merchant.  You know, just like you do with your favorite local bartender.

Fun fact: the original title of the Satoshi whitepaper was, Bitcoin: a peer-to-peer electronic layaway system.

This faux comparison didn’t age well.  In 2014 this was supposed to be a parody. (Source)

For example, the ad above was promoted far and wide by Bitcoin enthusiasts, including Andreas Antonopoulos who still tries to throw sand in Western Union’s eye.  Seriously, watch the linked video in which Antonopoulos claims that Bitcoin will somehow help the poor masses save money such that they can now invest in and acquire clean water.  It’s cringe worthy.  Did Bitcoin, or Bitcoin-related businesses, actually do any of the things he predicted?  Beyond a few one-time efforts, not really.7 Never mind tangible outcomes, full steam ahead on the “save the world” narrative!

Many enthusiasts fail to incorporate in their cartoonish models: that the remittance and cross border payment markets have a set of inflexible costs that have led the price structure to look the way it does today, and a portion of those costs, like compliance, have nothing to do with the costs of transacting.8  There may be a way of reducing those costs, but it is disingenuous (and arguably unethical) to pull on the heart strings of those living on subsistence in order to promote your wares.9

Rather than repeat myself, check out the break down I provided on the same Western Union example back in 2014.  Or better yet, look at the frequently updated post from Save on Send, who has the best analysis bar none on the topic.

Back to loathing about ‘adoption’ numbers: few people were interested in actual usage beyond arbitrage opportunities and we know this because no one writes or publishes usage numbers anymore.10 I’ll likely have a new post on this topic next quarter but for a quick teaser: BitPay, like usual, still puts out headline numbers of “328% growth” but doesn’t say what the original 2016 baseline volume was in order to get the new number today.

I don’t strive to pick on BitPay (to be fair they’re like the only guys to actually publish something) but unfortunately for them, the market still has not moved their way: Steam recently dropped support for Bitcoin payments and a Morgan Stanley research note (below) showed that acceptance from top 500 eCommerce merchants dropped from 5 in 2016 to 3 in 2017.11

“This is possibly the saddest bitcoin chart ever” – BI. Source: Morgan Stanley

Due to a lack of relevant animated gifs, a full break down on the topic wouldn’t fit in this article.  But just a quick note, there were a number of startups that moved decisively away from their original stated business case of remittances and instead in to B2B plays (BitPesa, Bitspark) or to wallets (Abra). 12  These would be worth revisiting in a future article.13

So what does this all have to do with “legitimization”?

If you haven’t seen the Godfather trilogy, it’s worth doing so during or after the holiday break.14

This year we have collectively witnessed the techbro re-enactment of Godfather: Part 3 with the seeming legitimization of online bucket shops and dodgy casinos, aka cryptocurrency intermediaries, you wouldn’t talk about in polite company.

All of the worst elements of society, like darknet market operators, hate groups, and malware developers, effectively got eff you money and a cleansing mainstream “exit” courtesy of financial institutions coming in and regulators overwhelmed by all of the noise.15  Just like in No Country for Old Men, the bad guy(s) sometimes win.  This isn’t the end of that story but the takeaway for entrepreneurs and retail investors: don’t work or build anything. Just shill for coins on social media morning, noon, and night.

(2) Red Scares

I am old enough to remember back in 2013 when Bitcoin “thought leaders” welcomed Chinese Bitcoin users.  In late 2013, during the second bull run of that year, there were frequent reddit threads about how mainland Chinese could use Bitcoin to route around censorship and all the other common civil libertarian tropes.

Guess what happened?  On December 5th, 2013, the People’s Bank of China and four other ministries issued guidance which restricted activities that domestic banks could do with cryptocurrencies, thereby putting spot exchanges in a bit of a bind, causing panic and subsequently a market crash.  Within days there were multiple “blame China” threads and memes that still persist to this day.  Case in point: this thread titled, “Dear China” which had Mr. Bean flipping off people in cars, was voted to the top of /r/bitcoin within a couple months of the government guidance.  Classy.

As I detailed in a previous post, earlier in the autumn, several state organs in China finally closed down the spot exchanges, which in retrospect, was probably a good decision because of the enormous amounts of scams and deception going on while no one in the community was policing itself.16 In fact, some of the culprits that led Chinese exchanges into the dishonesty abyss are still around, only now they’re working for other high-profile Bitcoin companies. 17  Big surprise!

For example, Reuters did an investigation into some of the mainland exchanges this past September, prior to the closure of the spot exchanges.  They singled out BTCC (formerly BTC China) as having a checkered past:

Internal customer records reviewed by Reuters from the BTCChina exchange, which has an office in Shanghai but is stopping trading at the end of this month, show that in the fall of 2015, 63 customers said they were from Iran and another nine said they were from North Korea – countries under U.S. sanctions.

It’s unclear how much volume BTCC processed on behalf of North Koreans, one former employee says the volumes were definitely not zero.18 These were primarily North Koreans working in China, some in Dandong (right across the border).

For perspective: North Korea has been accused of masterminding the WannaCry ransomware attack and also attacking several South Korea exchanges to the tune of around $7 million this year.  Sanctions are serious business, check out the US Department of Treasury resource center to learn more.19

Isn’t China the root of all problems in Bitcoinland?

Source: Twitter

The sensationalism (above) is factually untrue yet look how many people retweeted and liked the quickly debunked conspiracy theory.  It’s almost as if, in the current mania, no one cares about facts.

As Hitchens might say: that which can be asserted without evidence, can be dismissed without evidence.  So to are the conspiracies around Bitcoin in China:

  • Is the Chinese government nationalizing Bitcoin?  No.
  • Is the Chinese government responsible for Bitcoin Cash.  No.
  • Is the Chinese government behind the rise in CryptoKitties. No.

In this bull market it is unclear why Paul has to resort to PR stunts, like making fearmongering tweets or opening a strike/call option at LedgerX with the bet that bitcoin will be worth $50,000 next year.20 There are many other ways to better utilize this capital: rethink investing in funds run by managers who are not only factually wrong but who spread fake rumors around serious issues like nationalization.

For instance, I don’t normally publicly write about who I meet, but this past July, while visiting Beijing I sat down with about a dozen members of their ‘Digital Money‘ team (part of the People’s Bank of China group involved in exploring and researching blockchain-related topics). 21 They had already spoken with my then-current employer as well as many other teams and companies (apparently the Zcash team saw them the very next day). While I don’t want to be perceived as endorsing their views, based on my in-depth discussion that day, this Digital Money team had clearly done their homework and heard from all corners of the entire blockchain ecosystem, both cryptocurrency advocates and enterprise vendors. They were interested in the underlying tech: how could the big umbrella of blockchain-related technology improve their financial market infrastructure?

Look at it another way: the Chinese government (or any government for that matter) has no need to nationalize Bitcoin, what value would it bring to them?  It would just be a cost center for them as miners don’t run for free.22  In contrast, their e-RMB team, based out of Shenzhen, has been experimenting with forks/clones of Ethereum.  This is public information.

But what about Jihan and Bitmain?  Aren’t they out to kill Bitcoin?

I can’t speak on his intentions but consider this: as a miner who manufacturers and sells SHA256 hardware that can be used by both Bitcoin and Bitcoin Cash (as well as any SHA256 proof-of-work coin), Bitmain benefits from repeat business and satisfied customers.  It is now clear that the earlier Antbleed campaign effort to demonize Bitmain was a massive PR effort to create a loss of confidence in Bitmain as it was promoted by several well known Bitcoin Core supporters and surrogates to punish Bitmain for its support for an alternative Bitcoin scaling roadmap and client.  In fact, as of this day, no one has brought forth actual evidence beyond hearsay, that covert ASICBoost is/was taking place.  Maybe they did, but you’d need to prove this with evidence.

Speaking of PR campaigns and mining…

(3a) Energy usage / mining

Over the past two months there have probably been more than a dozen articles whitewashing proof-of-work mining energy consumption numbers.  Coin Center, a lobbying group straight out of Thank You for Smoking, has its meme team out on continuous social media patrols trying to conduct damage control: no one must learn that Bitcoin mining isn’t free or that it actually consumes resources!

Source: Twitter

The title of the article above is complete clickbait BS.  Empirically proof-of-work mining is driving miners to find regions of the world that have a good combination of factors including: low taxes, low wages, low energy costs, quick time-to-market access (e.g., being able to buy and install new hashing equipment), reliable energy, reliable internet access, and low political turmoil (aka stability).23  Environmental impact and “clean energy” are talking points that Van Valkenburgh allege, but don’t really prove beyond one token “we moved to renewables!” story.  The next time Coin Center pushes this agenda item, be sure to just ask for evidence from miners directly.24.

Another example is in a recent Bloomberg View column from Elaine Ou (note: the previous company that she co-founded was shut down by the SEC).  She wrote:

Digital currency is wasteful by design. Bitcoin “miners,” who process transactions in return for new currency, must race to solve extremely difficult cryptographic puzzles. This computational burden helps keep the transaction record secure — by raising the bar for anyone who would want to tamper with it –- but also requires miners to build giant farms of servers that consume vast amounts of energy. The more valuable bitcoin becomes, the more miners are willing to spend on equipment and electricity.

Mining a proof-of-work coin (such as Bitcoin) can only be as ‘cheap‘ or ‘efficient’ as the block reward is worth. As the market price of a coin increases so too does the capital expended by miners chasing seigniorage.  This, we both agree on.

In the long run, proof-of-work miners will invest and consume capital up to the threshold in which the marginal costs of mining (e.g., land, labor, electricity, taxes, etc.) roughly equals the marginal revenue they receive from converting the bitcoins into foreign currency (aka real money) to pay those same costs.  This, we also both agree on.

What Ou makes a mistake on is in her first sentence: digital currencies are not all wasteful, only the proof-of-work variety are.  Digital currency != cryptocurrency.25

I know, I know, all other digital currencies that are not proof-of-work are crap coins and those who make them are pearl-clutching morons.  Contra Ou and Coin Center, it is possible for central banks, and even commercial banks, to issue their own digital currency — and they could do so without using resource intensive proof-of-work.26  The Bank of International Settlements recently published a good paper on the various CBDC models out there, well worth a read.  And good news: no mountains of coal are probably used in the CBDC issuance and redemption process.27

Back to proof-of-work coins: a hypothetically stable $1 million bitcoin will result in a world in which miners as a whole expend up to $1 million in capital to mine.  If the network ever became cheaper to operate it would also mean it is cheaper to permanently fork the network.  You can’t have both a relatively high value proof-of-work coin and a simultaneously non-resource intensive network.

While it is debatable as to whether or not Bitcoin mining is wasteful or not, it empirically does consume real resources beyond the costs of energy and the externalization of pollution onto the environment.  The unseen costs of hash generation for a $20,000 bitcoin is at least $13 billion in capital over a year that miners will eventually consume in their rent-seeking race albeit from a combination of resources.

Data source: BitInfoCharts

I quickly made the chart (above) to illustrate this revenue (or costs depending on the point of view).28 These are the eight largest proof-of-work-based cryptocurrencies as measured by real money market prices.

There are a few caveats: (1) some of the block rewards adjust more frequently than others (like XMR); (2) some of the coins have relatively low transaction fees which equates to negligible revenue so they were not included; (3) the month of December has seen some very high transaction fees that may or may not continue into 2018; (4) because block generation for some of these is based on an inhomogeneous Poisson process, blocks may come quicker than what was supposed to be “average.”

How to interpret the table?

The all-time high price for Bitcoin was nearly $20,000 per coin this year.  If in the future, that price held stable and persisted over an entire year, miners would receive about $13 billion in block rewards alone (not including transaction fees).  Empirically we know that miners will deploy and consume capital up to the point where the marginal costs equals the marginal value of the coin.29  So while there are miners with large operating margins right now, those margins will be eaten up such that about $13 billion will eventually be deployed to chase and capture those rewards.  Consequently, if all 8 of these proof-of-work coins saw their ATH extended through 2018, ceteris paribus, miners would collectively earn about $32.6 billion in revenue (including some fees).

There are a variety of sites that attempt to gauge what the energy consumption is to support the network hashrate.  Perhaps the most frequently cited is Digiconomist.  But Bitcoin maximalists don’t like that site, so let’s put together an estimate they cannot deny (yes, there are climate change denialists in the cryptocurrency world).

For the month of December, the network hashrate for Bitcoin hovered around 13.5 exahash/second or 13.5 million terahash/second (TH/s).

To get a lowerbound on how many hash-generating machines are being used, let’s look at a product called the S9 from Bitmain.  It is considered to be the most “efficient” off-the-shelf product that public consumers can order in volume.30 This mining unit generates around 13.5 TH/s.

So, if we were to magically wave our hands and replace all of the current crop of Bitcoin mining machines into the most efficient off-the-shelf product, we’d need about 1 million of these to be manufactured, shipped, installed, and maintained in order to generate the equivalent hashrate that the Bitcoin network has today.  Multiply 1 million S9’s times the amount of energy individually used by a S9 and you’d get a realistic lowerbound energy usage for the network today.31

Note: this doesn’t factor in land prices, energy costs, wages for employees, building the electrical infrastructure (e.g., installing transformers), and many other line items that are unseen in the chart above.  It also doesn’t include the most important factor: as more mining hashrate is added and the difficulty rating adjust upward, it dilutes the existing labor force (e.g., your mining unit does not improve or become more productive over time).

(3b) Energy usage upperbound

So what are the upperbound costs?

Source: Twitter

The tweet above is not a rare occurrence.  If you are reading this, you probably know someone who tried to mine a cryptocurrency from an office computer or maybe their computer was the victim of ransomware.

You may not think of much of the externalization and socialization of equipment degradation that is taking place, but because mining is a resource intensive process, the machines used for that purpose depreciate far faster than those with normal office usage.32  To date, no one has done a thorough analysis of just how many work-related computers have been on the receiving end of the mining process but we know that employees sometimes get caught, like the computer systems manager for the New York City Department of Education or the two IT staffers in Crimea.33

Even if miners eventually fully utilize renewable energy resources, most hash-generating machines currently deployed do not and will not next year.  These figures also do not factor in the fully validating nodes that each network has that run out of charity (people run them without any compensation) yet consume resources.  According to Bitnodes, Bitcoin has around 11,745 nodes online. According to EtherNodes, Ethereum has around 26,429 nodes online.

So is there an actual upperbound number?

There is, by dividing hashpower by cost and comparing to costs of various known processor types.  For instance, see this footnote for the math on how two trillion low-end laptop CPUs could be used.3435

Just looking at the hash-generating machines, according to Chen Min (a chip designer at Avalon Mining), as of early November, 5% of all transistors in the entire semiconductor industry is now used for cryptocurrency mining and that Ethereum mining alone is driving up DRAM prices.

This is not to say you should march in the streets demanding that miners should forgo the use of coal power plants and only use solar panels (which of course, require consumption of resources including semiconductors), there are after all, many other activities that are relatively wasteful.

But some Bitcoin and cryptocurrency enthusiasts are actively whitewashing the environmental impact of their anarchic systems and cannot empirically claim that their proof-of-work-based networks are any less wasteful or resource intensive than the traditional foreign capital markets they loathe.

In point of fact, while the traditional financial markets will continue to exist and grow without having to rely on cryptocurrencies for rationally pricing domestic economic activity, in 2018, as in years prior, Bitcoinland is still fully dependent on the stability of foreign economies providing liquidity and pricing data to the endogenous labor force of Bitcoin.  Specifically, I argue in a new article, that miners cannot calculate without using a foreign unit of account; that economic calculations on whether or not to deploy and consume capital for expanding mining operations can only be done with stable foreign currency.36

Keep in mind that cryptocurrencies such as Bitcoin only clear (not settle) just one coin (or token) whereas traditional financial markets manage, transact, clear and settle hundreds of different financial instruments each day. 37  For comparison, the Federal Reserve estimates that on any given day about 600 million payment, clearing, and settlement transactions take place in the US representing over $11 trillion in value.38  But this brings up a topic that is beyond the scope of this article.  Next section please.

(4) MIT’s Digital Currency Initiative

On the face of it, MIT’s DCI effort makes a lot of sense: one of the world’s most recognized institutions collaborating with cryptocurrency developers and projects worldwide.

But beneath the slick facade is a potential conflict of interest that has not been looked at by any media outlet.  Specifically, around its formal foray into building tools for central bank digital currency (CBDC).  Rob Ali, a well-respected lawyer turned research scientist (formerly with the Bank of England), was hired earlier this year by DCI to build and lead a team at MIT for the purpose of continuing the research he had started at the BoE.  This is no secret.

Less known is how this research has now morphed into a two-fold business:

  1. DCI charges central banks about $1 million a year to be a partner.39  What this allows the central bank to do is send staff to MIT and tap into its research capabilities.  This includes MIT representatives co-authoring a couple of papers each year focused on topics that the central bank is keen to explore.  Multiple central banks have written checks and are working together with DCI at this time.
  2. Building and licensing tools and modules to central banks and commercial banks.  DCI has hired several Bitcoin developers whom in turn have cloned/forked Bitcoin Core and Lightning.  Using this code as a foundation, DCI is building IP it aims to license to central banks who want to build and issue central bank digital currency.

Where is the conflict of interest?

DCI is housed within MIT’s Media Lab, whose current director is Joi Ito.  Ito is also the co-founder and director of Digital Garage.  Digital Garage is an investor in Blockstream and vocal advocate of Lightning; coincidentally Blockstream is building its own Lightning implementation. Having made several public comments in favor of Bitcoin Core’s hegemony, Ito also appears to be a critic of alternative blockchain implementations.

In looking at his publicly recorded events on this topic Ito does not appear to disclose that the organizations he co-runs and invests in, directly benefit from the marketing efforts that Bitcoin Core and Lightning receive.  Perhaps this is just miscommunication.

I’m all for competition in the platform and infrastructure space and think central bank digital currencies are legit (again check out this BIS paper) but this specific DCI for-profit business should probably be spun off into an independent company.  Why?  Because it would help reduce the perception that Ito – and others developers involved in it – benefits from these overlapping relationships.  After all, Bitcoin Core arguably has a disproportional political clout that his investment (Blockstream) potentially benefits from if/when Lightning goes into production.40 And again, this is not to say there shouldn’t be any private-public partnerships or corporate sponsorships of academic research or that researchers should be prohibited in investing in companies, rather just a recommendation for disclosure and clarity.

(5) Lightning Network

If you haven’t seen The Money Pit (with Tom Hanks), it is well worth it for one specific reason: the contractors and their staff who are renovating Hanks’ home keep telling Hanks that it will be ready in two weeks.

And after those two weeks are over, Hanks is informed yet again that it will be ready in another two weeks.

The Lightning Network, as a concept, was first announced via a draft paper in February 2015. Its authors, Tadge Dryja and Joseph Poon, had initially sketched out some of the original ideas at their previous employer Vaurum (now called Mirror).

Lightning, as it is typically called, is commonly used in the same breath as “the scaling solution,” a silver bullet answer to the current transactional limitations on the Bitcoin network.41 Nearly three years later, after enormous hype and some progress, a decentralized routing version still has not gone into production.  Maybe it will eventually but not one of its multiple implementations is quite ready today unless you want to use a centralized hub.42  Strangely, some of the terminology that its advocates frequently use, “Layer 2 for settlement,” is borderline hokum and probably has not been actually vetted to see if it fulfills the requirements for real “settlement finality.”43

And like multiple other fintech infrastructure projects, some of its advocates repeatedly said it would be ready in less than 6 months, several times.  For instance:

  • On October 7, 2015, Pete Rizzo interviewed multiple developers including Tadge Dryja and Joseph Poon regarding Lightning.  Rizzo wrote that: “In interview, Dryja and Poon suggested that, despite assertions project development could take years, Lightning could take as little as six months to be ready for launch.”
  • On April 5, 2016, Kyle Torpey interviewed Joseph Poon regarding expected time lines, stating that: “Lightning Network co-creator Joseph Poon recently supplied some comments to CoinJournal in regards to the current status of the project and when it will be available for general use. Poon claimed a functional version of the Lightning Network should be ready this summer.”
  • A month later, on May 5, 2016, Kyle Torpey interviewed Adam Back regarding his roadmap.  Torpey wrote that: “While all of these improvements are being implemented on Bitcoin’s base layer, various layer-2 solutions, such as the Lightning Network, can also happen in parallel. The Lightning Network only needs CHECKSEQUENCYVERIFY (along with two other related BIPs) and Segregated Witness to be accepted by the network before it can become a reality on top of the main Bitcoin blockchain.”
  • On November 12, 2016, Alyssa Hertig interviewed several developers including Pierre-Marie Padiou, CEO of ACINQ, one of the startups trying to building a Ligthning implementation.  According to Padiou: “The only blocker for a live Lightning implementation is SegWit. It’s not sure how or when it will activate, but if SegWit does activate, there is no technical thing that would prevent Lightning from working.”

Segregated Witness (SegWit) was activated on August 24, 2017.  More than four months later, Lightning is still not in production without the use of hubs.

Source: Twitter

Not to belabor the point, just this past week, one of the executives at Lightning Labs (which is building one of the implementations) was interviewed on Bloomberg but wasn’t asked about their prior rosy predictions for release dates.  To be fair, there is only so much they could cover in a six minutes allocation.

“Building rock solid infrastructure is hard,” is a common retort.

Who could have guessed it would take longer than 6 months?  Yes, for regular readers of my blog, I have routinely pointed out for several years that architecting and deploying financial market infrastructure (FMI) is a time consuming, laborious undertaking which has now washed out more than a handful of startups attempting to build “enterprise” blockchains.

For example, Lightning as a concept predates nearly every single enterprise-focused DLT vendor’s existence.  While not an equal comparison (they are trying to achieve different goals), there are probably ~5 enterprise-focused, ‘permissioned’ platforms that are now being used in mature pilots with real institutional customers and a couple could flip the “production” button on in the next quarter or so.4445

For what it is worth, enterprise DLT vendors as a whole did a very poor job managing expectations the past couple of years (which I mentioned in a recent interview).  And they certainly had their own PR campaigns during the past couple of years too, there is no denying that.  Someone should measure and quantify the amount of mentions on social media and news stories covering enterprise vendors and proposals like Lightning.46

Better late than never, right?  So what about missed time frames?

In a recent (unscientific) poll I did via Twitter (the most scientific voting platform ever!) found that of the more than 1,600 voters, 81% of respondents thought that relatively inexpensive anonymous Lightning usage won’t really be good to go for at least 6+ months.

Just as Adam Back proposed a moratorium on nebulous “contention” for six months (beginning in August), I propose a moratorium on using the term “Lightning” as a trump card until it is actually live and works without relying on hubs.  But don’t expect to see the crescendo of noise (and some signal) to die down in the meantime, especially once exchanges and wallets begin to demonstrate centralized, MSB-licensed implementations.47

With that suggestion, I can see it now: all of the Lightning supporters flaming me in unison on Twitter for not being a vocal advocate.  Sure beats shipping code!  To be even handed, Lightning’s collective PR effort was just one of many others (hello sofachains!) that could be scrutinized.  A future post could look at all funded infrastructure-related efforts to improve cryptocurrency networks.  Which ones, if any, showed much progress in 2017. 48

Interested in reading more contrarian views on the Lightning Network?  See Gerard and Stolfi (and Stolfi2x) (and Stolfi3x).  Let’s revisit in 6 months to see what has been launched and is in production.

(6) Objective reporting and analysis

Without sugar coating it: with the exception of a few stories, coin media not only dropped the ball on critically, objectively covering ICO mania this past year, but was largely complicit in its mostly corrupt rise.  This includes The Information, which is usually stellar, but seems to have fallen in the tank with the ICO pumpers.  That is, unless you’re a fake advisor and then they’ve got your number.

It took some time, but eventually mainstream and a few not-so-mainstream coverage has brought a much needed spotlight on some of the shady actions that took place this year. There were also a number of good papers from lawyers and academics published throughout 2017.

Your holiday reading list in no particular order:

One of my favorite articles this year should be yours too:

Just a few short months after Stephen Palley published the article above, a lawsuit occurred in which, surprise surprise, the plaintiffs highlighted specific claims in the white paper:

Source: Twitter

Note: that the SEC’s order against the Munchee ICO also relied on highlighting specific claims in the white paper.

Concluding remarks

Unfortunately 2017 will probably go down as the year in which several generations of nerds turned into day-trading schmucks, with colorful technical charts and all.50 This included even adopting religious slogans like:  Buy the dip!  Weakhands!  HODL!  We are the new 1%!  The dollar is crashing!  It’s not a bubble, it’s an adoption curve!

A few parting bits of advice: unfollow anyone that says this time things are different or the laws of economics have changed or calls themselves a “cryptolawyer” or who previously got shutdown by the SEC or who doesn’t have a LinkedIn page.  Rethink donating or investing funds to anyone who makes up rumors about mining nationalization or who was fired for gambling problems or has a communications team solely dedicated to designing memes for Twitter.51

Cryptocurrencies aren’t inherently bad and ideas like ERC721 are even cool.52 But as neat as some of the tech ideas may be, magic internet coins sure as heck continue to attract a lot of Scumbag Steves who are enabled by participants that have turned a blind eye.  It’s all good though, because everyone will somehow get a Moonlambo after the final boss is beaten, right?

Coda

I will have a separate post discussing predictions for 2018 but since we are reflecting on 2017, below are a few other areas worth looking into now that you’re a paper zillionare:

  • We have real empirical observation of hyperdeflation occurring: in which it is more rational to hoard the coin instead of spend it.  As a result, Bitcoin-focused companies that have accumulated bitcoin are still raising capital from external financial markets denominated in foreign currency instead of deploying (consuming) their own bitcoin. And these same startups are receiving valuations measured, not in terms of bitcoin, but in terms of a foreign unit of account.  What would change this trend?
  • Bitcoinland, with its heavy concentration of wealth, looks a lot like a feudal agrarian economy completely dependent on other countries and external financial markets in order to rationally deploy capital and do any economic calculation. Is there a way to build a dynamically adjustable cryptocurrency that does not rely on foreign capital or foreign reference rates?
  • How much proof-of-work related pollution has been externalized and socialized on the public at large due to subsidies in various regions like Venezuela?  What are the effects, if any, on global energy markets?
  • As traditional financial markets add products and solutions with direct ties to cryptocurrencies (futures, options, payments, custody), by the end of 2018 how much of the transactional activity on Bitcoin’s edges will be based on non-traditional financial markets (e.g., LocalBitcoins)?
  • There were a lot of publicity stunts this year.  Working backwards chronologically, the Andreas Antonopoulos donation could have been a publicity stunt, it also could be real.  The argument goes: how is someone with a best selling book, who charges $20,000+ for speaking engagements, and who has been receiving bitcoins for years (here is the public address), still in debt.  Maybe he is, maybe his family fell on hard times.  But few asked any questions when an anonymous person sent what amounted to $1 million in bitcoin enabling him to reset his tax basis.  (Hate me for writing this?  As an experiment, earlier this month I put up a Bitcoin and Ethereum address on the sidebar of the home page, feel free to shower me with your magic coins and prove me wrong.  I promise to convert it all into dirty filthy statist bucks.)  A few months prior to that, Jamie Dimon was accused of everything but eating babies after he said “Bitcoin is a fraud.”  Dozens of “Dear Jamie” letters were written begging him to see Bitcoin with their pure rose-tinted eyes.  At what point will Bitcoin enthusiasts grow some thick skin and ignore the critics they claim don’t matter?  And while we can continue to add PR stunts forever, the “fundraiser” for Luke-Jr’s home after Hurricane Irma had zero proof that it was his house, just a picture that Luke-Jr. says it was and the rest of the Bitcoin Core fan club promoting it.  Trust but verify?

[Note: if you found this research note helpful, be sure to visit Post Oak Labs for more in the future.]

Acknowledgements

Many thanks to the following for their constructive feedback: VB, YK, RD, CM, WG, MW, PN, JH

End notes

  1. Bitcoin fans basically walked onto the field before the football game, toppled the goal posts, and carried it outside the stadium declaring themselves victorious without having actually played the match. []
  2. How many of these unsophisticated buyers have subsequently lost the corresponding private keys?  See “Nearly 4 Million Bitcoins Lost Forever, New Study Says” from Fortune []
  3. I am sure I will be accused of being a “Bitcoin Cash shill” (which obviously I must be, there is no other explanation!) for pointing this out, but last week, one vocal Bitcoin Core supporter even proposed a commit to change the wording on Bitcoin.org surrounding low fees: “These descriptions of transaction features are somewhat open to interpretation; it would probably be best not to oversell Bitcoin given the current state of the network.” []
  4. As an actor on a classic Saturday Night Live sketch said: “You may ask how we at the Change Bank, make money? It’s simple, volume.” []
  5. I take issue with anyone claiming to be able to label transactions specifically as spam without doing an actual graph analysis.  See Slicing Data for more. Proof-of-lizard is not to be conflated with lizardcoin. []
  6. Note: this is not an endorsement of Visa, I do not have any equity or financial stake in Visa. []
  7. One reviewer commented: “One problem that affects all cryptocurrencies whether proof of work or of stake: What reason do most people have for using them that won’t run afoul of social policy objectives? As long as people need to convert them to regular fiat currencies, they have a distinct disadvantage. The only exception would be in failed economies where stable fiat currencies are restricted, until those governments see a cryptocurrency as a potential substitute and ban it. It is not even clear why a government would need to issue a cryptocurrency (not a CBDC). If it wants to serve unbanked people it could open or subsidize a bank for them which is what is being attempted in a few developing countries.” []
  8. One reviewer commented: “Fully peer-to-peer without banks ultimately leads to creating a new currency. A new currency means that for international payments you have the additional costs of converting into the currency and converting out of the currency. A currency not linked to a real world economy is always going to have a more volatile price (assuming it has any price at all). Volatility in FX always, always leads to higher transaction costs for exchange because the bid offer spread has to be wider. This is before you even get into the mining proof or work model and all its inherent flaws, which again ultimately result from trying to build a financial system without banks.” []
  9. One reviewer noted that: “Transferwise, Currency Fair, Revolut, Mondo and other startups are already doing it. And they’re doing it without having to break the rules and laws banks and Western Union have to play by. They’re building actual real, potentially sustainable businesses that are useful to society. They’re just not grabbing the headlines like the greater fool / Nakamoto Scheme is. When you build a real business, your scope for false promise making behind incoherent computer science jargon is pretty small.” []
  10. I even stopped aggregating numbers 18 months ago because fewer companies were making usage numbers public: it’s hard to write about specific trends when that info disappears.  Note: if you think you have some interesting info, feel free to send it my way. []
  11. BitPay has diversified its portfolio of services now, expanding far beyond the original merchant acceptance and recently closed a $30 million funding round.  However, the problem with their growth claims is they are typically measured in $USD volume. So, as the value of bitcoin has grown 10-20x (as measured in USD) in the past year, it is unclear how much BitPay has really grown in terms of new customers and additional transactions.  Note: the same can be said for most Bitcoin-specific companies making big growth-related claims, BitPay is just one example. []
  12. Movements occurred in other areas too, on the enterprise side, Chain was perhaps the most well known company to pivot away from that vertical. []
  13. One reviewer commented: “2017 was a good year for B2B players with some prominent funding rounds (e.g., Bitspark, Veem, BitPesa) and some claimed growth on blockchain “rails” (but also on non-blockchain) namely Veem and BitPesa. A big surprise of 2017 was a much broader awareness of cryptocurrencies, i.e., free massive PR. The Coinbase app became more popular than Venmo (and far ahead of any bank). As a result, one of the most intriguing questions right now for 2018 is if/how Coinbase could capitalize on this opportunity to become a full-fledged bank leveraging the best of banking-like services from players like Xapo, Uphold, and Luno?” []
  14. I suppose it is safe to assume that if you’re reading this, you are coin millionaire so you don’t worry about fiat-mandated holiday breaks like the rest of us. []
  15. Not all medium-to-large coin holders are the adopters you now see wearing suits on television talk shows.  Most coin holders, including the abusive trolls and misogynists on social media, have seen a large pay raise, enabling the worst elements to continue their bullying attacks and illicit activities.  See Alt-right utilizes bitcoin after crackdown on hate speech from The Hill []
  16. Worth pointing out that Ryan Selkis is attempting to push forward with a the self-regulatory effort called Messari.  See also: The Brooklyn Project. []
  17. Earlier this year, right after the law enforcement raids in China, one of the senior executives left BTCC but still remains on the board of the parent company that operates BTCC.  He quickly found a new senior role at another high-profile Bitcoin-focused company and uses his social media accounts to vigorously promote Bitcoin Core and maximalism. []
  18. As explored in a previous post, fake volumes among the Chinese exchanges was not uncommon and several of the large exchanges attempted to gain funding from venture capitalists while simultaneously faking the usage numbers. As one former employee put it: “That was an extraordinary attempt at fraud — faking the numbers through wash trading and simply printing trades, while using that data to attract investment and establish their valuation.” []
  19. Coinbase got into some problems in early 2015 when one of its investor decks highlighted the fact that cryptocurrencies, such as Bitcoin, could be used to bypass sanctions. []
  20. Ari Paul runs a small “crypto” hedge fund called BlockTower Capital (estimated to have between around $50-$80 million AUM) that like many companies in this space, faces an ongoing lawsuit.  Unclear why LPs didn’t just buy and hold cryptocurrencies themselves and cut out the hysteria and management fees. []
  21. Yea, I know, “money” is already digital… I didn’t give them that name, they did. []
  22. One reviewer noted: “The fact remains that if you replace the mining process with a a centralized system for validation of transactions and up-to-date of balances you could run the whole thing on an ordinary sized server for a few thousand dollars per year. Centralisation and a more logical data model are vastly better technically speaking. And it would be far easier to add in compliance and links to banks for more robust and honest methods for exchanging between a centralized bitcoin and fiat. What would the Chinese government gain from mining?” []
  23. One of the often overlooked benefits of setting up a mining farm in China is that many of the parts and components of mining equipment are either manufactured in China and/or final assembly takes place in China.  So logistically it is much quicker to transport and install the hardware on-site within China versus transport and use overseas. []
  24. I know a bunch and could maybe introduce them though some of them make public appearances at conferences so they can usually be approached or emailed. []
  25. In fact, many regulators, such as the ECB, categorize cryptocurrency as a type of “virtual currency,” separate from a “digital currency.” []
  26. There is often confusion conflating “transaction processing” and “hash generation,” the two are independent activities.  Today mining pools handle the transaction processing and have sole discretion to select any transactions from the memory pool to process (historically there have been thousands of ’empty’ blocks) — yet mining pools are still paid the full block reward irrespective of how many transactions they do or not process.  Hash generation via mining farms has been a discrete service for more than 5 years — think of mining pools as the block makers who outsource or subcontract the hash generation out to a separate labor force (mining farms) and then a mining pool packages the transactions into a block once they receive the correct proof-of-work.  Note: “fees” to miners is a slightly different but related topic. []
  27. CBDCs have their own issues, like the risk of crowding out ordinary banks in market for deposits in a low interest rate environment but they have little in common with anarchic crytocurrencies. []
  28. Many thanks to Vitalik Buterin for his feedback and suggestions here. []
  29. See also: Some Crypto Quibbles with Threadneedle Street from Robert Sams []
  30. There are other mining manufacturers, including some who only build for themselves, such as Bitfury. []
  31. Interestingly enough, the market price for one of these machines is around $2,000.  And if you do the math, you’ll see exactly what all professional miners do: it’d only cost $2 billion to buy enough machines to generate 100% of the network hashrate and claim all the $13 billion in rewards to yourself!  In other words, the seigniorage is big, fat, and juicy… and will attract other miners to come and bid up the price of mining to the equilibrium point. []
  32. There are many walk-throughs of bitcoin mining facilities, including this video from Quartz. []
  33. In the process of writing this article, a new story explained how more than 105,000 users of a Chrome extension were unknowingly mining Monero.  Heroic theft of CPU cycles, right? []
  34. In theory, and practice, the upperbound is not infinite.  We know from the hashrate being generated that there are a finite amount of cycles being spent repeatedly multiplying SHA256 over and over.  Perhaps a possible, but improbable way to gauge the upperbound is to take the processing speed of a low-end laptop CPU (which is not as efficient at hashing as its ASIC cousins are).  At 6 MH/s, how many seventh generation i3 chips would it take to generate the equivalent of 13.5 million TH/s?  On paper, over 2 trillion CPUs.  Note: 1 terahash is 1 million megahashes.  So 1 million laptop CPUs each generating 6 MH/s on paper, would collectively generate around 6 TH/s.  The current network hashrate is 13.5 exahash/s.  So you’d need to flip on north of 2 trillion laptop CPUs to reach the current hashrate.  In reality, you’d probably need more because to replace malfunctioning machines: a low-end laptop isn’t usually designed to vent heat from its CPU throttled to the max all day long. []
  35. One China-based miner reviewed this scenario and mentioned another method to arrive at an upperbound: “Look at the previous generation of ASICs which run at 2-3x watt per hash higher.  The previous generation machines normally get priced out within 18 months.  But with differing electricity costs and a high enough price, these machines get turned on.  Or they go to cheap non-petrodollar countries like Russia or Venezuela. So your base load of 1 million machines will have an upperbound of 2x to 3x depending on prevailing circumstances.” []
  36. It may be also worth pointing out that the “evil Chinese miners blocking virtuous Core” narrative is hard to justify because Bitcoin’s current relatively high fees are a direct result of congestion and has consequently increased miner revenue by 33% (based on December’s fees).  So in theory, it’s actually in the miners interest to now promote the small block position.  Instead, in reality, most miners were and are the ones advocating for bigger block sizes, and certain Bitcoin Core representatives were blocking those proposals as described elsewhere but we’re not going down that rabbit hole today. []
  37. One reviewer commented: “Financial instruments that either directly perform a service to our economy and even indirectly via speculation, enable price discovery for things that are important to people’s lives. Who’s lives is Bitcoin really important to right now? To this day the only markets it can claim to have any significant market share in, let alone be leader in, is illicit trade and ransomware. The rest appears to be just people looking to pump and shill.” []
  38. It’s also probably not worth trying to start a discussion about what the benefits, if any, there is for society regarding cryptocurrency mining relative to the resources it collectively consumes, as the comments below or on social media would simply result in a continuous flame war.  Note: colored coins and metacoins create distortions in the security assumptions (and rewards) for the underlying networks.  Watermarked tokens are neither secure nor proper for financial market infrastructure. []
  39. It is not $1 million straight, there are multiple levels and tiers. []
  40. There is an ongoing controversy around key decision makers within Bitcoin Core (specifically those who approve of BIPs) and their affiliation with Blockstream.  One of Blockstream’s largest investors, Reid Hoffman, said Blockstream would “function similarly to the Mozilla Corporation” (the Mozilla Corporation is owned by a nonprofit entity, the Mozilla Foundation). He likened this investment into “Bitcoin Core” (a term he used six times) as a way of “prioritiz[ing] public good over returns to investors.” []
  41. Because it is its own separate network, it actually has cross-platform capabilities.  However, historically it has been promoted and funded for initial uses on the Bitcoin network moreso than others. []
  42. Yes, I am aware of the demo from Alex Bosworth, it is a big step forward that deserves a pat on the back.  Now to decentralize routing and provide anonymity to users and improve the UI/UX for normal users. []
  43. To start with, see the Principles for Financial Market Infrastructures. []
  44. This is not an endorsement of a specific platform or vendor or level of readiness, but examples would include: Fabric, Quorum, Corda, Axcore, Cuneiform, and Ripple Connect/RCL. []
  45. While Lightning implementations should not be seen as a rival to enterprise chains (it is an apples to oranges comparison), the requirements gathering and technical hurdles needed to be overcome, are arguably equally burdensome and maybe moreso for enterprise-focused companies.  Why?  Because enterprise-focused vendors each need approval from multiple different stakeholders and committees first before they deploy anything in production especially if it touches a legacy system; most Lightning implementations haven’t actually formally defined who their end-customer is yet, let alone their needs and requirements, so in theory they should be able to “launch” it faster without the check-off. []
  46. For instance, CoinDesk currently has 229 entries for “lightning,” 279 entries for “DLT,” and 257 entries for “permissioned.” []
  47. It bears mentioning that Teechain, can achieve similar KPIs that Lightning can, via the use of hardware, and does so today.  BitGo’s “Instant” and payment channels from Yours also attempt to achieve one similar outcome: securely transmitting value quickly between participants (albeit in different ways). []
  48. We’d need to separate that from the enterprise DLT world because again, enterprise vendors are trying to solve for different use cases and have different customers altogether.  Speaking of which, on the corporate side, there is a growing impatience with “pilots” and some large corporates and institutions are even pulling back.  By and large, “blockchain stuff” (people don’t even agree on a definition still or if it is an uncountable noun) remains a multi-year play and aside from the DA / ASX deal, there were not many 2017 events that signaled a shorter term horizon. []
  49. Note: both the Fedcoin and CAD-coin papers were actually completed and sent to consortium members in November 2016 then three months later, published online. []
  50. One reviewer commented: “There seems to be a whole new wave of both suckers and crooks to exploit the geeks. I have read some the Chartist analysis on forums for more traditional forms of day-trading such as FX day-trading and it is exactly the same rubbish of trying to inject the appearance of intelligence and analysis into markets that the day-traders (and those encouraging them) simply do not understand.” []
  51. A former Coinbase employee, now running a “crypto” hedge fund, was allegedly fired for gambling issues.  Maybe he wasn’t but there are a lot of addicts of many strains actively involved in trading and promoting cryptocurrencies; remember what one of the lessons of Scarface was? []
  52. ERC20 and ERC721 tokens may end up causing a top-heavy problem for Ethereum. See Watermarked tokens and also Integrating, Mining and Attacking: Analyzing the Colored Coin “Game” []

Bitcoin Is Now Just A Ticker Symbol and Stopped Being Permissionless Years Ago

Financial market infrastructure in just one country (Source)

What is FMI?  More on that later.  But first, let’s talk about Bitcoin.

If you aren’t familiar with the Bitcoin block size war and its endless online shouting matches which have evolved into legal and even death threats, then you have probably been a very productive human being and should sell hugs and not wander into a non-stop social media dance off.

Why?  Because tens of thousands of man (and woman) hours have collectively been obliterated over a struggle that has illuminated that Bitcoin’s development process is anything but permissionless.

It also illuminates the poor fiduciary care that some VCs have towards their LPs.  In this case, more than a handful of VCs do not seem to really care about what a few of their funded companies actually produce, unless of course the quarterly KPIs include “have your new Bitcoin meme retweeted 1,000 times once a week.”

In some documented cases, several dozen executives from VC-backed Bitcoin companies have spent thousands of hours debating this size attribute instead of building and shipping commercializable products.  But hey, at least they sell cool hats and built up very large Twitter followings, right?

Fact #1: Satoshi Nakomoto did not ask anyone’s permission to launch, change, or modify the codebase she unilaterally released in 2009.

Fact #2: In 2009, when Satoshi Nakomoto issued and minted a new currency (or commodity or whatever these MLIC are) she did so without asking anyone else’s approval or for their “ack.”

In the approximately seven years since she stopped posting under her pseudonym, influential elements of Bitcoin’s anarchic community have intentionally created a permissioned developer system commonly referred to as the Bitcoin Improvement Proposal (BIP) process.  “Bitcoin Core” is the name for the group that self-selected itself to vet BIPs; involvement is empirically permissioned because you can get kicked off the island.1 There are a small handful of decision makers that control access to the code repository.

For example, if you’re a developer that wants to create and launch a new implementation of Bitcoin that includes different block sizes… and you didn’t get it approved through this BIP process, guess what?  You are doing permissionlessness wrong because you didn’t get permission from the BIP approval committee to do so.

Oh, but you realize that and still want to launch this new Bitcoin implementation with the help of other elements of the community, such as some miners and exchanges?

According to some vocal members of the current BIP approval committee (Bitcoin Core) and its surrogates, this is an attack on Bitcoin.  Obviously this is absurd because there is no de jure or legally defined process for changing or forking Bitcoin, either the chain itself or the code.

There is no terms of service or contract which explicitly states what Bitcoin is and who controls its development process.  Or more historically: if Satoshi didn’t need permission from a (non-existent) BIP approval committee to launch a cryptocurrency, then no other Bitcoin developer needs to either.

Tickers

Fast forward to this current moment in time: if the Bitcoin Cash or Segwit2X forks are an attack on network because either fork did not get ack’ed (approved) by the right people on the BIP approval committee or retweeted by the right “thought leaders” on social media, then transitively every 10 minutes (when a block is generated by a miner) arguably could be an attack on Bitcoin.

Why?  At any time a block maker (miner) could use a different software implementation with different consensus rules.  They, like Satoshi before them, do not need permission to modify the code.

Oh, but other miners may not build on top of that block and some exchanges may not recognize those blocks as “legitimate” Bitcoin blocks?

That is certainly a risk.  In fact, several exchanges are now effectively white listing and black listing — permissioning — Bitcoin-related blocks.

For instance, Bittrex, a large crypto-to-crypto exchange, has said:

The “BTC” ticker will remain the Bitcoin Core chain before the hard fork block. Bittrex will observe the Bitcoin network for a period of 24 to 48 hours to determine if a chain split has occurred and the outcome.

In the event of a chain split, “BTC” will remain the existing Bitcoin chain with 1 MB blocks until the industry and ecosystem demonstrates a clear chain preference for Bitcoin.

Bitfinex, the largest (and most nebulous) cryptocurrency exchange in the world, took this even further by stating:

The incumbent implementation (based on the existing Bitcoin consensus protocol) will continue to trade as BTC even if the B2X chain has more hashing power.

After heavy public (and private) lobbying by members and surrogates of Bitcoin Core, other exchanges have instituted similar policies favoring the incumbent.2  So what can alternative implementations to do?  Bend the knee?

Daenerys Targaryen, Breaker of Chains

Historically miners have built on the chain that is both the longest and also has the most accumulated difficulty… and one that has enough profitability to pay for the electricity bills.  It just happens that this collective block building activity is never called an “attack” because in general, most participants have been happy enough with the status quo.

Visions of what Bitcoin is and how it should be defined have clearly, empirically shifted over time.  But since this network was purposefully designed to be self-sovereign and anarchic — lacking contracts and hooks into any legal system — no one group can claim legitimacy over its evolution or its forks.

As a result, recent war cry’s that Segwit2X is a “51% attack” on Bitcoin are a red herring too because there is no consensus on the definition of what Bitcoin is or why the previous block – in which approximately 51% of the hashrate created a block – is not an attack on Bitcoin. 3

This has now morphed into what the “BTC” ticker on exchanges represents.  Is it the longest chain?  The chain with the most accumulated difficulty?  The chain maintained by Bitcoin Core or now defunct NYA developers?  If a group of block makers can build blocks and exchanges are willing to list these coins as “BTC” then that specific chain has just as much legitimacy as any other fork other miners build on top of and exchanges may list.

Furthermore, if the BIP approval committee gets to say what software miners or exchanges should or should not use (e.g., such as increasing or decreasing the block size), that could mean that existing network is a managed and even administered.  And this could have legal implications.  Recall that in the past, because block making and development were originally separate, FinCEN and other regulators issued guidance stating that decentralized cryptocurrencies were exempt from money transmission laws.

Despite what the trade associations and Bitcoin lobbying groups would like the narrative to be, I recently published an article that went into this very topic in depth and have publicly asked several prominent “crypto lawyers” to provide evidence to the contrary (they have yet to do so).  An argument could be made that these dev groups are not just a loose collective of volunteers.

Financial market infrastructure

I’m not defending S2X or XT or Bitcoin Unlimited.  In fact, I have no coins of any sort at this time.

But even if you don’t own any bitcoins or cryptocurrencies at all, the block size debate could impact you if you have invested in the formal financial marketplace.

For example, if and when the CME (and similar exchanges) get CFTC approval to list cryptocurrency-related futures products and/or the NYSE (and similar exchanges) get SEC approval to list cryptocurrency-related ETFs, these products will likely result in a flood of institutional money.

Once institutions, regulators, and sophisticated investors enter the picture, they will want to hold people accountable for actions.  This could include nebulous “general partnerships” that control GitHub repositories.  Recall, in its dressing down of The DAO, the SEC defined the loose collective building and maintaining The DAO as a ‘general partnership.’  Is Bitcoin Core or other identifiable development teams a “general partnership”?

Maybe.  In fact, the common refrain Bitcoin Core and its surrogates continually use amounts to arguments in favor of a purported natural monopoly.

For instance, Joi Ito, Director of MIT’s MediaLab, recently stated that:

“We haven’t won the battle yet. [But] I think the thing that is interesting is that Bitcoin Core has substantially more brain fire power than any of the other networks.”

This is problematic for a couple reasons.

First, Joi Ito is not a disinterested party in this debate.  Through Digital Garage (which he co-founded) it has invested in Blockstream, a company that employs several influential Bitcoin Core devs.4  Ignoring the potential conflict of interest, Ito’s remarks echo a similar sentiment he also made last year, that Core is basically “The Right Stuff” for NASA: they are the only team capable of sending humans into space.

But this is an empirically poor analogy because it ignores technology transfer and aerospace education… and the fact that multiple countries have independently, safely sent humans, animals, and satellites into space.

It also ignores how competitive verticals typically have more than just one dominant enterprise: aerospace, automobiles, semiconductor manufacturers, consumer electronic manufacturers (smart phones), etc.  Each of these has more than one company providing goods and services and even usually more than just one product development team developing those.  Intel, for example, has dozens of design teams working on many new chips at any given time of the year.  And they are just one of the major semiconductor companies.

Even in the highly regulated markets like financial services there is more than one bank.  In fact, most people are unaware of this but banks themselves utilize what is called “Core Banking Software” and there are more than a dozen vendors that build these (see image below).

It is a bit ironic that Bitcoin Core seeks to have a monopoly on the BIP process yet even banks have more than one vendor to choose from for mission critical software securely managing and processing trillions of dollars in assets each day.5

On the enterprise (non-anarchic) blockchain side of the ecosystem, there are well over a dozen funded teams shipping code, some of which is being used in pilots by regulated institutions that are liable if a system breaks.  Note: this is something I discussed in my keynote speech (slides) at the Korea Financial Telecommunications and Clearings Institute last year.

But as one vocal Core supporter in a WeChat room recently said, Bitcoin Core is equivalent to Fedwire or Swift, there is only one of each; so too does it make sense for only one Bitcoin dev team to exist.

Firstly, this conflates at least four different things: a specific codebase, with permissioned dev roles, with acceptance processes, with a formal organization.

It is also not a good analogy because there are many regulatory reasons why these two systems (Swift and Fedwire) exist the way they do, and part of it is because they were either setup by regulators and/or regulated organizations.  In effect, they have a bit of a legally ring-fenced marketplace to solve specific industry problems (though this is somewhat debatable because there are some alternatives now).6

If this supporter is equating Core, the codebase, with real financial market infrastructure (FMI), then they should be prepared to be potentially regulated.  Bitcoin Core and many other centralized development teams are comprised of self-appointed, vocal developers that are easy to identify (they have setup verified Twitter accounts and attend many public events), so subpoenas and RFI’s can be sent their way.

As I mentioned in my previous article: with great power comes great accountability.  Depending on the jurisdiction, Core and other teams could end up with regulatory oversight since they insist on having a monopoly on the main (only) implementation and process by which the implementation is managed.7

Remember that Venn diagram at the very top?  The companies and organizations that manage FMI today for central banks (RTGSs), central securities depositories (CSDs), and other intermediaries such as custodians and CCPs, have specific legal and contractual obligations and liabilities.

Following the most recent financial crisis, the G-20 and other counties and organizations established the Financial Stability Board (FSB) to better coordinate and get a handle on systemic risks (among other issues).  And while the genesis of the principles for financial market infrastructures (PFMI) had existed prior to the creation of the FSB, how many of the international PFMI standards and principles does Bitcoin Core comply with?

Spoiler alert: essentially none, because Satoshi intentionally wasn’t trying to solve problems for banks.  So it is unsurprising that Bitcoin isn’t up to snuff when it comes to meeting the functional and non-functional requirements of a global payments platform for regulated institutions.  Fact-check me by reading through the PFMI 101 guide.

When presented with these strong legal accountability and international standards that are part and parcel with running a payment system, there is lots of hand waving excuses and justifications from Core supporters (and surrogates) as to why they are exempt but if Core wants to enforce its monopoly it can’t have it both ways.  Depending on the jurisdiction they may or may not be scrutinized as FMI.

But in contrast, in looking at the evolution and development of the enterprise chain ecosystem – as I described in multiple previous articles – there are valuable lessons that can be learned from these vendors as to how they plan to operate a compliant network.  I recall one conversation with several managing directors at a large US investment bank over a year ago: maybe the enterprise side should just have CLS run a blockchain system since they have all the right business connections and fulfill the legal and regulatory check boxes.

Note: CLS is a very important FMI operator.  Maybe existing FMI operators will do just that.  Speaking of which, will Bitcoin Core (or other dev teams) apply to participate with organizations like the FSB that monitor systemically important financial institutions and infrastructure?

Angela Walch has argued (slides) that some coders, especially of anarchic chains, are a type of fiduciary.8  Even if this were not true, many countries have anti-monopoly and anti-trust laws, with some exceptions for specific market segments and verticals.  There are also laws against organized efforts involved in racketeering; in the US these are found within the RICO Act.

Watch the Godfather trilogy

I haven’t seen a formal argument as to why Core or other development teams could meet the litmus test for being prosecuted under RICO laws (though the networks they build and administer are frequently used for money laundering and other illicit activity).  But trying to use the “decentralization” trump card when in fact development is centralized and decisions are made by a few key individuals, might not work.

Look no further than the string-pulling Mafia which tried to decentralize its operations only for the top decision makers to ultimately be held liable for the activities of their minions.9  And using sock puppets and pseudonyms might not be full proof once forensic specialists are brought in during the discovery phase.10

Concluding remarks

Based on observations from how Bitcoin Core evolved and consolidated its power over time (e.g. removing participants who have proposed alternative scaling solutions), the focus on what Bitcoin is called and defined has landed in the hands of exchanges and really just highlights the distance that Bitcoin has walked away from a “peer-to-peer electronic cash” that initially pitched removing intermediaries.  To even care about what ticker symbol ‘Bitcoin’ is on an exchange is to acknowledge the need for a centralized entity that establishes what the “price” is and by doing so takes away the bitcoin holder’s “self-sovereignty.”11

While the power struggles between various factions within the Bitcoin development community will likely rage on for years, by permissioning off the development process, Bitcoin Core (and any other identifiable development groups), have likely only begun to face the potential regulatory mine field they have foisted on themselves.12

Historically blockchain-based systems have and still are highly dependent on the input and decision-making by people: somebody has to be in charge or nothing gets done and upgrades are a mess.  And the goal of appointing or choosing specific teams on anarchic chains seems to be based around resolving political divisions without disruptive network splits.13

The big questions now are: once these teams are in charge, what will governments expectations be?  What legal responsibilities and regulatory oversight will the developers have?  Can they be sued for anti-trust and/or RICO violations?  With billions of dollars on the line, will they need to submit upgrade and road map proposals for approval?

Endnotes

  1. Examples of developers who were removed: Alex Waters, Jeff Garzik, Gavin Andresen []
  2. Thanks to Ciaran Murray for identifying these exchanges. []
  3. Bitcoin mining is in fact based on an inhomogeneous Poisson process; a participant could theoretically find a block with relatively little hash rate.  Although due to the probabilities involved, most miners pool their resources together to reduce the variance in payouts. []
  4. According to one alleged leak, Digital Garage is testing Confidential Assets, a product of Blockstream. []
  5. According to a paper from the Federal Reserve: payment, clearing, and settlement systems in the United States “process approximately 600 million transactions per day, valued at over $12.6 trillion.” []
  6. On AngelList, there are about 3,400 companies categorized as “payments” — most of these live on top of existing FMI, only a handful are trying to build new independent infrastructure. []
  7. A key difference between Bitcoin and say Ethereum is that with Ethereum there are multiple different usable implementations managed by independent teams and organizations; not so with how Bitcoin has evolved with just one (Bitcoin Core) used by miners.  In addition, the Ethereum community early on formally laid out a reference specification of the EVM in its yellow paper; Bitcoin lacks a formal reference specification beyond the Core codebase itself. []
  8. See also The Bitcoin Blockchain as Financial Market Infrastructure: A Consideration of Operational Risk from Angela Walch []
  9. Thanks to Stephen Palley for providing this observation. []
  10. It is unclear why the current Bitcoin Core team is put onto a pedestal.  There are many other teams around the world building and shipping blockchain-related system code used by companies and organizations (it is not like there is only just one dev team that can build all databases or operating systems).  At the time of this writing Core has not publish any papers in peer-reviewed journals and many of them do not have public resumes or LinkedIn profiles because they have burned business and professional relationships in the past.  Irrespective of what their bonafides may or may not be, it is arguably a non sequitur that ‘permissionless’  coordination in open-source code development has to lead to a monopoly on said development. []
  11. Thanks to Colin Platt for this “appeal to authority” observation. []
  12. Bitcoin stopped being permissionless when developers, miners, and exchanges needed to obtain permission to make and use different code.  And likely there are and will be more other cryptocurrency development teams that follow that same path. []
  13. For an informed contrarian view on governance and distributed ledger technology, see The blockchain paradox: Why distributed ledger technologies may do little to transform the economy by Vili Lehdonvirta []

How newer regtech could be used to help audit cryptocurrency organizations

[Note: I neither own nor have any trading position on any cryptocurrency.  The views expressed below are solely my own and do not necessarily represent the views of my employer or any organization I advise.]

About two years ago I gave a speech discussing the challenges cryptocurrency-related companies have had in creating reliable internal financial controls.  How over the span of a few short years the cryptocurrency startup landscape (un)intentionally reinvented the same type of intermediaries, custodians, and depository-like structures that the original creator(s) of Bitcoin wanted to route around but… setup without the oversight, assurances, and accountability you would find required in the traditional brick-and-mortar world.

The lack of financial controls and subsequent pitfalls is easily identifiable in the irrational exuberance of the get-rich-quick “initial coin offering” (ICO) world.  I’ll save my ICO post for later, but there is one story that is a bit more concrete and easier to understand and involves a company called Bitfinex.

Bitfinex, as measured in terms liquidity and volume, is considered the top global cryptocurrency exchange.  It is nominally headquartered in Hong Kong, has (had) bank accounts in Taiwan, servers in Europe (Italy?), operations in San Francisco and a staff around 30 altogether.

Source: RobotFinance

Above is a speculative corporate structure created back in September 2016 by an internet user by the name of RobotFinance.  He created it “based on the last annual return of Renrenbee Limited and statements made in the pitch forum.”  Unless you are registered as a user with BnkToTheFuture, you cannot view the pitch deck but an alleged copy of the Bitfinex deck can be found here and a discussion of it here.1  These leaked allegedly legitimate documents also suggest that Bitfinex did an equity swap at a $200 million valuation which was based on their financial growth and targets before they lost roughly $65 million in customer assets due to a hack that will be described below.

This post is not intended to single out Bitfinex as there are any number of other exchanges and wallet providers that could be looked at as well.  Nor is it intended to dive into all of the subsidiaries or even the entire history of the parent company or the cryptocurrency platform.  Rather it serves an illustration as to how new technology and financial controls could help increase visibility and transparency for all stakeholders involved thereby reducing the risks for users and retail investors (among others).

Quick history

Last November I published an internal paper that may be released later this year which explored the proposed Winkleovss COIN ETF.  In it, I highlighted a detailed history of various cryptocurrency exchange platforms and their colorful pasts, some more sordid than others.

Rather than rehash all of those stories, below are a few details specifically related to Bitfinex:

  • In May 2015 Bitfinex was hacked and lost around 1,400 bitcoins (then worth around $350,000).  In August 2016, Bitfinex was hacked again and lost roughly 120,000 bitcoins (at the time worth around $65 million).2  In the first hack, Bitfinex basically ate the losses themselves.3
  • Following the second hack, Bitfinex announced a way to compensate its customers.  Why did it need to compensate the customers?  Because, following the second hack, it socialized the losses, seizing the remaining customer assets and gave nearly all of them a 36% haircut.4 In exchange for giving everyone a haircut, Bitfinex then self-issued two different “tokens” called BFX and then later RRT. These two tokens (or IOUs) effectively enabled Bitfinex to monetize their debt/losses.
  • According to their announcements, over 20 million BFX tokens were issued and exchanged for iFinex shares and then distributed to all affected users.  As a result, Bitfinex basically conducted, from the perspective of a user, a non-voluntary ICO where participation was mandatory, as the BFX token was directly linked to equity of the parent company and users/customers could (later) trade BFX on the Bitfinex exchange.5 In addition, according to a post last summer from their head of communications, “two out of the top ten BFX token-holders are in our management team.”  It is never revealed who these parties are or how they were made whole (or not).  Furthemore, “certain verified, non-U.S. Bitfinex users to convert tokens to equity through a new BFX Trust.”  They set up a dedicated BFX Trust site but did not include the verification requirements for non-accredited BFX holders.  Nor is there public information about who all of the Principals are and the holdings they have.6
  • RRT, the acronym for Recovery Rights Tokens, are opt-in coins issued, “to compensate victims of the security breach and, thereafter, to offer a priority to early BFX token conversions.”  It is unclear how many of these coins were issued or how many were redeemed.
  • To this day, the Bitfinex still has not disclosed exactly how they got hacked and last year even published an open letter to try and negotiate with the hacker; asking to return the funds as part of an ex post facto “bug bounty.”  It is believed that the hacker bypassed the transaction limits set in place by the BitGo multi-sig wallet but that is a story for another post.7
  • Prior to this hack, on June 2, 2016, the Commodity Futures Trading Commission announced that it had fined and settled with Bitfinex for offering regulated products without having properly registered to do so.  This is important because several vocal Bitcoin proponents have distorted the actual historical events.  According to the communications director of Bitfinex last year, “Bitfinex migrated to the BitGo setup before any discussion or anything with the CFTC happened.”8  In other words, this hack was not caused by the CFTC.
  • On April 3, 2017 Bitfinex announced that it was completing the redemption of all BFX tokens and they would all be subsequently destroyed.

How did Bitfinex manage to pay off tens of millions of dollars of self-issued debt in a span of less than 8 months?

Three explanations given by Bitfinex include:

  • Because Bitfinex is a popular trading venue and lists a number of other cryptocurrencies including Ether (both ETH and ETC), it generated enough cash-flow in the form of transaction fees to carve off some of the losses.9
  • Outside investors, through BnkToTheFuture, exchanged fresh capital in exchange for BFX tokens and equity.
  • Bitfinex had a reduction in their contingent liability reserves.10

Another more recent speculative theory explores the connection between BFX redemptions and a cryptocurrency called “Tether.”

Source: Bitfinexed

What is Tether?

Its exact relationship status is complicated. Depending on who you talk to that is affiliated or was affiliated with Bitfinex, Tether Limited is a partially, or fully, or not-at-all owned subsidiary of Bitfinex.  Tether was announced in July 2014 and was originally called “Realcoin.”11

And one of the continual challenges in trying to follow this saga is that Bitfinex representatives, co-founders, and investors often post key comments in disparate social media channels across reddit, Twitter, Youtube, WeChat, TeamSpeak, Telegram, and others.  For instance, there are several different reddit threads discussing the Tether terms of service involving a co-founder and another one with the general counsel, but this material is not centralized in a way for users to easily follow it all.

Source: FinCEN MSB Registrant Search

Tether Limited is also a regulated money service business and has applied to operate in nearly every US state and territory (see above).

What are tethers?

According to the official terms of service:

Based on the information above, tethers are not money or currency and may not necessarily be redeemable for money.

In practice a “tether” is intended to be a type of “stablecoin.”

What is a stablecoin you ask?

Because cryptocurrencies lack any native ability to rebalance or readjust themselves relative to a pricing index, their continual volatility (as measured by purchasing power) causes headaches and risks to users, including those moving money across borders.  That is to say, in the time span it may take to satisfactorily confirm 1 bitcoin being transferred from your wallet to a merchant overseas, the market price may have moved a percent or two or three.12

What if there was some way to lock-in a set price and not be exposed to these constant swings in price?  Some merchant processors like BitPay and cryptocurrency OTC trading desks do quote and lock-in prices over a period of minutes, but these are not usually targeting the cross-border payment and remittance market.13

Another proposed solution, albeit one that involves similar counterparty risk, is a stablecoin which is a pegged value guaranteed or at least marketed as being pegged on par to a specific exchange rate.  The risk in this case is that the exchange operator might not fulfill his or her end of the deal (e.g., abscond with the funds).

There have been several theoretical approaches to creating a native stablecoin and a few efforts to actually implement them in the wild. Last year JP Koning chronicled the fate of one of them called NuBits.  On reflection: at some point they all fail, their peg ends up failing for one reason or another.14

And tether is no exception.

Tether is not so tethered

Originally 1 unit of tether was supposed to be equivalent to $1 USD.  At the time of this writing it has fallen to $0.93.

Why?

While Bitfinex has made a few public statements about “pausing” wire transfers, there has been no major public statement explaining the precise nature of the drop in tether price.  So a small army of internet users have pieced together a probable theory and it comes back to how Bitfinex operates.

Earlier this month, a lawsuit revealed that Bitfinex had sued WellsFargo – who had refused to process their wires and returned the USD-denominated funds – a bank that is integral to its correspondent banking relationships.  About a week later Bitfinex withdrew its lawsuit but not before people poured through the documents.

In summary we learned that Tether (which is named in the court documents) is a mechanism for enabling cross-border money flows; although we cannot say what the exact purpose was for these money flows is (e.g., pay for college tuition? buying a home? paying for a large order of buttery popcorn?).

Over a span of a few months, tens of millions of USD had been wired through WellsFargo into and out of four different banks in Taiwan which Bitfinex, Tether Limited, and other affiliated subsidiaries had commercial bank accounts with.  At some point this past March or perhaps earlier, someone on the compliance side of WellsFargo noticed this large flow of USD and for one reason or other (e.g., fell within the guidelines of a “suspicious activity report“?), placed a hold on the funds.

In early April Bitfinex’s parent company, as noted above, filed a lawsuit for WellsFargo to release these funds.  But about a week later retracted its suit.

According to a recent post from Mark Karpeles, the CEO who helmed Mt. Gox prior to its infamous bankruptcy, these actions set in motion a type of Streisand Effect: the lawsuit became newsworthy on mainstream media sites and consequently other banks — and compliance personnel at other banks — learned about the cryptocurrency exchange called Bitfinex and might (have) become wary of doing business with them.

We can only speculate as to all of what happened next, but we do know for certain that the bank accounts Bitfinex and Tether used in Taiwan were either fully terminated and/or unable to withdraw USD from late March until at least the time of this writing.

This is not the first time Bitfinex has been “debanked” before.  Phil Potter, the CFO of Bitfinex, recently gave an interview and explained that whenever they have lost accounts in the past, they would do a number of things to get re-banked.

In his words: “We’ve had banking hiccups in the past, we’ve just always been able to route around it or deal with it, open up new accounts, or what have you… shift to a new corporate entity, lots of cat and mouse tricks that everyone in Bitcoin industry has to avail themselves of.”

But this story isn’t about debanking cryptocurrency companies, a topic which could include the likes of Coinbase (which has been debanked multiple times as well).

Because there is currently no USD exit for Bitfinex users, a price discrepancy has noticeably grown between it and its peers.  The spread between exchanges is typically a good indication of how difficult it is to move into and out of fiat in a country as there are boutique firms that spend all day and night trying to arbitrage that difference.

In the case of Bitfinex, the BTC/USD pair now trades at about $50 to $75 higher than other exchanges such as Bitstamp.  This ties back into the challenges Mt. Gox users had in early 2014, as the ability to withdraw into fiat disappeared, the market price of bitcoins on Mt. Gox traded at a dramatically different level than other cryptocurrency exchanges.

That is not to say that what is happening at Bitfinex is the same thing that happened at Mt. Gox.15  However, there have not been many publicly released audits of most major exchanges in the wake of Mt. Gox’s bankruptcy three years ago.16  Noteably, BTC-e publicly stated it would begin publicly publishing accounting statements certified by external auditors.  It and its peers have not.

More questions than answers

About nine months has passed since the largest (as measured by USD) single successful attack took place on a cryptocurrency platform.17 Yet there are still many lingering questions.

For instance, on August 17, 2016, Bitfinex announced that they had hired Ledger Labs who, “is undertaking an analysis of our systems to determine exactly how the security breach occurred and to make our system’s design better going forward.”

According to one post, Michael Perklin was the Head of Security and Investigative Services at Ledger Labs and part of the team leading this investigation.  However in January 2017 a press release announced that Perklin was joining ShapeShift as the Chief Information Security Officer; his profile no longer exists at Ledger Labs. 18

Thus the question, what happened to the promise of a public audit?

Other questions that remain: as noted above, two of the ten biggest initial debt token (BFX) holders were employees.

Why did Bitfinex redeem the BFX tokens after they knew USD withdrawals were shut down?19  How many insiders such as investors and employees owned that last batch of redemptions?  What was the benefit of redeeming that last batch when they knew they were losing international wire capabilities?

It appears after the hack that Bitfinex shifted assets from the Bitinex side of the books to the customer side. Who owned the bulk of both tokens, and what protection are these virtual assets given by not being on the company books?  Or are they still on the books?

In terms of them redeeming after the withdrawals were ended, the original lawsuit documents lay out that as of March 31st, Bitfinex were actively emailing WellsFargo about the shutdown. The final BFX redemption was done a couple of days later and the lawsuit was filed shortly afterwards. It was roughly week later that Bitfinex informed the public about this international wire issue.  And Tether did not formally announce the issues until a few days ago.

Perhaps it is just miscommunication and only a matter of time before these questions are answered.

Going forward

Nearly two months ago, the SEC rejected a rule change for the COIN ETF to be listed on the BATS exchange.  Last week, the SEC said it would review that ruling.

Among other comments, the original 38 page ruling (pdf) gave a number of reasons why the Gemini-listed Winklevoss COIN ETF was being rejected. In the Commission’s words:

First, the exchange must have surveillance-sharing agreements with significant markets for trading the underlying commodity or derivatives on that commodity. And second, those markets must be regulated.

Later the Commission also writes that:

The Commission, however, does not believe that the record supports a finding that the Gemini Exchange is a “regulated market” comparable to a national securities exchange or to the futures exchanges that are associated with the underlying assets of the commodity – trust ETPs approved to date.

While the Gemini exchange is regulated in New York through a Trust charter, the vast majority of cryptocurrency exchanges and trading venues whose funds flow into and out of Gemini, are not.20

It is unclear what will happen to Tether holders, if they will ever be made whole.  Or what will happen to Bitfinex and future bank accounts.  Or if the COIN ETF and other similar cryptocurrency-denominated ETF’s will be green-lit by securities regulators.  Maybe these are all bumps in the road.

What we are a little more certain about:

(1) The Bitfinex hackers are still at large and no public post-mortem has been done to explain how it happened and what will be done to prevent future attacks.

(2) The unilateral self-issuance of the BFX “cryptoequity” was not done in a fully transparent manner as some customers had bigger haircuts than others nor is it clear if the extinguishing of these BFX coins was done through the use of tethers.

(3) That the tether “stablecoin” is not inherently stable and depends on fiat liquidity via the international correspondent banking network which raises the question of how to stabilize tether in the event that Tether Limited loses its bank accounts again.21

(4) That marketplaces such as Bitfinex — despite a general lack of transparency (where is the “About” page with executive bios?) — are still used as part of the weighting mechanisms in ETFs, including at one stage the Winkdex (which has since been deprecated) as well as the current Tradeblock XBX index used in a couple other proposed ETFs.

Solutions

As mentioned at the beginning of the post, the current trend over the past four years is that as Bitcoin intermediaries continue to operate as intermediaries and trusted third parties they increase their chances of regulatory scrutiny and oversight.

This empirical fact versus the original theoretical cypherpunk vision is arguably a type of cognitive dissonance.  As Section 1 of the Nakamoto whitepaper explained:

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as trusted third parties to process electronic payments. While the system works well enough for most transactions, it still suffers from the inherent weaknesses of the trust based model. Completely non-reversible transactions are not really possible, since financial institutions cannot avoid mediating disputes. The cost of mediation increases transaction costs, limiting the minimum practical transaction size and cutting off the possibility for small casual transactions, and there is a broader cost in the loss of ability to make non-reversible payments for non-reversible services.

The Bitfinex hack that occurred in August 2016 created measurable amounts of new transactions costs that ended up being mediated through a wide array of social media channels; non-reversibility does not appear to have helped reduce these costs.  For all of the “backed-by-maths” and “epistemological” talk about routing around trusted third parties, Bitfinex and its peers, still play a key role in providing continuous fiat <–> cryptocurrency liquidity to the marketplace.  And as illustrated with the lawsuit above, by in large, these exchange platforms heavily depend on banking access moreso now than at any other time before.

Last summer I proposed a Kimberley Process for Cryptocurrencies: in which market participants met with various regulatory stakeholders to iron out how to stop predators, remove encumbrances, and create best-practices for financial controls in this nascent space.

As more cryptocurrency platforms attempt to comply with a variety of regulations including the surveillance collection and sharing requirements (e.g., KYC and AML), this will likely increase the demand for the tools found in the growing field of “regtech.”

For example, if Alice can cryptographically prove the chain-of-custody from her customer to her customers customer, then she may be able to comply with the banks surveillance requirements and maintain her bank accounts — and international wiring access — as she grows her remittance platform.

There is a set of technology under development and in early pilots that enables  authentication, provenance tracking, and document management and much of it involves digital signatures, standardized/mutualized KYC processes, and permissioned distributed ledgers.  Documentation management, in this case, goes beyond just hashing and timestamping documents to include automatically updating legal agreements and contracts over their entire lifecycle.

Some of it also involves sophisticated data analytic tools created by startups such as Blockseer and Chainalysis.  Universities such as UCL are automating regulatory processes.  And on the enterprise side, there are companies that have built a shared KYC registry and other identity-related tools for highly regulated financial institutions to comply with a battery of reporting requirements.22

Whether these will be adopted by the cryptocurrency community is another matter, but these tools will soon exist in full production mode and could help provide better visibility, auditability, and transparency for investors, users, entrepreneurs, law enforcement, compliance teams, and regulators around the world.

If you’re interested in learning more about these mechanisms, feel free to reach out or leave a comment below.

Endnotes

  1. During an interview on April 3, 2017, Phil Potter mentioned that Bitfinex has 25 shareholders and BnkToTheFuture SPV.  The same interview someone says that there are 450 shareholders of their equity but it is unclear if that is through the BFX token. []
  2. Approximately 1,061 of these coins were moved in March 2017. []
  3. Bitfinex, like all other cryptocurrency exchanges, has experienced significant price crashes in 2014, 2015, and again in 2016 — often as the consequence of a hack. []
  4. There were exceptions. Some users reported smaller haircuts as they were customers of SynapsePay.  Another user claims to have retained a lawyer and he did not have any haircut.  In an interview on April 3, 2017, Phil Potter mentions that they had received some “demand” letters from customers but Bitfinex was able to “quell” those.  See also: You’ve Been ButtFinessed from BitMEX []
  5. BFX was not initially tradeable. []
  6. One staff member is publicly listed, Alistair Milne, but no information is given as to how much BFX, RRT, and company equity he or other staff of BFX Trust may own. []
  7. You’ve Been ButtFinessed from BitMEX []
  8. Group correspondence, August 3, 2016 []
  9. In an interview on April 3, 2017 Phil Potter mentions that the past month they generated $3.5 million (net) from trading volumes and that there are 175 million shares outstanding. []
  10. In an interview on April 3, 2017, Phil Potter mentions that they used the “vast majority” of these reserves. []
  11. The CTO of Realcoin, Craig Sellers, is also the current CTO of Bitfinex.  Sellers is currently a team member of the Omni Foundation.  The general counsel of Tether and Bitfinex are the same individual, Stuart Hoegner.  Brock Pierce is the co-founder of Realcoin. The underlying technology for Realcoin/Tether is Mastercoin, a platform managed by the Mastercoin Foundation (now called the Omni Foundation).  Pierce was one of the founding members of the Mastercoin Foundation before resigning in July 2014. []
  12. Depending on the transaction fee sent to a mining pool, the suggested “safe” confirmation intervals are 3-6 blocks which on average takes 30-60 minutes to build on and propagate across the network. []
  13. There are some remittance companies that utilize Bitcoin as a payment rail; they often try to lock-in a specific value amount during a time-boxed time period but it varies depending on local conditions and business models. []
  14. BitUSD is the sole survivor right now, although it has relatively very little volume. []
  15. The missing Mt. Gox bitcoins from WizSec []
  16. During an April 3, 2017 interview Phil Potter mentions that in order to get an auditor to look at their books, it would be easier to do if they first got rid of the BFX token. []
  17. The DAO was a DAO, not an exchange. []
  18. There are several other interconnected relationships: according to a prior funding announcement, Bitfinex is an investor in ShapeShift.  Similarly, at least one principal in Bitcoin Capital, which has invested in ShapeShift, is also an executive at BnkToTheFuture, which led the recapitalization of Bitfinex following its August 2016 hack. []
  19. During an interview on April 12, 2017, Phil Potter mentioned that when trying to acquire a new banking partnership, the BFX debt tokens were a problem for them, so Bitfinex redeemed them. []
  20. A few others have obtained a BitLicense, but on the whole, most cryptocurrency exchange platforms do not attempt to comply with the strict requirements found in either the BitLicense or Trust charter in New York, let alone at a national level. []
  21. Based on the current terms of of service, according to the Tether Limited general counsel, tethers may not be readable for a variety of reasons. []
  22. This is not to say these new tools are a panacea or silver bullet for detecting all types of money laundering or preventing fraud or stopping identity fraud.  A standardized KYC framework and digital signature-based toolset can help mitigate some of these issues. []

Intranets and the Internet

It is early into 2017 and at fintech events we can still hear a variety of analogies used to describe what blockchains and distributed ledger technology (DLT) are and are not.

One of the more helpful ones is from Peter Shiau (formerly of Blockstack.io) who used an automobile analogy involving the Model T to describe magic internet chains:1

The Ford Motor Company is well known for its production engineering innovation that gave us the Model T. To this day, the Ford Model T is one of the best selling automobiles of all-time thanks to the sheer number produced and affordability for American middle class families.  And while it was remarkable that Ford was able to sell so many cars, it is well understood Ford’s true innovation was not the Model T but in fact the modern assembly line.

It was this breakthrough that enabled Ford to build a new car every 93 minutes, far more quickly than any of its competitors. Not unlike the Model T, cryptocurrencies like Bitcaoin, are every bit the product of a similar innovative process breakthrough that today we call a “blockchain.”

Carrying the analogy a little further, what is even more powerful about this modern equivalent of the assembly line is that it is not just useful for building cars but also vans and trucks and boats and planes. In just the same way, a blockchain is not just useful for creating a cryptocurrency, but can be applied to a many different processes that multiple parties might rely on to reach agreement on the truth about something.

Less helpful, but all the same plentiful, are the many red herrings and false equivalences that conferences attendees are subjected to.

Arguably, the least accurate analogy is that public blockchains can be understood as being “like the internet” while private blockchains “are like intranets”.

Why is this one so wrong and worthy of comment?

Because it is exactly backwards.

For example, if you want to use a cryptocurrency like Bitcoin, you have to use bitcoin; and if you want to use Ethereum, you have to use ether.  They are not interoperable.  You have to use their proprietary token in order play in their walled garden.

As described in detail below, the internet is actually a bunch of private networks of internet service providers (ISPs) that have legal agreements with the end users, cooperate through “peering” agreements with other ISPs, and communicate via a common, standardized routing protocols such as BGP which publishes autonomous system numbers (ASNs).

In this respect, what is commonly called “the Internet” is closer to interoperable private, distributed ledger networks sharing a common or interoperable communication technology than anarchic, public cryptocurrency blockchain networks, which behave more like independent isolated networks.

Or in short: by design, cryptocurrencies are intranet islands whereas permissioned distributed ledgers — with interoperability hooks (“peering” agreements) — are more like the internet.2

Sidebar

Let’s do a short hands-on activity to see why the original analogy used at fintech conferences is a false equivalence with implications for how we need to frame the conversation and manage expectations in order to integrate DLT in to our reference and business architecture.

If you are using a Windows-based PC, open up a Command window.  If you’re using a Mac or Android device, go to a store and buy a Windows-based PC.

Once you have your Command window open, type in a very simple command:

tracert: www.google.com

Wait a few seconds and count the hops as your signal traces the route through various network switches and servers until you finally land on your destination.  From my abode in the SF area, it took 10 hops to land at Google and 7 hops to land at Microsoft.

If you did this exercise in most developed countries, then the switches and servers your signal zigged and zagged through were largely comprised of privately owned and operated networks called ISPs.  That is to say, what is generally described as “the internet” is just a bunch of privately run networks connected to one another via several types of agreements such as: transit agreements, peering agreements, and interconnect agreements.

By far the most widely used agreement is still done via the proverbial “handshake.”  In fact, according to a 2012 OECD report, 99.5% of internet traffic agreements are done via handshakes.  There is also depeering, but more on that later.

What do all these agreements look like in practice?

According to the 2016 Survey of Internet Carrier Interconnection Agreements (pdf):

The Internet, or network of networks, consists of 7,557 Internet Service Provider (ISP) or carrier networks, which are interconnected in a sparse mesh. Each of the interconnecting links takes one of two forms: transit or peering. Transit agreements are commercial contracts in which, typically, a customer pays a service provider for access to the Internet; these agreements are most prevalent at the edges of the Internet, where the topology consists primarily of singly connected “leaf” networks that are principally concerned with the delivery of their own traffic. Transit agreements have been widely studied and are not the subject of this report. Peering agreements – the value-creation engine of the Internet – are the carrier interconnection agreements that allow carriers to exchange traffic bound for one another’s customers; they are most common in the core of the Internet, where the topology consists of densely interconnected networks that are principally concerned with the carriage of traffic on behalf of the networks which are their customers.

Colloquially it is a lot easier to say “I want to use the Internet” instead of saying “I want to connect with 7,557 ISPs interconnected in a sparse mesh.”

Back to topology, each ISP is able to pass along traffic that originated from other networks, even if these external networks and the traffic therein originate from foreign countries, because the physical systems can speak to one another via standardized transport protocols like TCP and UDP and route via BGP.3 4

Thus there is no such thing as a physical “internet rail,” only an amalgam of privately and publicly owned networks stitched together.

And each year there is inevitably tension between one more ISP and consequently depeering takes place.  A research paper published in 2014 identified 26 such depeering examples and noted that while depeering exists:

Agreements are very quite affair and are not documented for, they are mostly handshake agreements where parties mutually agree  without  any  on  record  documentation.  This  argument is supported by the fact that 141,512 Internet Interconnection Agreements out of 142,210 Internet Agreements examined till March 2011 were Handshake Agreements.

This is the main reason you do not hear of disputes and disagreements between ISPs, this also dovetails into the “net neutrality” topic which is beyond the scope of this post.

Intranets

Just as the internet is an imperfect analogy for blockchains and DLT in general, so is its offspring the “intranet” is a poor analogy for a permissioned blockchains.  As noted above, the internet is a cluster of several thousand ISPs that typically build business models off of a variety of service plans in both the consumer and corporate environments.

Some of these server plans target corporate environments and also includes building and maintaining “private” intranets.

What is an intranet?

An intranet is a private network accessible only to an organization’s staff. Generally a wide range of information and services from the organization’s internal IT systems are available that would not be available to the public from the Internet. (Source)

And while more and more companies migrate some portion of their operations and work flows onto public and private “clouds,” intranets are expected to be maintained given their continued utility.  From an infrastructure standpoint, notwithstanding that an intranet could be maintained one or more more servers through Software Defined Networks (SDNs), it is still a subset of a mash up of ISPs and mesh networks.

What does this have to do with magic internet chains?

A private blockchain or private distributed ledger, is a nebulous term which typically means that the validation process for transactions is maintained by known, identified participants, not pseudonymous participants.  Depending on the architecture, it can also achieve the level of privacy that is associated with an intranet while staying clear of the hazards associated with preserving true pseudonymity.

Why is the “intranet” analogy so misleading and harmful?

For multiple reasons.

For starters, it is not really valid to make a sweeping generalization of all identity-based blockchains and distributed ledgers, as each is architected around specific use-cases and requirements.  For instance, some vendors insist on installing on-premise nodes behind the firewall of an enterprise.  Some vendors setup and run a centralized blockchain, from one or two nodes, for an enterprise. Some others tap into existing operational practices such as utilizing VPN connections.  And others spin up nodes on public clouds in data centers which are then operated by the enterprise.

There are likely more configurations, but as noted above: from a topological perspective in some cases these private blockchains and distributed ledgers operate within an intranet, or on an ISP, or even as an extranet.

Fundamentally the biggest difference between using an ISP (“the internet”) and using an intranet is about accessibility, who has access rights.  And this is where identity comes into play: most ISPs require the account holder to provide identification materials for what is effectively KYC compliance.

Thus while you may be visit a coffee shop like Starbucks who provides “free” access, Starbucks itself is an identified account holder with an ISP and the ISP could remove Starbucks access for violating its terms of service.  Similarly, most coffee shops, airports, schools, etc. require users to accept a terms of service acknowledging that their access can be revoked for violating it.

Source: FireFox 51.0.1

In short, both the internet and intranet are in effect part of identity and permission-based networks.  There is no such thing as an identity-less internet, only tools to mask the users identity (e.g., Tor, Peerblock, Whisper).  In the same way that, “private” intranets are a fallacy.

Anarchic chains, which were designed to operate cryptocurrencies like Bitcoin, attempt to create an identity-less network on top of an identifiable network, hence the reason people involved in illicit activities can sometimes be caught.

Identity

Interestingly, where the internet analogy does hold up is in how public, anarchic blockchains are no less challenged by the effort and complexity of truly masking identity. I mentioned this in a footnote in the previous post, but it deserves being highlighted once more. Anarchic blockchains inspired by cryptocurrencies such as Bitcoin, used blocks because Satoshi wanted identity-free consensus (e.g., pseudonymity).  That implies miners can come and go at will, without any kind of registration, which eliminated the choice of using any existing consensus algorithm.

As a result, Satoshi’s solution was proof-of-work (PoW).  However, PoW is susceptible to collisions (e.g., orphan blocks).  When a collision occurs you have to wait longer to obtain the same level of work done on a transaction. Thus you want to minimize them, which resulted in finding a PoW on average every ten minutes.  This means that in a network with one minute propagation delays, not unlikely in a very large network (BGP sees such propagation times) then you waste ~10% of total work done, which was considered an acceptable loss rate in 2008 when Satoshi was designing and tweaking the parameters of the system.

Distributed ledgers such as Corda, use a different design and exist precisely as an identified network, where members cannot just come and go at will, and do have to register. With Corda, the team also assumes relatively low propagation times between members of a notary cluster.  One of the key differences between mere PoW (i.e. hashcash) and a blockchain is that in the latter, each block references the prior – thus PoWs aggregate.  It can be tough to do that unless all transactions are visible to everyone and there is a single agreed upon blockchain but if you do not, you will not get enough PoW to yield any meaningful security

When fintech panels talk about the notion of “open” or “closed” networks, this is really a red herring because what is being ignored is how identity and permission work and are maintained on different types of networks.

From the standpoint of miner validation, in practice cryptocurrencies like Bitcoin are effectively permission-based: the only entity that validates a transaction is effectively 1 in 20 semi-static pools each day.  And the miners/hashers within those pools almost never individually generate the appropriate/winning hash towards finding a block.  Each miner generates trillions of invalid hashes each week and are rewarded with shares of a reward as the reward comes in.

And if you want to change something or possibly insert a transaction, you need hashrate to do so.  Not just anyone running a validating node can effect change.

More to the point, nearly all of these pools and many of the largest miners have self-doxxed themselves.  They have linked their real world identities to a pseudonymous network whose goals were to mask identities via a purposefully expensive PoW process.  As a result, their energy and telecommunication access can be revoked by ISPs, energy companies, and governments.  Therefore calling anarchic or public blockchains “open” is more of a marketing gimmick than anything else at this stage.

Clarity

AOL and CompuServe were early, successful ISPs; not intranets.5  Conflating these terms makes it confusing for users to understand the core technology and identify the best fit use-cases. 6

Alongside the evolution of both the “cloud” and ISP markets, it will be very interesting to watch the evolution of “sovereign” networks and how they seek to address the issue of identity.

Why?

Because of national and supranational laws like General Data Protection Regulation (GDPR) that impacts all network users irrespective of origin.

For instance, Marley Gray (Principal Program Manager Blockchain at Microsoft) recently explained in an interview (above) how in order to comply with various data regulations (data custody and sovereignty), Microsoft acquired fiber links that do not interact with the “public” internet.  That is to say, by moving data through physically segregated “dark” networks, Microsoft can comply with requirements of its regulated customers.

And that is what is missing from most fintech panels on this topic: at the end of the day who is the customer and end-user.

If it is cypherpunks and anarchists, then anarchic chains are built around their need for pseudonymous interactions.  If it is regulated enterprises, then identity-based systems are built around the need for SLAs and so forth.  The two worlds will continue to co-exist, but each network has different utility and comparative advantage.

Acknowledgements: I would like to thank Mike Hearn, Stephen Lane-Smith, Antony Lewis, Marcus Lim, Grant McDaniel, Emily Rutland, Kevin Rutter, and Peter Shiau for their constructive feedback. This was originally sent to R3 members on March 31, 2017.

Endnotes

  1. His analogy is reused with permission. []
  2. From a network perspective, some of the integration and interop challenges facing DLT platforms could be similar to the harried IPv4 vs IPv6 coexistence over the past decade.  Who runs the validating nodes, the bridges — the links between the chains and ledgers — still has to be sorted out.  One reviewer noted that: If you equate IPv4 (TCP/UDP/ICMP) to DLTv4 where BGPv4 enables IPv4 networks to interact, we need an equivalent for BPGv4, say DLTGPv4 (DLT Gateway Protocol) for DLTv4 fabrics (ISPv4s) to interact and the same thing for IPv6 and DLTv6 where DLTv6 is a different DLT technology than DLTv4.  So the basic challenge here is solving integration of like DLT networks. []
  3. Venture capitalists such as Marc Andreessen and Fred Wilson have stated at times that they would have supported or invested in something akin to TCPIPcoins or BGPcoins.  That is to say, in retrospect the missing element from the “internet stack” is a cryptocurrency.  This is arguably flawed on many levels and if attempted, would likely have stagnated the growth and adoption of the internet, see page 18-19. []
  4. One reviewer noted that: Because of the IPv4 address restrictions (address space has been allocated – relying on auctions etc for organizations to acquire IPv4 addresses), some sites now only have an IPv6 address.  Most devices today are dual stack (support IPv4 and IPv6), but many ISPs and older devices still only support IPv4 creating issues for individuals to access IPv6 resulting in the development of various approaches for IPv4 to IPv6 (e.g. GW46 – my generic label).  I think, the question with DLTGW46 is whether to go dual stack or facilitate transformation between v4 and v6. []
  5. A reviewer who previously worked at AOL in the mid ’90s noted that: “In its early days, AOL was effectively a walled garden.  For example, it had its own proprietary markup language called RAINMAN for displaying content. And access to the internet was carefully managed at first because AOL wanted its members to stay inside where content was curated and cultural norms relatively safer — and also desirable for obvious business reasons.” []
  6. One reviewer commented: “In my opinion, the “internet” cannot be created by a single party. It is an emergent entity that is the product of multiple ISPs that agree to peer – thus the World Wide Web. DLT-based and blockchain-based services first need to develop into their own robust ecosystems to serve their own members. Eventually, these ecosystems will want to connect because the value of assets and processes in multiple ecosystems will increase when combined.” []

A brief history of R3 – the Distributed Ledger Group

What’s in a name?

I was at an event last week and someone pulled me aside asked: why do you guys at R3 typically stress the phrase “distributed ledger” instead of “blockchain”?

The short answer is that they are not the same thing.

In simplest terms: a blockchain involves stringing together a chain of containers called blocks, which bundle transactions together like batch processing, whereas a distributed ledger, like Corda, does not and instead validates each transaction (or agreement) individually.1

The longer answer involves telling the backstory of what the R3 consortium is in order to highlight the emphasis behind the term “distributed ledger.”

Inspired by IMF report, page 8

Genesis

R3 (formerly R3 CEV) started out as a family office in 2014.2 The “3” stood for the number of co-founders: David Rutter (CEO), Todd McDonald (COO), and Jesse Edwards (CFO). The “R” is the first initial of the CEO’s last name.  Very creative!

During the first year of its existence, R3 primarily looked at early stage startups in the fintech space.  The “CEV” was an acronym: “crypto” and “consulting,” “exchanges,” and “ventures.”

Throughout 2014, the family office kept hearing about how cryptocurrency companies were going to obliterate financial institutions and enterprises.  So to better understand the ecosystem and drill into the enthusiasm around cryptocurrencies, R3 organized and held a series of round tables.

The first was held on September 23, 2014 in NYC and included talks from representatives of: DRW, Align Commerce, Perkins Coie, Boost VC, and Fintech Collective.  Also in attendance were representatives from eight different banks.

The second round table was held on December 11, 2014 in Palo Alto and included talks from representatives of: Stanford, Andreessen Horowitz, Xapo, BitGo, Chain, Ripple, Mirror, and myself.  Also in attendance were representatives from 11 different banks.

By the close of 2014, several people (including myself) had joined R3 as advisors and the family office had invested in several fintech startups including Align Commerce.

During the first quarter of 2015, David and his co-founders launched two new initiatives.  The first was LiquidityEdge, a broker-dealer based in NYC that built a new electronic trading platform for US Treasurys.3  It is doing well and is wholly unrelated to R3’s current DLT efforts.

The second initiative was the incorporation of the Distributed Ledger Group (DLG) in Delaware in February 2015.  By February, the family office had also stopped actively investing in companies in order to focus on both LiquidityEdge and DLG.

In April 2015 I published Consensus-as-a-Service (CaaS) which, at the time, was the first paper articulating the differences between what became known as “permissioned” and “permissionless” blockchains and distributed ledgers.  This paper was then circulated to various banks that the small R3 team regularly interacted with.

The following month, on May 13, 2015, a third and final round table was held in NYC and included talks from representatives of Hyperledger (the company), Blockstack, Align Commerce and the Bank of England.  Also in attendance were representatives from 15 banks as well as a market infrastructure operator and a fintech VC firm.  In addition to the CaaS paper, the specific use-case that was discussed involved FX settlement.4

The transition from a working group to a commercial entity was formalized in August and the Distributed Ledger Group officially launched on September 1, 2015 although the first press release was not until September 15.  In fact, you can still find announcements in which the DLG name was used in place of R3.

By the end of November, phase one of the DLG consortium – now known as the R3 consortium – had come to a conclusion with the admission of 42 members.  Because of how the organization was originally structured, no further admissions were made until the following spring (SBI was the first new member in Phase 2).

So what does this all have to do with “distributed ledgers” versus “blockchains”?

Well, for starters, we could have easily (re)named or (re)branded ourselves the “Blockchain Group” or “Blockchain Banking Group” as there are any number of ways to plug that seemingly undefinable noun into articles of incorporation.  In fact, DistributedLedgerGroup.com still exists and points to R3members.com.5 So why was R3 chosen?  Because it is a bit of a mouthful to say DistributedLedgerGroup!

Corda’s genesis

Upon launch, the architecture workstream lead by our team in London (which by headcount is now our largest office), formally recognized that the current hype that was trending around “blockchains” had distinct limitations.  Blockchains as a whole were designed around a specific use-case – originally enabling censorship-resistant cryptocurrencies. This particular use-case is not something that regulated financial institutions, such as our members, had a need for.

While I could spend pages retracing all of the thought processes and discussions surrounding the genesis of what became Corda, Richard Brown’s view (as early as September 2015) was that there were certain elements of blockchains that could be repurposed in other environments, and that simply forking or cloning an existing blockchain – designed around the needs of cryptocurrencies – was a non-starter.  At the end of that same month, I briefly wrote about this view in a post laying out the Global Fabric for Finance (G3F), an acronym that unfortunately never took off. In the post I specifically stated that, “[i]t also bears mentioning that the root layer may or may not even be a chain of hashed blocks.”

In October 2015, both James Carlyle and Mike Hearn formally joined the development team as Chief Engineer and lead platform engineer respectively.  During the fall and winter, in collaboration with our members, the architecture team was consumed in the arduous process of funneling and filtering the functional and non-functional requirements that regulated financial institutions had in relation to back office, post-trade processes.

By the end of Q1 2016, the architecture team gestated a brand new system called Corda.  On April 5, 2016, Richard published the first public explanation of what Corda was, what the design goals were and specifically pointed out that Corda was not a blockchain or a cryptocurrency.  Instead, Corda was a distributed ledger.

Prior to that date, I had personally spent dozens of hours clarifying what the difference between a blockchain and a distributed ledger was to reporters and at events, though that is a different story.  Unfortunately even after all these explanations, and even after Richard’s post, the Corda platform was still inappropriately lumped into the “blockchain” universe.

Following the open sourcing of Corda in November 2016, we formally cut the “CEV” initials entirely from the company name and are now known simply as R3.  Next year we plan to make things even shorter by removing either the R or 3, so watch out domain squatters!

Today

As of February 2017, the R3 consortium is formally split into two groups that share knowledge and resources: one group is focused on building out the Corda platform and the other, the Lab and Research Center, is focused on providing a suite of services to our consortium members.  I work on the services side, and as described in a previous post, my small team spends part of its time filtering vendors and projects for the Lab team which manages several dozen projects at any given time for our consortium members.

The Lab team has completed more than 20 projects in addition to 40 or so ongoing projects.  Altogether these involved (and in some cases still involve) working with a diverse set of platforms including Ethereum, Ripple, Fabric, Axoni, Symbiont and several others including Corda.  Since we are member driven and our members are interested in working and collaborating on a variety of different use-cases, it is likely that the services side will continue to experiment with a range of different technologies in the future.

Thus, while it is accurate to call R3 a technology company focused on building a distributed ledger platform and collaborating with enterprises to solve problems with technology, it is not accurate to pigeonhole it as a “blockchain company.”  Though that probably won’t stop the conflation from continuing to take place.

If you are interested in understanding the nuances between what a blockchain, a database, and a distributed ledger are, I highly recommend reading the multitude of posts penned by my colleagues Antony Lewis and Richard Brown.

  1. Blockchains inspired by cryptocurrencies such as Bitcoin used blocks because Satoshi wanted identity-free consensus (e.g., pseudonymity).  That implies miners can come and go at will, without any kind of registration, which eliminated the choice of using any existing consensus algorithm.

    As a result, Satoshi’s solution was proof-of-work (PoW).  However, PoW is susceptible to collisions (e.g., orphan blocks).  When a collision occurs you have to wait longer to obtain the same level of work done on a transaction. Thus you want to minimize them, which resulted in finding a PoW on average every ten minutes.  This means that in a network with one minute propagation delays, not unlikely in a very large network (BGP sees such propagation times) then you waste ~10% of total work done, which was considered an acceptable loss rate in 2008 when Satoshi was designing and tweaking the parameters of the system.

    Distributed ledgers such as Corda, use a different design because it is an identified network, where members cannot just come and go at will, and do have to register. With Corda, the team also assumes relatively low propagation times between members of a notary cluster.  One of the key differences between mere PoW (i.e. hashcash) and a blockchain is that in the latter, each block references the prior – thus PoWs aggregate.  It can be tough to do that unless all transactions are visible to everyone and there is a single agreed upon blockchain but if you do not, you will not get enough PoW to yield any meaningful security. []

  2. The R3CEV.com domain was created on August 13, 2014. []
  3. It may look like an odd spelling, but Treasurys is the correct spelling. []
  4. At the time, I was an advisor to Hyperledger which was acquired by Digital Asset the following month. []
  5. The DistributedLedgerGroup.com domain was created on December 23, 2014 and R3members.com was created on March 15, 2016. []

Layer 2 and settlement

Nary a week goes by without having to hear a startup claim their service will have the ability to “settle” a cryptocurrency or virtual asset or something “smart,” on to Layer 2.

In this instance, Layer 2 refers to a separate network that plugs into a cryptocurrency via off-chain channels.1

This often comes up in conjunction with conversations surrounding the Bitcoin block size debate: specifically around (hypothetically) scaling to enable Visa-like transaction throughput vis-a-vis projects like the Thunder and Lightning network proposals which are often characterized as Layer 2 solutions.2

As Wolfgang Pauli might say, this is not even wrong.

Why?  For starters, the comparisons are not the same.


Apples-to-oranges

Visa is a credit clearing and authentication network, not a settlement network; in contrast no cryptocurrency has credit lines baked-in.  In addition – as I penned a year ago – in practice “settlement” is a legal concept and typically requires ties into the existing legal infrastructure such as courts and legally approved custodians. 3

Two simplified examples:

  1.  If Bob wanted to settle cash electronically and he lived in just about any country on the globe, the only venue that this electronic cash ultimately settles in right now is a central bank usually via its real-time gross settlement (RTGS) network
  2.  If Bob owned the title to a (dematerialized) security and he is trying to transfer ownership of it to someone else, the security ultimately settles in a central securities depository (CSD) such as the DTCC or Euroclear

What does this have to do with the world of blockchains and DLT?

As of this writing, no central bank-backed digital currency (CBDC) exists.4 As a consequence, there is no real digital cash settlement taking place on any ledger outside of a banks’ own ledger (yet).

One of the key goals for DLT platforms is to eventually get “cash on-ledger” issued by one or more central bank.  For instance, at R3 we are currently working on a couple of CBDC-related projects including with the Bank of Canada and Monetary Authority of Singapore.  And other organizations are engaged in similar efforts.

Why?

In short, one of the potential advantages of using a CBDC issued onto a distributed ledger is the enabling of network participants (such as financial institutions) to settle dematerialized (digitized) asset transfers without relying on outside reconciliation processes. Delivery versus Payment (DvP), the simultaneous exchange of an asset and its payment, could actually take place on-chain.5

However, today if participants on a distributed ledger wanted to settle a trade in cash on a distributed ledger, they could not. They would still need to settle via external processes and mechanisms, which according to an estimate from Autonomous research, collectively costs the industry $54 billion a year.  As a result, the industry as a whole is attempting to reduce and – if possible – remove frictions such as these post-trade processes.6

And according to a recent paper from the Bank of England as well as a new paper from the Federal Reserve, CBDCs are one invention that potentially could reduce some of these associated frictions and processes.

How it theoretically works

So how does that tie back in to a hypothetical Layer 2 or 3, 4, 5, connected to a cryptocurrency network?

Assuming one or more of the Lightning implementations is built, deployed, and goes “into production,” the only object that is being tracked and confirmed is a cryptocurrency.7

Cryptocurrencies, as I have written before, are anarchic: purposefully divorced from legal infrastructure and regulatory compliance.

As a result, it cannot be said that “Layer 2” will act as a settlement layer to anything beyond the cryptocurrency itself, especially since the network it attaches to can at most by design only guarantee probabilistic finality.8

In fact, the most accurate description of these add-on networks is that each Lightning implementation requires building completely separate networks run and secured by different third parties: pseudonymous node operators acting as payment processors.  What are the service-level agreements applied to these operators?  What happens if it is no longer profitable or sustainable to operate these nodes?  Who are you going to call when something – like routing – doesn’t work as it is supposed to?

And like most cryptocurrencies, Lightning (the generic Lightning) is developed as a public good, which – as a recent paper explored – may have hurdles from a fiduciary, governance, and accountability perspective.

Assuming the dev teams working on the various implementations solve for decentralized routing and other challenges, at most Lightning will be a clearing network for a cryptocurrency, not electronic cash or securities.  Therefore proponents of existing Layer 2 network proposals might want to drop the “settlement” marketing language because settlement probably isn’t actually occurring.  Trade confirmations are.

But what about colored coins?  Can’t central banks just use the Bitcoin network itself and “peg” bitcoins directly to cash or set-up a Bitcoin-like system that is backed by the central bank itself?

These are tangential to “Layer 2” discussion but sure, they could in theory.  In fact, the latter is an idea explored by JP Koning in a recent paper on “Fedcoin.”  In practice this is probably not ideal for a variety of reasons including: privacy, confidentiality, recourse, security, scalability, public goods problems, and the fact that pseudonymous miners operating outside the purview of national regulatory bodies would be in charge of monetary policy (among many other regulatory compliance issues).

Why not just use an existing database to handle these regulated financial instruments then?  This is a topic that has and will fill academic journals in the years to come (e.g., RSCoin).  But for starters I recommend looking at a previous post from Richard Brown and two newer posts from Antony Lewis.

Conclusion

There are real, non-aesthetic reasons why aviation designers and manufacturers stopped building planes with more than two or three wings, namely aerodynamics.  Creative ideas like Lightning may ultimately be built and deployed by cryptocurrency-related companies and organizations, but it is unclear how or why any regulated enterprise would use the existing proposals since these networks are not being architected around requirements surrounding settlement processes.

Perhaps that will change in time, but laws covering custody, settlement, and payment processing will continue to exist and won’t disappear because of anarchic “Layer 2” proposals.  Maybe it is possible to borrow and clone some of the concepts, reusing them for alternative environments, just like some of the “blockchain”-inspired platforms have reused some of the ideas underlying cryptocurrencies to design new financial market infrastructure.  Either way, both worlds will continue to co-exist and potentially learn from one another.

Endnotes

  1. From a word choice, it is arguably a misnomer to call Lightning a “layer” at all because relatively little is being built on top of Bitcoin itself.  These new networks are not powered by mining validators whereas colored coin schemes are. []
  2. While he doesn’t delve too much into any of these specific projects, Vitalik Buterin’s new paper on interoperability does briefly mention a couple of them.  Also note that the Teechan proposal is different than Lightning in that the former scales via trusted hardware, specifically Intel’s SGX tech, and sidesteps some of the hurdles facing current Lightning proposals. []
  3. This topic is a ripe area for legal research as words need to be precisely defined and used.  For instance, if bitcoins do not currently “settle” (in the sense that miners and users do not tie on-chain identities into court recognized identity, contract, and ledger systems thereby enabling traditional ownership transfer), does this impact government auctions of seized cryptocurrencies?  What was the specific settlement process involved in the auction process and are encumbrances also transferred?  It appears in practice, that in these auctions bitcoins do transfer in the sense that new entities take control of the private key(s), is this settlement? []
  4. An argument can be made that there are at least 3 publicly known exceptions to this, though it depends on the definition of an in-production CBDC.  This includes vendors working with: Senegal, Tunisia, and Barbados. []
  5. In blockchain parlance this is called an “atomic transfer.” []
  6. It is not just reconciliation processes, it is the actual DvP itself (plus the subsequent “did you get it yet” reconciliation processes). []
  7. As an aside, what are the requirements for “being in production?”  In the enterprise world, there is a difference between being in a sandbox and being in production.  Which blockchain(s) have been vetted for and secured against real production level situations and fulfilled functional requirements such as scaling and preserving confidentiality? []
  8. See Settlement Risks Involving Public Blockchains []

DLT as FMI in Korea

Yesterday I gave a keynote talk at “The Future of Financial Payment Services Driven by Technology Innovation” organized and hosted by the Korea Finance Telecommunications & Clearings Institute (KFTC).

It was their 30th Anniversary Seminar and was held in Seoul, South Korea.

Below are the slides I presented on “Distributed Ledger Technology as Financial Market Infrastructure”:

Non-technical Corda whitepaper released

Earlier today our architecture team released its first public whitepaper on Corda.

The WSJ covered it here and here.

Consequently I am somewhat puzzled by news stories that still refer to a “blockchain” as “Bitcoin technology.”  After all, we don’t refer to combustion engines in cars as “horse-powered technology” or an airplane turbine engine as “bird-powered technology.”

A more accurate phrase would be to say something like, “a blockchain is a type of data structure popularized by cryptocurrencies such as Bitcoin and Ethereum.”  After all, chronologically someone prior to Satoshi could have assembled the pieces of a blockchain into a blockchain and used it for different purposes than censorship-resistant e-cash.  In fact, both Guardtime and Z/Yen Group claim to have done so pre-2008, and neither involves ‘proof-of-work.’

Fun fact: Corda is not a blockchain, but is instead a distributed ledger.

Code is not law

This past Sunday I gave a new presentation at the Palo Alto Ethereum meetup — it was largely based on my previous two blog posts.

Note: all of the references and citations can be found within the notes section of the slides.  Also, I first used the term “anarchic chain” back in April 2015 based on a series of conversations with Robert Sams.  See p. 27.

Special thanks to Ian Grigg for his constructive feedback.

Slides:

Video:

Archy and Anarchic Chains

[Note: the views expressed below are solely my own and do not necessarily represent the views of my employer or any organization I advise.]

Yesterday, at block height 1920000, many elements of the Ethereum community coordinated a purposeful hardfork.

After several weeks of debate and just over a couple weeks of preparation, key stakeholders in the community — namely miners and exchanges — attempted to create a smooth transition from Ethereum Prime (sometimes referred to as Ethereum Classic) into Ethereum Core (Ethereum One).1

Users of exchange services such as Kraken were notified of the fork and are now being allowed to withdraw ETH to Ethereum Core, which many miners and exchanges now claim as “mainnet.”

Was the hardfork a success?  To answer that question depends on which parallel universe (or chain) you resided on.  And it also depends on the list of criteria for what “failure” or “success” are measured by.

For instance, if you ended up with ETH on the “unsupported” fork (Classic), who was financially responsible for this and who could attempt to file a lawsuit to rectify any loses?

Maybe no one.  Why?  Because public blockchains intentionally lack terms of service, EULA, and service level agreements, therefore it is difficult to say who is legally liable for mistakes or loses.

For instance, if financial instruments from a bank were sent to miners during the transition phase and are no longer accessible because the instruments were sent to the “unsupported” chain, who is to blame and bears responsibility?  Which party is supposed to provide compensation and restitution?

De facto versus de jure

This whole hardfork exercise visualizes a number of issues that this blog has articulated in the past.

Perhaps the most controversial is that simply: there is no such thing as a de jure mainnet whilst using a public blockchain.  The best a cryptocurrency community could inherently achieve is a de facto mainnet.2

What does that mean?

Public blockchains such as Bitcoin and Ethereum, intentionally lack any ties into the traditional legal infrastructure.  The original designers made it a point to try and make public blockchains extraterritorial and sovereign to the physical world in which we live in.  In other words, public blockchains are anarchic.

As a consequence, lacking ties into legal infrastructure, there is no recognized external authority that can legitimately claim which fork of Bitcoin or Ethereum is the ‘One True Chain.’  Rather it is through the proof-of-work process (or perhaps proof-of-stake in the future) that attempts to attest to which chain is supposed to be the de facto chain.3

However, even in this world there is a debate as to whether or not it is the longest chain or the chain with the most work done, that is determines which chain is the legitimate chain and which are the apostates.4 5

And this is where, fundamentally, it becomes difficult for regulated institutions to use a public blockchain for transferring regulated data and regulated financial instruments.

For instance, in March 2013 an accidental, unintended fork occurred on what many participants claimed as the Bitcoin mainnet.

To rectify this situation, over roughly four hours, operators of large mining pools, developers, and several exchanges met on IRC to coordinate and choose which chain they would support and which would be discarded.  This was effectively, at the time, the largest fork-by-social-consensus attempted (e.g., proof-of-nym-on-IRC).

There were winners and losers.  The losers included: OKPay, a payment processor, lost several thousand dollars and BTC Guild, a large mining pool who had expended real capital, mined some of the now discarded blocks.

In the Bitcoin world, this type of coordination event is slowly happening again with the never ending block size debate.

One team, Bitcoin Classic, is a small group of developers that supports a hardfork to relatively, quickly increase the block size from 1 MB to 2 MB and higher.  Another group, dubbed Bitcoin Core, prefers a slower role out of code over a period of years that includes changes that would eventually increase the block size (e.g., segwit). 6

Yet as it lacks a formal governance structure, neither side has de jure legitimacy but instead relies on the court of public opinion to make their case.  This is typically done by lobbying well-known figureheads on social media as well as mining pools directly.  Thus, it is a bit ironic that a system purposefully designed for pseudonymous interactions in which participants were assumed to be Byzantine and unknown, instead now relies on known, gated, and trusted individuals and companies to operate.

Note: if the developers and miners did have de jure legitimacy, it could open up a new can of worms around FinCEN administrative requirements. 7  Furthermore, the miners are always the most important stakeholders in a proof-of-work system, if they were not, no one would host events just for them.

arthur twitter pow

Source: Twitter

Ledgers

With this backstory it is increasingly clear that, in the legal sense, public blockchains are not actual distributed ledgers.  Distributed, yes; ledgers, no.

As Robert Sams articulates:8

I think the confusion comes from thinking of cryptocurrency chains as ledgers at all. A cryptocurrency blockchain is (an attempt at) a decentralised solution to the double spending problem for a digital, extra-legal bearer asset. That’s not a ledger, that’s a log.

That was the point I was trying to make all along when I introduced the permissioned/permissionless terminology!9 Notice, I never used the phrase “permissionless ledger” — Permissionless’ness is a property of the consensus mechanism.

With a bearer asset, possession of some instrument (a private key in the cryptocurrency world) means ownership of the asset. With a registered asset, ownership is determined by valid entry in a registry mapping an off-chain identity to the asset. The bitcoin blockchain is a public log of proofs of instrument possession by anonymous parties. Calling this a ledger is the same as calling it “bearer asset ledger”, which is an oxymoron, like calling someone a “married bachelor”, because bearer assets by definition do not record their owners in a registry!

This taxonomy that includes the cryptocurrency stuff in our space (“a public blockchain is a permissionless distributed ledger of cryptocurrency”) causes so much pointless discussion.

I should also mention that the DLT space should really should be using the phrase “registry” instead of “ledger”. The latter is about accounts, and it is one ambition too far at the moment to speak of unifying everyone’s accounts on a distributed ledger.

As I have discussed previously, public blockchains intentionally lack hooks into off-chain legal identification systems.

Why?  Because as Sams noted above: a KYC’ed public blockchain is effectively an oxymoron.  Arguably it is self-defeating to link and tie all of the participants of the validation (mining) process and asset transfer process (users) to legal identities and gate them from using (or not using) the network services.  All you have created is a massively expensive permissioned-on-permissionless platform.

But that irony probably won’t stop projects and organizations from creating a Kimberely Process for cryptocurrencies.

I cannot speak on behalf of the plethora of “private chain” or “private ledger” projects (most of which are just ill-conceived forks of cryptocurrencies), but we know from public comments that some regulators and market structures might only recognize blockchains and distributed ledgers that comply with laws (such as domestic KYC / AML regulations) by tying into the traditional legal infrastructure.10 This means tying together off-chain legal identities with on-chain addresses and activity.

Why?

There are multiple reasons, but partly due to the need to reduce settlement risks: to create definitive legal settlement finality and identifying the participants involved in that process.11

Finality

As illustrated with the purposeful Ethereum One hardfork and the accidental Bitcoin fork in 2013, public blockchains by design, can only provide probablistic settlement finality.

Sure, the data inside the blocks itself is immutable, but the ordering and who does the ordering of the blocks is not.

What does this mean?  Recall that for both Ethereum and Bitcoin, information (usually just private keys) are hashed multiple times by a SHA algorithm making the information effectively immutable.12 It is unlikely given the length of time our star is expected to live, that this hash function can be reversed by a non-quantum computer.

However, blocks can and will be reorganized, they are not immutable.  Public blockchains are secured by social and economic consensus, not by math.

As a consequence, there are some fundamental problems with any fork on public blockchains: they may actually increase risks to the traditional settlement process.  And coupled with the lack of hooks for off-chain identity means that public blockchains — anarchic blockchains — are not well-suited or fit-for-purpose for regulated financial institutions.

After all, who is financially, contractually, and legally responsible for the consequences of a softfork or hardfork on a public blockchain?

  • If it is no one, then it might not be used by regulated organizations because they need to work with participants who can be held legally accountable for actions (or inactions).
  • If it is someone specifically (e.g., a doxxed individual) then you have removed the means of pseudonymous consensus to create censorship resistance.

In other words, public blockchains, contrary to the claims of social media, are not “law” because they do not actually tie into the legal infrastructure which they were purposefully designed to skirt.  By attempting to integrate the two worlds — by creating a KYC’ed public blockchain — you end up creating a strange hydra that lacks the utility of pseudonymity (and censorship resistance) yet maintains the expensive and redundant proof-of-work process.

These types of forks also open up the door for future forks: what is the criteria for forking or not in the future?  Who is allowed and responsible to make those decisions?  If another instance like the successful attack and counter-attack on The DAO takes place, will the community decide to fork again?  If 2 MB blocks are seen as inadequate, who bears the legal and financial responsibility of a new fork that supports larger (or smaller) blocks?  If any regulated institution lose assets or funds in this forking process, who bears responsibility?  Members of IRC rooms?

If the answers are caveat emptor, then that level of risk may not be desirable to many market participants.

Conclusions

Who are you going to sue when something doesn’t go according to plan?  In the case of The DAO, the attacker allegedly threatened to sue participants acting against his interests because he claimed: code is law.  Does he have legal standing?  At this time it is unclear what court would have accepted his lawsuit.

But irrespective of courts, it is unclear how smart contract code, built and executed on an anarchic platform, can be considered “legal.”  It appears to be a self-contradiction.

As a consequence, the fundamental need to tie contract code with legal prose is one of the key motivations behind how Richard Brown’s team in London approached Corda’s design.  If you cannot tie your code, chain, or ledger into the legal system, then it might be an unauthoritative ledger from the perspective of courts.13

And regulated institutions can’t simply just ignore regulations as they face real quantifiable consequences for doing so.  To paraphrase George Fogg, that’s akin to putting your head in the sand.

We continue to learn from the public blockchain world, such as the consequences of forks, and the industry as a whole should try to incorporate these lessons into their systems — especially if they want anyone of weight to use them.  Anarchic blockchains will continue to co-exist with their distributed ledger cousins but this dovetails into a conversation about “regtech,” which is a topic of another post.

Endnotes

  1. Rejecting Today’s Hard Fork, the Ethereum Classic Project Continues on the Original Chain: Here’s Why from Bitcoin Magazine []
  2. This doesn’t mean that regulators and/or financial institutions won’t use public blockchains for various activities; perhaps some of them will be comfortable after quantifying the potential risks associated with them. []
  3. Ethereum developers plan to transition Ethereum from proof-of-work to proof-of-stake within the next year. []
  4. See Arthur Breitman’s interview on Epicenter Bitcoin and Mike Hearn’s interview on Money & Tech []
  5. Philosophically when Bob connects to “The Bitcoin Network” — how does Bob know he is actually connected to the “real” Bitcoin network?  One method is to look at the block header: it should take a specific amount of time to recreate the hash with that proof-of-work. This proves which network has the most work done.  However, in the meantime, Bob might connect to other ‘pretenders’ claiming to be “The Bitcoin Network.”  At this time, there does not appear to be any legal recognition of a specific anarchic chain. []
  6. The Bitcoin Core fork, which is euphemistically called a softfork, is basically a hardfork spread over a long period of time. []
  7. See Section 3.4 []
  8. Personal correspondence: March 9, 2016 []
  9. See Blockchain Finance by Robert Sams []
  10. This is not to say that regulators, governments, and various market participants will not use public blockchains for other activity. []
  11. See Section 3.1 []
  12. For proof-of-work mining, Ethereum uses ethash instead of SHA256.  For hashing itself, Ethereum uses SHA-3 which is part of the Keccak family (some people use the terms interchangeably but that isn’t technically correct). []
  13. See Section 9 []

What’s the deal with DAOs?

[Disclaimer: I do not own any cryptocurrencies nor have I participated in any DAO crowdfunding.]

This post will look at the difference between a decentralized autonomous organization (DAO) and a project called The DAO.

Brief explanation

The wikipedia entry on DAOs is not very helpful.  However, Chapters 2 through 5 may be of some use (although it is dated information).

In terms of the uber hyped blockchain world, at its most basic kernel, a DAO is a bit of code — sometimes called a “smart contract” (a wretched name) — that enables a multitude of parties including other DAOs to send cryptographically verifiable instructions (such as a digitally signed vote) in order to execute the terms and conditions of the cloud-based code in a manner that is difficult to censor.

One way to think of a simple DAO: it is an automated escrow agent that lives on a decentralized cloud where it can only distribute funds (e.g., issue a dividend, disperse payroll) upon on receiving or even not receiving a digital signal that a task has been completed or is incomplete.

For instance, let us assume that a small non-profit aid organization whose staff primarily work in economically and politically unstable regions with strict capital controls, set up a DAO — an escrow agent — on a decentralized cloud to distribute payroll each month.

This cloud-based escrow agent was coded such that it would only distribute the funds once a threshold of digital signatures had signed an on-chain contract — not just by staff members — but also from independent on-the-ground individuals who observed that the staff members were indeed doing their job.  Some might call these independent observers as oracles, but that is a topic for a different post.1

Once enough signatures had been used to sign an on-chain contract, the escrow agent would automatically release the funds to the appropriate individuals (or rather, to a public address that an individual controls via private key).  The terms in which the agent operated could also be amended with a predetermined number of votes, just like corporate board’s and shareholder’s vote to change charters and contracts today.

The purported utility that decentralization brings to this situation is that it makes censoring transactions by third parties more difficult than if the funds flowed through a centralized rail.  There are trade-offs to these logistics but that is beyond the scope of this post.

The reason the DAO acronym includes the “organization” part is that the end-goal by its promoters is for it to provide services beyond these simple escrow characteristics such as handling most if not all administrative tasks such as hiring and firing.

Watch out Zenefits, the cryptocurrency world is going to eat your lunch!  Oh wait.

A short history

It is really easy to get caught up in the euphoria of a shiny new toy.  And the original goal of a DAO sounds like something out of science fiction —  but these undertones probably do it a disservice.

Prior to 2014 there had been several small discussions around the topic of autonomous “agents” as it related to Bitcoin.

For instance, in August 2013, Mike Hearn gave a presentation at Turing Festival (see above), describing what was effectively a series of decentralized agents that operated logistical companies such as an autonomous car service.

Several months later, Vitalik Buterin published the Ethereum white paper which dove into the details of how to build a network — in this case a public blockchain — which natively supported code that could perform complex on-chain tasks: or what he dubbed as a decentralized autonomous organization.

Timing

The impetus and timing for this post is based on an ongoing crowdsale / crowdfunding activity for the confusingly named “The DAO” that has drawn a lot of media attention.

Over the past year, a group of developers, some of whom are affiliated with the Ethereum Foundation and others affiliated with a company called Slock.it have created what is marketed as the first living and breathing DAO on the Ethereum network.

The organizers kicked off a month long token sale and at the time of this writing just over 10 million ether (the native currency of the Ethereum blockchain) — or approximately 13% of all mined ether — has been sent to The DAO.  This is roughly equivalent to over $100 million based on the current market price of ether (ETH).

In return for sending ether to The DAO, users receive an asset called a DAO Token which can be used in the future to vote on projects that The DAO wants to fund.2 It is a process that Swarm failed at doing.

An investment fund or a Kickstarter project?

I would argue that, while from a technical standpoint it is possible to successfully set up a DAO in the manner that The DAO team did, that there really isn’t much utility to do so in an environment in which censorship or the theft of funds by third parties will probably not occur.

That is to say, just as I have argued before that permissioned-on-permissionless is a shortsighted idea, The DAO as it is currently set up, is probably a solution to a problem that no one really has.3

Or in short, if you “invested” in The DAO crowdsale thinking you’re going to make money back from the projects via dividends, you might be better off investing in Disney dollars.

Why?

Putting aside securities regulations and regulators such as the SEC for a moment, most of the crowdsale “investors” probably don’t realize that:

  1. crowdfunding in general has a checkered track record of return-on-investment4
  2. crowdfunding in the cryptocurrency world almost always relies on the future appreciation of token prices in order to break-even and not through the actual creation of new features or tools (e.g., see Mastercoin/Omni which effectively flopped)
  3. that the funds, when dispersed to Slock.it and other “products,” could take years, if ever to return a dividend

Why would this pool of capital provide any better expected return-on-investment than others?

Or as Nick Zeeb explained to me:

My sense about The DAO is that it’s a fascinating experiment that I do not want to be part of. I also do not think that a committee of over 1,000 strangers will make wise investment decisions. Most good investment decisions are taken by courageous individuals in my opinion. Anything that can get past a big committee will probably not be the next Google. Imagine this pitch: “Hi I’m Larry and this is Sergey and we want to build the world’s 35th search engine.”

While it probably wasn’t the 35th search engine, tor those unfamiliar with the history of Google, Larry Page and Sergey Brin are the co-founders who created a search engine in what was then though a very crowded market.

So why the excitement?

I think part of it is quite simply: if you own a bunch of ether, there really isn’t much you can do with it right now.  This is a problem that plagues the entire cryptocurrency ecosystem.

Despite all the back-patting at conferences, the market is already filled with lots of different tokens. There is a glut of tokens which do not currently provide many useful things that you couldn’t already do with existing cash systems.5

Part of it also is that most probably think they will some become rich quick through dividends, but that probably won’t happen anytime soon, if at all.

With The DAO, only the development teams of projects that are voted and approved by The DAO (e.g., the thousands of users with DAO Tokens), will see any short term gains through a steady paycheck.  And it is only after they build, ship and sell a product that the original investors may begin seeing some kind of return.

Or in other words: over the past several weeks, the pooling of capital has taken place for The DAO.  In the future there will be various votes as to where that capital goes.  Shortly thereafter, some capital is deployed and later KPI’s will be assessed in order to determine whether or not funding should continue.  All the while some type of profit is sought and dividend returned.

Why, I asked another friend, would this pool of capital offer any better risk adjusted return-on-investment than other asset classes?

In his view:

The return might be high but so is the risk. Always adjust for risk. I think The DAO is better compared to a distributed venture capital firm. Whether that’s better or worse I don’t know — I mean you have the crowd deciding on investments. Or more realistically: nerds who know how to obtain ether (ETH) get to decide on investments.

Does that make them better VCs? Probably not. However, The DAO can decide to hire people with actual credentials to manage and select the investments, admitting its own weakness which would then turn into a strength. I think this can go either way but given the regulator is not prepared for any of this it will probably not work out in the short term.

Does the ‘design-by-giant-nerd-committee’ process work?

Over the past year we have already seen the thousands, probably tens-of-thousands of man-hours dropped into the gravity well that is known as the “block size debate.”  In which hundreds of passionate developers have seemingly argued non-stop on Slack, Twitter, reddit, IRC, conferences and so forth without really coming to an amicable decision any one group really likes.

So if block size-design-by-committee hasn’t worked out terribly well, will the thousands of investors in The DAO take to social media to influence and lobby one another in the future?  And if so, how productive is that versus alternative investment vehicles?

Redistributing the monetary base

Assuming Ethereum has an economy (which it probably doesn’t by most conventional measures), will The DAO create a deflationary effect on the Ethereum economy?

For instance, at its current rate, The DAO could absorb about 20% of the ether (ETH) monetary base.

Does that mean it permanently removes some of the monetary base?  Probably not.

For example, we know that there will be some disbursements to projects such as Slock.it, so there will be some liquidity from this on-chain entity.  And that future DAOs will spend their ether on expenses and development like a normal organization.

But we also know that there is a disconnect between what The DAO is, an investment fund, with what many people see it as: a large vault filled with gold laying in Challenger Deep that will somehow appreciate in value and they will be able to somehow extract that value.

Sure, we will all be able to observe that the funds exist at the bottom of the trench, but someone somewhere has to actually create value with the DAO Tokens and/or ether.

For the same reason that most incubators, accelerators and VC funds fail, that entrepreneur-reliant math doesn’t change for The DAO.  Not only does The DAO need to have a large volume of deal flow, but The DAO needs to attract legitimate projects that — as my friend point out above — have a better risk adjusted return-on-investment than other asset classes.

Will the return-on-investment of the DAO as an asset class be positive in the “early days”?  What happens when the operators and recipients of DAO funds eventually confront the problem of securities regulation?

So far, most of the proposals that appear to be geared up for funding are reminiscent to hype cycles we have all seen over the past couple of years.

Let’s build a product…

  • 2014: But with Bitcoin
  • 2015: But with Blockchain
  • 2016: But with DAO

Maybe the funds will not all be vaporized, but if a non-trivial amount of ETH ends up being held in this DAO or others, it could be the case that with sluggish deal flow, a large portion of the funds could remain inert.  And since this ether would not touching any financial flows; it would be equivalent to storing a large fraction of M0 in your basement safe, siloed off from liquid capital markets.

Ten observations

  1. Since the crowdsale / crowdfund began on April 30, the market price of ETH has increased ~30%; is that a coincidence or is there new demand being generated due to The DAO crowdsale?
  2. A small bug has been discovered in terms of the ETH to DAO Token conversion time table
  3. The DAO surpassed the Ethereum Foundation to become the largest single holder of ether (note: the linked article is already outdated)
  4. In terms of concentration of wealth: according to Etherscan, the top 50 DAO Token holders collectively “own” 38.49% of The DAO
  5. The top 500 DAO Token holders collectively “own” 71.39% of The DAO
  6. As of this writing there are over 15,000 entities (not necessarily individuals) that “own” some amount of a DAO Token
  7. Why is “own” in quotation marks? Because it is still unclear if controlling access to these private keys is the same thing as owning them.  See also: Watermarked Tokens as well as The Law of Bitcoin
  8. Gatecoin, which facilitated the crowdsale of both The DAO and DigixDAO was recently hacked and an estimated $2 million in bitcoins and ether were stolen
  9. Yesterday Gavin Wood, a co-founder of Ethereum, announced that he is stepping down as a “curator” for The DAO.  Curators, according to him, are effectively just individuals who identify whether someone is who they say they are — and have no other duties, responsibilities or authority.
  10. Three days ago, the Slock.it dev team — some of whom also worked on creating The DAO — did a live Q/A session that was videotaped and attempted to answer some difficult questions, like how many DAO Tokens they individually own.

Conclusion

About 17 months ago I put together a list of token crowdsales.  It would be interesting to revisit these at some point later this year to see what the return has been for those holders and how many failed.

For instance, there hasn’t really been any qualitative analysis of crowdsales or ICOs in beyond looking at price appreciation.6 What other utility was ultimately created with the issuance of say, factoids (Factom tokens) or REP (Augur tokens)?

Similarly, no one has really probed Bitcoin mining (and all POW mining) through the lens of a crowdsale on network security. Is every 10 minutes an ICO? After all, the scratch-off contest ties up capital seeking rents on seigniorage and in the long run, assuming a competitive market, that seigniorage is bid away to what Robert Sams has pointed out to where the marginal cost equals the marginal value of a token. So you end up with this relatively large capital base — divorced from the real world — that actually doesn’t produce goods or services beyond the need to be circularly protected via capital-intensive infrastructure.

Other questions to explore in the future include:

  • what are the benefits, if any, of using a centralized autonomous organization (CAO) versus decentralized autonomous organization (DAO) for regulated institutions?
  • how can a party or parties sue a decentralized autonomous organization? 7
  • what are the legal implications of conducting a 51% attack on a network with legally recognized DAOs residing on a public blockchain?8
  • will the continued concentration of ether and/or DAO Tokens create a 51% voting problem identified in the “Curator” section?

Still don’t fully understand what The DAO is?  Earlier this week CoinDesk published a pretty good overview of it.

[Special thanks to Raffael Danielli, Robert Sams and Nick Zeeb for their thoughts]

Endnotes

  1. Note: for the purposes of The DAO, “curators” are effectively identity oracles. []
  2. It appears that currently, once a quorum is achieved, a relatively small proportion of token holders can vote “yes” to a proposal to trigger a large payout. []
  3. The current line-up of goods and services are not based around solving for problems in which censorship is a threat, such as those facing an aid worker in a politically unstable region. []
  4. That is not to say that they all fail. In fact according to one statistic from Kickstarter, there was a 9% failure rate on its platform. Thus, it depends on the platform and what the reward is. []
  5. CoinGecko is tracking several hundred tokens. []
  6. ICO stands for “initial coin offering” — it is slight twist to the term IPO as it relates to securities. []
  7. An added wrinkle to identifying liable parties is: what happens when systems like Zcash launch? []
  8. This presupposes that a DAO will gain legal recognition and/or a public blockchain gains legal standing as an actual legal record. []

Settlement Risks Involving Public Blockchains

[Note: this article first appeared on Tabb Forum]

Over the past several months there has been a crescendo of pronouncements by several cryptocurrency enthusiasts, entrepreneurs and investors claiming that public blockchains, such as Bitcoin and Ethereum, are an acceptable settlement mechanism and layer for financial instruments. Their vision is often coupled with some type of sidechain or watermarked token such as a colored coin.

The problem with these claims and purported technical wizardry is that they ignore the commercial, legal and regulatory requirements and laws surrounding the need for definitive settlement finality.

For instance, the motivation behind the European Commission’s Directive 98/26/EC was:

“[T]o minimize systemic risk by ensuring that any payment deemed final according to the system rules is indeed final and irreversible, even in the event of insolvency proceedings.

“Without definitive finality, the insolvency of one participant could undo transactions deemed settled and open up a host of credit and liquidity issues for the other participants in the payment system. This results in systemic risk and undermines confidence in all the payments processed by the system.

“Thus, by ensuring definitive settlement, the concept of finality fosters trust in the system and reduces systemic risk. This makes it one of the most important concepts in payments and one that is applied to all clearing and settlement systems, including settlement and high-value payment system Target2 and bulk SEPA clearing system STEP2.”

While many cryptocurrency proponents like to pat themselves on the back for thinking that “immutability” is a characteristic unique to public blockchains, this is untrue. Strong one-way cryptographic hashing (usually via SHA 256) provides immutability to any data that is hashed by it: If Bob changes even one bit of a transaction, its hash changes and Alice knows it has been changed.

What about proof-of-work?

Proof-of-work, utilized by many public blockchains, provides a way to vote on the ordering and inclusion of transactions in a block, in a world where you do not know who is doing the voting. If you know who is doing the voting, then you do not need proof-of-work.

Consequently, with proof-of-work-based chains such as Bitcoin, there is no way to model and predict the future level of their security, or “settlement,” as it is directly proportional to the future value of the token, which is unknowable.

Thus, if the market value of a native token (such as a bitcoin or ether) increases or decreases, so too does the amount of work generated by miners who compete to receive the networks seigniorage and expend or contract capital outlays in proportion to the tokens marginal value. This then leaves open the distinct possibility that, under certain economic conditions, Byzantine actors can and will successfully create block reorgs without legal recourse.

In particular, this means miners can remove a transaction from the history such that a payment you thought had been made is suddenly unmade.

In addition, with public blockchains, miners (or rather mining pools) have full discretion on the ordering and reordering of transactions. While mining pools cannot reverse one-way hashes such as a public key (immutable on any blockchain), they can make it so that any transaction, irrespective of its value, can be censored, blocked or reordered.

To be clear, by reordered, we mean that in the event two conflicting transactions are eligible for block inclusion (e.g., a payment to Bob and a double-spend of the same coins to Alice), the payment to Bob could be mined and then, at any point in the future, replaced by the payment to Alice instead.

In Bitcoin and Ethereum (as well as many others), mining pools have full discretion of organizing and reorganizing blocks, including previous blocks. While there is an economic cost to this type of rewriting of history, there are also tradeoffs in creating censorship-resistant systems such as Bitcoin.

One of the tradeoffs is that entire epochs of value can be removed or reorganized without recourse, as public blockchains were purposefully designed around the notion of securing pseudonymous consensus.

Pseudonymous consensus is a key characteristic that cannot be removed without destroying the core utility of a public blockchain: censorship-resistance. So, as long as Bitcoin miners have full discretion over the transaction validation process, there is always a risk of a reorg.

What if you remove censorship-resistance by vetting the miners and creating “trusted mining”?

If you remove censorship-resistance (pseudonymous consensus) but still utilize proof-of-work, you no longer have a public blockchain, but rather a very expensive hash-generating gossip network.

While this type of quasi-anarchic system may be useful to the original cypherpunk userbase, it is not a desirable attribute for regulated financial institutions that have spent decades removing risks from the settlement process.

Ignoring for the moment the legal and regulatory structures surrounding the clearing and settlement of financial instruments, in our modern world all participants recognize that, from a commercial perspective alone, it makes sense to have definitive – not probabilistic – settlement finality. Because of how the mining process works – miners can reorganize history (and have) – a public blockchain by design cannot definitively guarantee settlement finality.

Markets do not like uncertainty, and consequently mitigating and removing systemic risks has been a key driver by all global settlement platforms for very good apolitical reasons.

Public blockchains may be alluring because of how they are often marketed – as a solution to every problem – but they are not a viable solution for organizations seeking to provide certainty in an uncertain world, and they are currently not a reliable option for the clearing and settling of financial instruments.

There are solutions being built to solve this problem that do not rely on public blockchains for settlement. For example, private and consortium blockchains are specifically being designed to provide users definitive legal settlement finality, among other requirements, because this certainty is necessary for adoption by regulators and regulated financial institutions.

For context, over the past 18 months banks have looked at more than 150 proof-of-concepts and pilots and rejected nearly all of them. Not because they are anti-cryptocurrency, but because public blockchains were not purposefully built around the requirements of financial institutions. So why would they integrate a system that does not provide them utility?

Yet if researchers empirically observe that the failure risks associated with various public blockchains is within an accepted risk profile – in certain niche use-cases – it may be the case that some institutions will consider conducting additional proof-of-concepts on them.

The tradeoffs in designing public blockchains and permissioned ledgers are real. For instance, it is self-defeating to build a network that is both censorship-resistant from traditional legal infrastructure and simultaneously compliant with legal settlement requirements. Yet both types of networks will continue to coexist, and the vibrant communities surrounding the two respective spaces will learn from one another.

And if the goal for fintech startups is to create a new commercial rail for securing many different types of financial instruments, then shipping products that actually satiate the needs of market participants is arguably more important than trying to tie everything back into a pseudonymous network that intentionally lacks the characteristics that institutional customers currently need.

What is the difference between Hyperledger and Hyperledger?

hyperledgerI am frequently asked this question because there is some confusion related to the legacy name and the current branding of certain technology. The two are distinct. And how we got there involves a little history.

Hyper, the parent company of Hyperledger, was founded by Dan O’Prey and Daniel Feichtinger in the spring of 2014. Fun fact: one of the alternative names they considered using was “Mintette.com” — after the term coined by Ben Laurie in his 2011 paper.

The simplest way to describe Hyperledger, the technology platform from Hyper, during its formative year in 2014 was: Ripple without the XRP. Consensus was achieved via PBFT.1 There were no blocks, transactions were individually validated one by one.

Hyperledger, the technology platform from Hyper, was one of the first platforms that was pitched as, what is now termed a permissioned distributed ledger: validators could be white listed and black listed. It was designed to be first and foremost a scalable ledger and looked to integrate projects like Codius, as a means of enabling contract execution.

Most importantly, Hyperledger in 2014 was not based off of the Bitcoin codebase.

Note: in the fall of 2014 Richard Brown and I both became the first two advisors to Hyper, the parent company of Hyperledger.  Our formal relationship ended with its acquisition by DAH.2

In June 2015, DAH acquired Hyper (the parent company of Hyperledger) which included the kit and caboodle: the name brand, IP and team (the two Dans).  During the same news release, it was announced that DAH had acquired Bits of Proof, a Hungary-based Bitcoin startup that had designed a Java-based reimplementation of Bitcoin (which previously had been acquired by CoinTerra).3

It was proposed at that time that Hyperledger, the Hyper product, would become the permissioned ledger project from DAH.  It’s product landing page (courtesy of the Internet Archive) uses roughly the same terminology as the team had previously pitched it (see also the October homepage older homepage for DAH as well).

digital asset homepage october 2015

Source: Digital Asset / Internet Archive

On November 9, 2015, on a public blog post DAH announced that it was “Retiring Hyperledger Beta, Re-Open Sourcing Soon, and Other Changes.”

The two most notable changes were:

(1) development would change from the languages of Erlang and Elixir to Java and Scala;

(2) switch to the UTXO transaction model

The team noted on its blog in the same post:

We are also switching from our simplistic notion of accounts and balances to adopt to de facto standard of the Bitcoin UTXO model, lightly modified. While Hyperledger does not use Bitcoin in any way, the Bitcoin system is still extremely large and innovative, with hundreds of millions of dollars invested. By adopting the Bitcoin transaction model as standard, users of Hyperledger will benefit from innovation in Bitcoin and vice versa, as well as making Hyperledger more interoperable.

During this same time frame, IBM was working on a project called OpenChain, which for trademark reasons was later renamed (now internally referred to as OpenBlockchain).4

IBM’s first public foray into distributed ledgers involved Ethereum vis-a-vis the ADEPT project with Samsung (first announced in January 2015). Over the subsequent months, IBM continued designing its own blockchain (see its current white paper here).

In December 2015, the Linux Foundation publicly announced it was creating a new forum for discussion and development of blockchain technology.  Multiple names were proposed for the project including Open Ledger (which was the name originally used in the first press release). However, in the end, the name “Hyperledger” was used.

How did that occur?

DAH, one of the founding members of the project, donated two things to the Linux Foundation: (1) the brand name “Hyperledger” and (2) the codebase from Bits of Proof.

Recall that Bits of Proof was the name of a Bitcoin startup that was acquired by DAH in the fall of 2014 (the Chief Ledger Architect at DAH was the co-founder of Bits of Proof). 5 Architecturally, Bits of Proof is a Java-implementation of Bitcoin. 6

In other words: today the term “Hyperledger” represents an entirely different architectural design and codebase than the original Hyperledger built by Hyper.7

The major architectural switch occurred in November 2015, which as noted above involved adopting the UTXO transaction set and Java language that Bits of Proof was built with.  Therefore, Hyperledger circa 2016 is not the same thing as Hyperledger circa 2014.

Over the past two months there have been multiple different codebases donated to the Linux Foundation all of which is collectively called “Hyperledger” including the IBM codebase (partly inspired by Ethereum) as well as the DAH and Blockstream codebase (one is a clone of Bitcoin and the other is a set of extensions to Bitcoin). The technical discussions surrounding this can be found on both the public Linux Foundation mailing list and its Slack channel.

How do different, incompatible codebases work as one?

This technical question is being discussed in the Linux Foundation. It bears mentioning that as of now, the codebases are incompatible largely due to the fact that Bitcoin uses the UTXO transaction set and OpenBlockchain uses an “accounts” based method for handling balances.  There are other reasons for incompatibility as well, including that they are written in completely different languages: Java/Scala versus Go versus C++ (Blockstream).

How extensive is the reuse of the Bits of Proof Bitcoin codebase donated to the Linux Foundation from the DAH team?  According to a quick scan of their GitHub repo:

So when someone asks “what is Hyperledger technology?” the short answer is: it is currently the name of a collective set of different codebases managed by the Linux Foundation and is not related to the original distributed ledger product called Hyperledger created by Hyper. The only tenuous connection is the name.

Timeline in brief: Hyperledger was originally created in Spring 2014 by Hyper; Hyper was acquired in June 2015 by DAH; the original Hyperledger architecture was entirely replaced with Bits of Proof in November 2015; the Hyperledger brand name and Bits of Proof code was donated to the Linux Foundation in December 2015.

  1. Interestingly enough, the current OpenBlockchain project from IBM also uses PBFT for its consensus mechanism and uses an “accounts” based method; two characteristics that the original Hyperledger platform from Hyper had too. []
  2. For more info on the original Hyperledger, see the Innotribe pitch; the description in Consensus-as-a-service from April 2015 and the Epicenter Bitcoin interview. []
  3. Following the bankruptcy of CoinTerra, the Bits of Proof team became independent once again. []
  4. CoinPrism launched a project called OpenChain, before IBM did. []
  5. Sometimes there is a confusion between Bits of Proof and Bits of Gold.  Bits of Proof was the independent Java-implementation of Bitcoin (which is not the same thing as bitcoinj).  Bits of Gold is an Israeli-based Bitcoin exchange.  A co-founder of Bits of Gold also works at DAH and is their current CTO. []
  6. In the future it may contain some modifications including Elements from Blockstream. []
  7. What was once the original Hyperledger GitHub repo has been handed over to the Linux Foundation but some of the original code base and documentation from the 2014 project can still be viewed elsewhere. []

Watermarked tokens and pseudonymity on public blockchains

As mentioned a couple weeks ago I have published a new research paper entitled: “Watermarked tokens and pseudonymity on public blockchains

In a nutshell: despite recent efforts to modify public blockchains such as Bitcoin to secure off-chain registered assets via colored coins and metacoins, due how they are designed, public blockchains are unable to provide secure legal settlement finality of off-chain assets for regulated institutions trading in global financial markets.

The initial idea behind this topic started about 18 months ago with conversations from Robert Sams, Jonathan Levin and several others that culminated into an article.

The issue surrounding top-heaviness (as described in the original article) is of particular importance today as watermarked token platforms — if widely adopted — may create new systemic risks due to a distortion of block reorg / double-spending incentives.  And because of how increasingly popular watermarked projects have recently become it seemed useful to revisit the topic in depth.

What is the takeaway for organizations looking to use watermarked tokens?

The security specifications and transaction validation process on networks such as the Bitcoin blockchain, via proof-of-work, were devised to protect unknown and untrusted participants that trade and interact in a specific environment.

Banks and other institutions trading financial products do so with known and trusted entities and operate within the existing settlement framework of global financial markets, with highly complex and rigorous regulations and obligations.  This environment has different security assumptions, goals and tradeoffs that are in some cases opposite to the designs assumptions of public blockchains.

Due to their probabilistic nature, platforms built on top of public blockchains cannot provide definitive settlement finality of off-chain assets. By design they are not able to control products other than the endogenous cryptocurrencies they were designed to support.  There may be other types of solutions, such as newer shared ledger technology that could provide legal settlement finality, but that is a topic for another paper.

This is a very important issue that has been seemingly glossed over despite millions of VC funding into companies attempting to (re)leverage public blockchains.  Hopefully this paper will help spur additional research into the security of watermarking-related initiatives.

I would like to thank Christian Decker, at ETH Zurich, for providing helpful feedback — I believe he is the only academic to actually mention that there may be challenges related to colored coins in a peer-reviewed paper.  I would like to thank Ernie Teo, at SKBI, for creating the game theory model related to the hold-up problem.  I would like to thank Arthur Breitman and his wife Kathleen for providing clarity to this topic.  Many thanks to Ayoub Naciri, Antony Lewis, Vitalik Buterin, Mike Hearn, Ian Grigg and Dave Hudson for also taking the time to discuss some of the top-heavy challenges that watermarking creates.  Thanks to the attorneys that looked over portions of the paper including (but not limited to) Jacob Farber, Ryan Straus, Amor Sexton and Peter Jensen-Haxel; as well as additional legal advice from Juan Llanos and Jared Marx.  Lastly, many thanks for the team at R3 including Jo Lang, Todd McDonald, Raja Ramachandran and Richard Brown for providing constructive feedback.

Watermarked Tokens and Pseudonymity on Public Blockchains

What are a few direct and indirect costs of the “block size debate”?

About six weeks ago I mentioned a dollar figure during a panel at the Consensus event in NYC: $6 million. Six million USD is a loose estimate — for illustrative purposes — of the amount of engineering time representing thousands of man hours over the past 7-9 months that has gone into a productivity black hole surrounding the Bitcoin block size debate.

A little recent history

While there had been some low intensity discussions surrounding block size(s) over the past several years, most of that simmered in the background until the beginning of 2015.

On January 20th Gavin Andresen posted a 20 MB proposal which was followed over the subsequent weeks by a number of one-and-done counterpoints by various developers.

About four months later, beginning on May 4, Gavin posted a series of blog articles that kicked things up a notch and spurred enormous amounts of activity on social media, IRC, web forums, listservs, podcasts and conferences.

The crescendo of public opinion built up over the summer and reached a new peak on August 15th with a post from Mike Hearn, that Bitcoin would fork into two by the beginning of next year.

The passionate enthusiasts on all sides of the spectrum took to social media once again to voice their concerns.  During the final two weeks of August, the debate became particularly boisterous as several moderators on reddit began to ban discussions surrounding Bitcoin XT (among other forks and proposals).  There was even an academic paper published that looked at the sock puppets involved in this period: Author Attribution in the Bitcoin Blocksize Debate on Reddit by Andre Haynes.

Ignoring the future evolution of block size(s), with respect to the opportunity costs of the debate itself: investors and consumers have unintentionally funded what has turned out to be a battle between at least two special interest groups. 1

So where does the $6 million figure come from?

Of the roughly $900 million of VC funding related to Bitcoin itself that has been announced over the past 3 years, about half has been fully spent and went towards legal fees, domain names, office rent, conference sponsorship’s, buying cryptocurrencies for internal inventory and about a dozen other areas.2

At the current burn rate, Bitcoin companies collectively spend about $8-$10 million a month, perhaps more.  And since the debate is not isolated to development teams, because upper management at these companies are involved in letter writing campaigns (and likely part of the sock puppet campaigns), then it could be the case that 5-10% of on-the-clock time at certain companies was spent on this issue.

Consequently, this translates into about $400,000 to $1 million each month which has been redirected and spent funding tweets, reddit posts, blog posts, conferences, research papers and industry conferences.3

What about specific numbers?

For instance, with around 150-200 attendees the Montreal scalability conference likely absorbed $250,000 from everyone involved (via travel, lodging, food, etc.).  Similarly, one independent estimate that Greg Maxwell mentioned at the same Consensus event was his back-of-the-envelope projection of the opportunity costs: a few hundred thousand USD in the first couple weeks of May alone as engineers were distracted with block sizes instead of shipping code.

While a more precise number (+/-) could probably be arrived at if someone were to link individual developer activity on the dev mailing list/reddit/twitter with their estimated salaries on Glassdoor — since this past spring roughly $6 million or so has probably gone towards what has amounted to basically two diametrically opposed political campaigns.

And the issue is still far from resolved as there are more planned scalability conferences, including one in Hong Kong in early December.

Why is it a black hole though?  Surely there is utility from the papers and projects like Lightning, right?

It’s a money pit because it doesn’t and cannot resolve the coordination problem that decentralized governance creates.  I have an upcoming paper that briefly touches on this issue (in Appendix A): the key point is that any time decision making is decentralized then specific trade-offs occur.

In this case, due to an intentional power vacuum in which there is no “leader,” special interest groups lobby one another for the de facto right to make decisions.  Some decisions, like raising the minimum transaction relay fees involve less tweets and downvotes and are for various reasons considered less important as others.  Yet ultimately, de jure decision making remains out of reach.

Not the first time to a rodeo

Because decentralized governance (and external social consensus) was/is a key feature for many cryptocurrencies, this type of political activity could happen again with say, increasing the money supply from 21 million or if KYC becomes mandatory for all on-chain interactions.

Again, this was bound to happen because of the tragedy of the commons: because the Bitcoin network is a public good that lacks an explicit governance structure.  Anytime you have a lack of formal governance you often end up with an informal power structure that makes it difficult to filter marketing fluff from sock puppets like Cypherdoc (aka Marc Lowe) from actual fact-filled research.

And this subsequently impacts any project that relies on the Bitcoin network as its security mechanism.  Why?  According to anecdotes, projects from new organizations and enterprises have reconsidered using public blockchains due to the aforementioned inherent governance hurdles alone.

After all, who do they call when the next Mexican standoff, block reorg or mutually assured destruction situation arises?  There is no TOS, EULA or service-level agreement and as a result they look at other options and platforms.4

  1. It is probably too simplistic to say that, with $6 million in funding, these same developers could have simply created a new system, like Ethereum, from scratch that factors in scalability challenges from day one.  It is unlikely that these same developers would have come to agreement on what to spend those funds on as well. []
  2. See What impact have various investment pools had on Bitcoinland? and Flow of investments funds in Bitcoinland []
  3. The academic term for this is single-issue politics. []
  4. For instance, Tezos was designed specifically with a self-amending chain in mind due to this issue. []

A few results from the first intentional stress test on a communal blockchain

I have covered the issue of increasing the Bitcoin block size a few times in the past:

Three days ago several individuals within the development community (and on reddit) — in order to test to see how the network would handle (and is impacted by) a large increase in transactions — went ahead and repeatedly sent transactions (via scrypts) onto the network.

Below are multiple graphs illustrating what this traffic looked like relative to “normal” days:

blockrio graphs

Source: blockr.io (over the past 30 days)

Above are two charts from Blockr.io illustrating the block sizes over time and average block fee over the past 30 days.

transaction fees in USD

Source: Blockchain.info (fees denominated in USD)

transactions per day

Source: Blockchain.info (number of transactions per day including popular addresses)

excluding chains

Source: Blockchain.info (excluding chains longer than 10)

Above are three charts from Blockchain.info covering the past year (365 days) activity related to: fees to miners, transactions to all addresses (including popular), transactions excluding chains longer than 10 (see Slicing data for an explanation).

statoshi clearing

Data Source: Statoshi.info / Image source (reddit thread)

Above is a screengrab from Statoshi.info (run by @lopp).  It illustrates the roughly 20 hour time period in which this stress test took place.

Results

There were multiple reddit threads that attempted to break down the findings, below are some of their comments with slight amendments

  • A peak of approximately 24,000 unconfirmed Bitcoin transactions occurred
  • Nearly 133,000 transactions were included in blocks during one day, a new all time high
  • Blocks became full starting at block 358596 at 23:38 UTC
  • And remained consistently full until block 358609 at 03:21 UTC
  • The majority of mining pools cap block size at 0.75 MB instead of 1 MB
  • Some transactions were “mysteriously” not broadcast until 2 hours post their actual broadcast time (Broadcast between 23- 24:00 UTC, shows 02:54 UTC)
  • The majority of low fee/minimum fee transactions required 3-4 hours for the first confirmation

Brute force fan fiction

While not necessarily a surprise, for approximately $3,000 an individual can effectively spam the network, filling up blocks and annoying users for several hours.  Because it became increasingly expensive for transactions to be included within blocks, the “attack” probably is not the most effective way to cause many transactions to be permanently slowed down.

Yet it does show that the Maginot Line narrative — that the only way to “attack” the network is to acquire hundreds of millions of dollars in hashing power to brute force the network — is just fan fiction.  A well-organized and minimally financed group of savvy internet users — not even professional hackers — can create headaches for settlement systems, payment processors or anyone else running time sensitive applications reliant on a public blockchain.

Thus, as Robert Sams pointed out a couple weeks ago: it would probably be financially irresponsible for a large organization like NASDAQ to use a communal blockchain — whose pseudonymous validators are not held contractually liable or accountable for transaction processing (or attacks thereof) — to clear and settle off-chain assets (Ryan Selkis briefly touched on a similar point last week as well).  Whether this kind of test convinces NASDAQ and others to rethink their pilot programs on a public blockchain is an open question.

Governance issues with “the commons”

Over the past 4-5 weeks there are probably well over a hundred reddit threads, blog posts and Bitcoin Talk forum posts related to increasing the block size.

Instead of rehashing all of the arguments here, the decision to increase block sizes seems to boil down to two things:

  1. Conflicts in governance (e.g., politics and special interest groups)
  2. Subjectivity in how many nodes represent “decentralization”

The first issue is much harder, perhaps impossible to solve because no one owns the network — it is a communal, public good.  Chronically lacking a clear and effective governance model, decisions are typically made based on: how many retweets someone gets, how many upvotes a poster receives, or increasingly, Six Degrees of Satoshi: how often Satoshi directly responded to your comments in the past.

We see this quite frequently with the same clique of developers using a type of argument from authority.  Perhaps they are correct and one person was left “in charge” by fiat — by Satoshi one spring morning in 2011.  Yet it was not Satoshi’s network to “give” in the first place — he was not the bonafide owner.  No one is, which presents a problem for any kind of de jure governance.1

gavin mike hearn

Source: reddit

The second issue, in terms of how many validating nodes are needed for decentralization, this is an issue that Vitalik Buterin, Jae Kwon and several others have been talking about for over six months, if not longer.

In short, as block sizes increase in size, fewer validating nodes will operate on the network due to a number of factors but largely related to the economic costs of running them (bandwidth is typically cited as the biggest consideration).  We see this empirically occur over the past 18 months on the Bitcoin blockchain (with validators dropping from over 13,000 in March 2014 to just under 6,000 today).

Appealing to amorphous social contracts

Social contracts historically fall apart due to their nebulous mandate and they also — non-governmental versions specifically — typically lack explicit enforcement mechanisms.

Bitcoin suffers from both.  There is no terms of service or explicit service agreement to the end user.  Nor is there a way to enforce an “ethos” onto a physically decentralized userbase.

Yet ironically several key developers are now appealing to a social contract to make decisions for how block sizes should and should not evolve.

Irrespective of what is decided on social media, there will ultimately be a solution that arises in the coming months, but not everyone will be happy.

How to solve this in the future?  What are other projects doing?

Tezos, if we come to believe that it is valuable or safe (because others are using it, or is scientifically verified), has a self-amending model which bakes in governance into the code itself.

Ethereum is also trying to create specific, technical ways for “explicit governance” to direct its evolution as it achieves certain milestones.  For instance, its developers plan to eventually transition the proof-of-work process into a proof-of-stake network (via a poorly marketed “bomb“).

Whether either of these projects is successful is another topic, but at least the developers recognize the governance issue as paramount to the ultimate “success” of the project.

Other projects in the distributed ledger arena, such as the “permissioned” ledgers I did a report (pdf) on earlier last month, also do not have this type of governance problem due to the fact that they each have a private sponsor (sometimes in the form of an NGO, others in the form of a company) where the buck finally, explicitly stops.

There may be non-technical ways to govern (via organizational structure), but Bitcoin’s model is both ad hoc and largely devolves into unproductive shouting matches.  Is this really how a financial system and series of products is best developed?  Probably not.

But this is a topic for political archaeologists to pour through in the coming years.

Other experts weigh in

Chun Wang, who is a member of the F2Pool operating team (F2Pool, also known as Discus Fish, is one of the largest mining pools), made the following comment two days ago on the Bitcoin development mailing list:

Hello. I am from F2Pool. We are currently mining the biggest blocks on
the network. So far top 100 biggest bitcoin blocks are all from us. We
do support bigger blocks and sooner rather than later. But we cannot
handle 20 MB blocks right now. I know most blocks would not be 20 MB
over night. But only if a small fraction of blocks more than 10 MB, it
could dramatically increase of our orphan rate, result of higher fee
to miners. Bad miners could attack us and the network with artificial
big blocks. As yhou know, other Chinese pools, AntPool, BW, they
produces ASIC chips and mining mostly with their own machines. They do
not care about a few percent of orphan increase as much as we do. They
would continue their zero fee policy. We would be the biggest loser.
As the exchanges had taught us, zero fee is not health to the network.
Also we have to redevelop our block broadcast logic. Server bandwidth
is a lot more expensive in China. And the Internet is slow. Currently
China has more than 50% of mining power, if block size increases, I
bet European and American pools could suffer more than us. We think
the max block size should be increased, but must be increased
smoothly, 2 MB first, and then after one or two years 4 MB, then 8 MB,
and so on. Thanks.

I reached out to Andrew Geyl (Organ of Corti) to see what was on his mind.  He independently concurred with LaruentMT, who suggested re-running the tests a few more times for more data:

The transaction “stress test” was well overdue. It’s impossible to understand exactly how increasing block sizes (or even reducing time between blocks) will affect transaction confirmations if we’re only using the network to capacity, and Testnet won’t be much use.

By ensuring that there were more transactions than could be confirmed, we understand a little more about the limits of the network’s transaction transmission capacity. As soon as I get access to relevant data I’ll be trying to determine what factors limited the rate of transactions per block per second.

I think this “stress test” should be run again at some point on a Sunday (when it will have least impact on network users) and – to account for variance in block making – for longer than just 8 hours. Maybe 24 hours? If we are are warned ahead of time, this might be more palatable to the bitcoin users. Think of it as preventative maintenance.

I also reached out to Dave Hudson, proprietor of HashingIt.com.  He has run a number of models over the past year; two notable posts still stick out: 7 Transactions Per Second? Really? and The Myth Of The Megabyte Bitcoin Block.  Below are his new comments:

I’d really like to have time to think about the stress test some more and to look at the numbers, but it demonstrates something that I’m pretty sure a number of people have considered before: 51% attacks are not the biggest cause for concern with Bitcoin; there are dramatically easier ways to attack the system than to build 350 PH/s of hardware.

The delays resulting from large numbers of TX’s sent to the network were entirely predictable (I did the sims months ago).

I doubt this is the only problem area. Consider (and this has been raised a lot in discussions over block size increases) that a lot of miners use the relay network. Attacking that, or shutting it down via some means would certainly set things backwards, especially if we do see larger block sizes.

Other attacks would be massive-scale Sybil attacks. I know there’s the whole argument that it can’t be done, but of course it can. It would be trivial to set up malware that turned 100s of thousands of compromised systems into Bitcoin nodes (even better if this could be done against something embedded where users don’t run malware detection).

It seems to me that the fact this hasn’t happened before is because those people interested in Bitcoin at the moment are more interested in seeing it useful than in bringing it down. When cybercriminals are extorting money in Bitcoin then they want to see it succeed too, but my guess is that if they could find some other equally anonymous way to get paid then we’d have seen some large-scale assaults, not just a few thousand extra TXs done as a thought experiment.

The problem here is that most software designers can build really good working systems. They can follow secure coding rules to ensure that their software doesn’t have resource leaks and network security vulnerabilities, but then they don’t consider any part of the system that might not be under their direct control. It’s the assumed-correct behaviour of the rest of the world that tends to be where major risks come in. Constructing a Maginot Line is a waste of time and money when the attacker bypasses it instead. In fact the perceived strengths of a defence usually lead to complacence. The stress test was a great example of this; huge amounts of time have been spent analyzing 51% attacks when this was probably the least likely attack even years ago. It’s essentially back to the crypto geek cartoon where the super-strong password is not cracked technologically, but instead by threatening its owner.

Despite what some entrepreneurs and venture capitalists have proclaimed — that there is a “scalability roadmap” — this is probably not the last time we look at this.

There are certainly proposed roadmaps that scale, to a point, but there are many trade offs. And it appears that some of the hosted wallet and payment processors that have publicly stated they are in favor of Gavin Andresen’s proposal are unaware of the impact that this type of block size increase has.  How it likely accelerates the reduction of nodes and how that likely creates a more centralized network (yet with the costs of decentralization).  Or maybe they are and simply do not think it is a real issue.  Perhaps they are correct.

One final comment — and this is tangential to the conversation above — is that by looking at the long chain exclusion chart we observe that the additional “stress test transactions” appear as normal unchained transactions.

This is interesting because it illustrates how easy it is to inflate the transaction volume metric making it less useful in measuring the health or adoption of the network.  Thus it is unlikely that some (all?) Bitprophets actually know what comprises transactions when they claim the Bitcoin network has reached “an all time high.”  Did they do forensics and slice the data?

See also: Creating a decentralised payment network: A study of Bitcoin by Jonathan Levin and Eclipse Attacks on Bitcoin’s Peer-to-Peer Network by Heilman et al.

  1. See Bitcoin faces a crossroads, needs an effective decision-making process by Arvind Narayanan []

Consensus-as-a-service: a brief report on the emergence of permissioned, distributed ledger systems

I have spent the past month compiling research that took place between August and the present day.  This was much more of a collaborative process than my previous publications as I had to talk with not just 8 geographically dispersed teams to find out what their approach was in this nascent field but also find out who is working on ideas that are closely related to these projects (as seen in Appendix A).

The culmination of this process can be found in this report: Permissioned distributed ledgers

Fortunately I had the help of not just astute practitioners in the industry who did the intellectual heavy lifting, but the resources and experience of the R3 CEV team where I am an advisor.

I think the three strongest areas are:

  • Richard Brown’s and Jo Lang’s description and visualization of smart contracts.  I loathe the term smart contracts (I prefer “banana” and Preston Byrne prefers “marmot”) and fortunately they distilled it to a level where many professionals can probably begin to understand it
  • Meher Roy’s excellent OSI-model for an “internet of money”
  • Robert Sams mental model of the core attributes of a permissioned distributed ledger

I think the weakest part is in the beginning of Section 8 regarding TCP/IP.  That is reflective of the fact that there is no perfect analogy because Bitcoin was designed to do many things that no other system does right now so there probably is no single apple’s to apple’s comparison.

While you do not need special internetcoins or fun buxx to use the internet (as it were), there is still a cost to someone to connect to the net.  So perhaps, the frictional differences between obtaining and securing an internet connection versus obtaining and securing a bitcoin at this time is probably something that should be highlighted more if the report is updated.

Wither Bitcoin?

For cryptocurrencies such as Bitcoin to do what it does best on its own terms, its competitive advantage lays with the native token and not representing real-world assets: its community needs to come to terms about what it is and is not good for.  Because of its inability to control off-chain assets its developers should stop promising that bitcoins — or metacoins and watermarked-coins that use Bitcoin as a transportation layer — as a panacea for managing off-chain assets, assets the network cannot control.  At most Bitcoin’s code base and node network operates as its own legal system for non-watermarked bitcoins.

Consequently, the advantage a cryptocurrency system has is endogenous enforcement of contractual terms — or as Taulant Ramabaja calls it: “fully blockchain endogenous state transition without any external dependencies.”  Or on-chain, dry code to dry code.

I wonder if someone in the future will call themselves a full “dry code” stack developer?

Consensus-as-a-service: a brief report on the emergence of permissioned, distributed ledger systems

Panel from Blockchain University Demo Day

A couple weeks ago I moderated a panel at Blockchain University, wrapping up the inaugural cohort.

Panelists included Atif Nazir (co-founder of Block.io), Matthieu Riou (co-founder of BlockCypher) and Greg Slepak (co-founder of okTurtles Foundation).  All three were instructors for the course this past winter.