Book review: The Truth Machine

A friend of mine sent me a copy of The Truth Machine which was published in February 2018.  Its co-authors are Michael Casey and Paul Vigna, who also previously co-wrote The Age of Cryptocurrency a few years ago.

I had a chance to read it and like my other reviews, underlined a number of passages that could be enhanced, modified, or even removed in future editions.

Overall: I do not recommend the first edition. For comparison, here are several other reviews.

This book seemed overly political with an Occupy Wall Street tone that doesn’t mesh well with what at times is a highly technical topic.

I think a fundamental challenge for anyone trying to write book-length content on this topic is that as of 2018, there really aren’t many measurable ‘success’ stories – aside from speculation and illicit activities – so you end up having to fill a couple hundred pages based on hypotheticals that you (as an author) probably don’t have the best optics in.

Also, I am a villain in the book. Can’t wait?  Scroll down to Chapter 6 and also view these specific tweets for what that means.

Note: all transcription errors are my own. See my other book reviews on this topic.

Preface

on p. x they write:

The second impact is the book you are reading. In The Age of Cryptocurrency, we focused primarily on a single application of Bitcoin’s core technology, on its potential to upend currency and payments.

Would encourage readers to peruse my previous review of their previous book. I don’t think they made the case, empirically, that Bitcoin will upend either currency or payments. Bitcoin itself will likely exist in some form or fashion, but “upending” seems like a stretch at this time.

On p. xi they write in a footnote:

We mostly avoid the construct of “blockchain” as a non-countable noun.

This is good. And they were consistent throughout the book too.

Introduction

They spent several pages discussing ways to use a blockchain for humanitarian purposes (and later have a whole chapter on it), however, it is unclear why a blockchain alone is the solution when there are likely other additional ways to help refugees.

For instance, on p. 3 they write:

Just as the blockchain-distributed ledger is used to assure bitcoin users that others aren’t “double-spending” their currency holdings – in other words, to prevent what would otherwise be rampant digital counterfeiting – the Azraq blockchain pilot ensures that people aren’t double-spending their food entitlements.

But why can’t these food entitlements be digitized and use something like SNAP cards? Sure you can technically use a blockchain to track this kind of thing, but you could also use existing on-premise or cloud solutions too, right?  Can centralized or non-blockchain solutions fundamentally not provide an adequate solution?

On p. 4 they write:

Under this new pilot, all that’s needed to institute a payment with a food merchant is a scan of a refugee’s iris. In effect, the eye becomes a kind of digital wallet, obviating the need for cash, vouchers, debit cards, or smartphones, which reduces the danger of theft (You may have some privacy concerns related to that iris scan – we’ll get to that below.) For the WFP, making these transfers digital results in millions of dollars in saved fees as they cut out middlemen such as money transmitter and the bankers that formerly processed the overall payments system.

Get used to the “bankers” comments because this book is filled with a dozen of them. Intermediaries such as MSBs and banks do take cuts, however they don’t really dive into the fee structure. This is important because lots of “cryptocurrency”-focused startups have tried to use cryptocurrencies to supposedly disrupt remittances and most basically failed because there are a lot of unseen costs that aren’t taken into account for.

Another unseen cost that this book really didn’t dive into was: the fee to miners that users must pay to get included into a block.  They mention it in passing but typically hand-waved it saying something like Lightning would lower those costs.  That’s not really a good line of reasoning at this stage in development, but we’ll look at it again later.

On p. 6 they write:

That’s an especially appealing idea for many underdeveloped countries as it would enable their economies to function more like those of developed countries – low-income homeowners could get mortgages, for example; street vendors could get insurance. It could give billions of people their first opening into the economic opportunities that the rest of us take for granted.

That sounds amazing, who wouldn’t want that?  Unfortunately this is a pretty superficial bit of speculation.  For example, how do street vendors get insurance just because of the invention of a blockchain?  That is never answered in the book.

On p. 7 they write:

The problem is that these fee-charging institutions, which act as gatekeepers, dictating who can and cannot engage in commercial interactions, add cost and friction to our economic activities.

Sure, this is true and there are efforts to reduce and remove this intermediation. The book also ignores that every cryptocurrency right now also charges some kind of fee to miners and/or stakers. And with nearly all coins, in order to obtain it, a user typically must buy it through a trusted third party (an exchange) who will also charge a markup fee… often simultaneously requiring you to go through some kind of KYC / AML process (or at least connect to a bank that does).

Thus if fee-charging gatekeepers are considered a problem in the traditional world, perhaps this can be modified in the next edition because these type of gatekeepers exist throughout the coin world too.

On p. 8 they list a bunch of use-cases, some of which they go into additional detail later in the book. But even then the details are pretty vague and superficial, recommend updating this in the next edition with more concrete examples.

On p. 9 they write:

Silicon Valley’s anti-establishment coders hadn’t reckoned with the challenge of trust and how society traditionally turns to centralized institutions to deal with that.

There may have been a time in which the majority of coders in the Bay area were “anti-establishment” but from the nearly 5 years of living out here, I don’t think that is necessarily the case across the board. Recommend providing a citation for that in the future.

On p. 10 they write:

R3 CEV, a New York-based technology developer, for one, raised $107 million from more than a hundred of the world’s biggest financial institutions and tech companies to develop a proprietary distributed ledger technology. Inspired by blockchains but eschewing that lable, R3’s Corda platform is built to comply with banks’ business and regulatory models while streamlining trillions of dollars in daily interbank securities transfers.

This whole paragraph should be updated (later in Chapter 6 as well):

  • The Series A funding included over 40 investors, not 100+.
  • The ‘community’ version of Corda is open sourced and available on github, so anyone can download, use, and modify it. There is also a Corda Enterprise version that requires a license and is proprietary.
  • While initially eschewing the term “blockchain,” Corda is now actively marketed as a “blockchain” and even uses the handle @cordablockchain on Twitter, on podcast advertisements, and in public presentations.1
  • I am unaware of any current publicly announced project that involves streamlining trillions of dollars in daily interbank securities transfers. Citation?

On p. 10 they briefly mention the Hyperledger Project.  Recommend tweaking it because of its own evolution over the years.

For example, here is my early contribution: what is the difference between Hyperledger and Hyperledger.

On p. 11 they write:

While it’s quite possible that many ICOs will fall afoul of securities regulations and that a bursting of this bubble will burn innocent investors, there’s something refreshingly democratic about this boom. Hordes of retail investors are entering into early stage investment rounds typically reserved for venture capitalists and other professional.

This paragraph aged horribly since the book was published in February.

All of the signs were there: we knew even last year that many, if not all, ICOs involved overpromising features and not disclosing much of anything to investors. As a result, virtually every week and month in 2018 we have learned just how much fraud and outright scams took place under the guise and pretext of the “democratization of fund raising.”

For instance, one study published this summer found that about 80% of the ICOs in 2017 were “identified scams.” Another study from EY found that about 1/3 of all ICOs in 2017 have lost “substantially all value” and most trade below their listing price.

Future versions of this book should remove this paragraph and also look into where all of that money went, especially since there wasn’t – arguably – a single cryptocurrency application with a real user base that arose from that funding method (yet).

On p. 11 they write:

Not to be outdone, Bitcoin, the grandaddy of the cryptocurrency world, has continued to reveal strengths — and this has been reflected in its price.

This is an asinine metric. How exactly does price reflect strength? They never really explain that yet repeat roughly the same type of explanation in other places in this book.

Interestingly, both bitcoin’s price and on-chain transaction volume have dramatically fallen since this book was first published. Does that mean that Bitcoin weakened somehow?

On p. 12 they write:

Such results give credence to crypto-asset analysts Chris Burniske and Jack Tatar’s description of bitcoin as “the most exciting alternative investment of the 21st century.”

Firstly, the Burniske and Tatar book was poorly written and wrong in many places: see my review

Secondly, bitcoin is a volatile investment that is arguably driven by a Keynesian beauty contest, not for the reasons that either book describes (e.g., not because of remittance activity).

On p. 12 they write:

The blockchain achieves this with a special algorithm embedded into a common piece of software run by all the computers in the network.

To be clear: neither PoW nor PoS are consensus protocols which is implied elsewhere on page 12.

On p. 12 they write:

Once new ledger entries are introduced, special cryptographic protections make it virtually impossible to go back and change them.

This is not really true. For coins like Bitcoin, it is proof-of-work that makes it resource intensive to do a block reorganization. Given enough hashrate, participants can and do fork the network. We have seen it occur many times this year alone. There is no cryptography in Bitcoin or Ethereum that prevents this reorg from happening because PoW is separate from block validation.2

On p. 13 they write:

Essentially, it should let people share more. And with the positive, multiplier effects that this kind of open sharing has on networks of economic activity, more engagement should in turn create more business opportunities.

These statement should be backed up with supporting evidence in the next edition because as it stands right now, this sounds more like a long-term goal or vision statement than something that currently exists today in the cryptocurrency world.

On p. 13 they mention “disintermediation” but throughout the book, many of the cryptocurrency-related companies they explore are new intermediaries. This is not a consistent narrative.

On p. 14 they write:

If I can trust another person’s claims – about their educational credentials, for example, or their assets, or their professional reputation – because they’ve been objectively verified by a decentralized system, then I can go into direct business with them.

This is a non sequitur. Garbage in, garbage out (GIGO) — in fact, the authors make that point later on in the book in Chapter 7.

On p. 15 they write:

Blockchains are a social technology, a new blueprint for how to govern communities, whether we’re talking about frightened refugees in a desolate Jordanian output or an interbank market in which the world’s biggest financial institutions exchange trillions of dollars daily.

This is vague and lacks nuance because there is no consensus on what a blockchain is today. Many different organizations and companies define it differently (see the Corda example above).

Either way, what does it mean to call a blockchain “social technology”? Databases are also being used by refugee camp organizers and financial infrastructure providers… are databases “social technology” too?

Chapter 1

On p. 17 they write:

Its blockchain promised a new way around processes that had become at best controlled by middlemen who insisted on taking their cut of every transaction, and at worst the cause of some man-made economic disasters.

This is true and problematic and unfortunately Bitcoin itself doesn’t solve that because it also has middlemen that take a cut of every transaction in the form of a fee to miners. Future editions should add more nuance such as the “moral hazard” of bailing out SIFIs and TBTF and separate that from payment processors… which technically speaking is what most cryptocurrencies strive to be (a network to pay unidentified participants).

On p. 18 they write:

Problems arise when communities view them with absolute faith, especially when the ledger is under control of self-interested actors who can manipulate them. This is what happened in 2008 when insufficient scrutiny of Lehman Brother’s and other’s actions left society exposed and contributed to the financial crisis.

This seems to be a bit revisionist history. This seems to conflate two separate things: the type of assets that Lehman owned and stated on its books… and the integrity of the ledgers themselves. Are the authors claiming that Lehman Brother’s ledgers were being maliciously modified and manipulated? If so, what citation do they have?

Also a couple pages ago, the authors wrote that blockchains were social technology… but we know that from Deadcoins.com that they can die and anything relying on them can be impacted.

Either way, in this chapter the authors don’t really explain how something Bitcoin itself would have prevented Lehman’s collapse. See also my new article on this topic.

On p. 19 they write:

A decentralized network of computers, one that no single entity controlled, would thus supplant the banks and other centralized ledger-keepers that Nakamoto identified as “trusted third parties.”

Fun fact: the word “ledger” does not appear in the Bitcoin white paper or other initial emails or posts by Nakamoto.

Secondly, perhaps an industry wide or commonly used blockchain of some kind does eventually displace and remove the role some banks have in maintaining certain ledgers, but their statement, as it is currently worded, seems a lot like of speculation (projection?).

We know this because throughout the book it is pretty clear they do not like banks, and that is fine, but future editions need to back up these types of opinions with evidence that banks are no longer maintaining a specific ledger because of a blockchain.

On p. 20 they write:

With Bitcoin’s network of independent computers verifying everything collectively, transactions could now be instituted peer to peer, that is, from person to person. That’s a big change from our convoluted credit and debit card payment systems, for example, which routes transactions through a long sequence of intermediaries – at least two banks, one or two payment processors, a card network manager (such as Visa or Mastercard), and a variety of other institutions, depending on where the transaction take place.

If we look back too 2009, this is factually correct of Bitcoin at a high level.3 The nuance that is missing is that today in 2018, the majority of bitcoin transactions route through a third party, some kind of intermediary like a deposit-taking exchange or custodial wallet.4 There are still folks who prefer to use Bitcoin as a P2P network, but according to Chainalysis, last year more than 80% of transactions went through a third party.5

On p. 20 they write:

Whereas you might think that money is being instantly transferred when you swipe your card at a clothing store, in reality the whole process takes several days for the funds to make all those hops and finally settle in the storeowner’s account, a delay that create risks and costs. With Bitcoin, the idea is that your transaction should take only ten to sixty minutes to fully clear (not withstanding some current capacity bottlenecks that Bitcoin developers are working tor resolve). You don’t have to rely on all those separate, trusted third parties to process it on your behalf.

This is mostly incorrect and there is also a false comparison.

In the first sentence they gloss over how credit card payment systems confirm and approve transactions in a matter of seconds.6 Instead they focus on settlement finality: when the actual cash is delivered to the merchant… which can take up to 30+ days depending on the system and jurisdiction.

The second half they glowingly say how much faster bitcoin is… but all they do is describe the “seen” activity with a cryptocurrency: the “six block” confirmations everyone is advised to wait before transferring coins again. This part does not mention that there is no settlement finality in Bitcoin, at most you get probabilistic finality (because there is always chance there may be a fork / reorg).

In addition, with cryptocurrencies like Bitcoin you are only transferring the coins. The cash leg on either side of the transaction still must transfer through the same intermediated system they describe above. We will discuss this further below when discussing remittances.

On p. 20 they write:

It does so in a way that makes it virtually impossible for anyone to change the historical record once it has been accepted.

For proof-of-work chains this is untrue in theory and empirically. In the next edition this should be modified to “resource intensive” or “economically expensive.”

On p. 20 they write:

The result is something remarkable: a record-keeping method that brings us to a commonly accepted version of the truth that’s more reliable than any truth we’ve ever seen. We’re calling the blockchain a Truth Machine, and its applications go far beyond just money.

It is not a “truth machine” because garbage in, garbage out.

In addition, while they do discuss some historical stone tablets, they don’t really provide a metric for how quantitatively more (or less) precise a blockchain is versus other methods of recording and witnessing information. Might be worth adding a comparison table in the next edition.

On p. 21 they write:

A lion of Wall Street, the firm was revealed to be little more than a debt-ravaged shell kept alive only by shady accounting – in other words, the bank was manipulating its ledgers. Sometimes, that manipulation involved moving debt off the books come reporting season. Other times, it involved assigning arbitrarily high values to “hard-to-value” assets – when the great selloff came, the shocking reality hit home: the assets had no value.

The crash of 2008 revealed most of what we know about Wall Street’s confidence game at that time. It entailed a vast manipulation of ledgers.

This was going well until that last sentence. Blockchains do not solve the garbage in, garbage out problem. If the CFO or accountant or book keeper or internal counsel puts numbers into blocks that do not accurately reflect or represent what the “real value” actually is, blockchains do not fix that. Bitcoin does not fix that.

Inappropriate oversight, rubber stamp valuations, inaccurate risk models… these are off-chain issues that afflicted Lehman and other banks. Note: they continue making this connection on pages 24, 28, and elsewhere but again, they do not detail how a blockchain of some kind would have explicitly prevented the collapse of Lehman other other investment banks.

See also: Systemically important cryptocurrency networks

On p. 22 they write:

The real problem was never really about liquidity, or a breakdown of the market. It was a failure of trust. When that trust was broken, the impact on society – including on our political culture – was devastating.

How about all of the above? Pinning it on just one thing seems a little dismissive of the multitude of other interconnecting problems / culprits.

On p. 22 they write:

By various measures, the U.S. economy has recovered – at the time of writing, unemployment was near record lows and the Dow Jones Industrial Average was at record highs. But those gains are not evenly distributed; wage growth at the top is six times what it is for those in the middle, and even more compared to those at the bottom.

If the goal of the authors is to rectify wealth inequalities then there are probably better comparisons than using cryptocurrencies.

Why? Because – while it is hard to full quantify, it appears that on cursory examination most (if not all) cryptocurrencies including Bitcoin have Gini coefficients that trends towards 1 (perfectly unequal).

On p. 23 they write about disinformation in the US and elsewhere.  And discuss how trust is a “vital social resource” and then mention hyperinflation in Venezuela. These are all worthy topics to discuss, but it is not really clear how any of these real or perceived problems are somehow solved because of a blockchain, especially when Venezuela is used as the example. The next edition should make this more clear.

On p. 29 they write:

On October 31, 2008, whil the world was drowning in the financial crisis, a little-noticed “white paper” was released by somebody using the pen name “Satoshi Nakamoto,” and describing something called “Bitcoin,” an electronic version of cash that didn’t need state backing. At the heart of Nakamoto’s electronic cash was a public ledger that could be viewed by anybody but was virtually impossible to alter.

One pedantic note: it wasn’t broadly marketed beyond a niche mailing list on purpose… a future edition might want to change ” a little-noticed” because it doesn’t seem like the goal by Nakamoto was to get Techcrunch or Slashdot to cover it (even though eventually they both did).

Also, it is not virtually impossible to alter.7 As shown by links above, proof-of-work networks can and do get forked which may include a block reorganization. There is nothing that technically prevents this from happening.

See also: Interview with Ray Dillinger

On p. 31 they write:

Szabo, Grigg, and others pioneered an approach with the potential to create a record of history that cannot be changed – a record that someone like Madoff, or Lehman’s bankers, could not have meddled with.

I still think that the authors are being a little too liberal with what a blockchain can do. What Madoff did and Lehman did were different from one another too.

Either way, a blockchain would not have prevented data – representing fraudulent claims – from being inserted into blocks. Theoretically a blockchain may have allowed auditors to detect tampering of blocks, but if the information in the blocks are “garbage” then it is kind of besides the point.

On p. 32 they write:

Consider that Bitcoin is now the most powerful computing network in the world, one whose combined “hashing” rate as of August 2017 enabled all its computers to collectively pore through 7 million trillion different number guesses per second.

[…]

Let the record show that period of time is 36,264 trillion trillion times longer than the current best-estimate age of the universe. Bitcoin’s cryptography is pretty secure.

This should be scrapped for several reasons.

The authors conflate the cryptography used by digital signatures with generating proofs-of-work.8 There are not the same thing. Digital signatures are considered “immutable” for the reasons they describe in the second part, not because of the hashes that are generated in the first.9

Another problem is that the activity in the first part — the hash generation process — is not an apples-to-apples comparison with other general computing efforts. Bitcoin mining is a narrowly specific activity and consequently ASICs have been built and deployed to generate these hashes. The single-use machines used to generate these hashes cannot even verify transactions or construct blocks. In contrast, CPUs and GPUs can process a much wider selection of general purpose applications… including serialize transactions and produce blocks.

For example: it would be like comparing a Falcon 9 rocket launch vehicle with a Toyota Prius. Sure they are nominally both “modes of transportation” but built for entirely different purposes and uses.

An additional point is that again, proof-of-work chains can and have been forked over the years. Bitcoin is not special or unique or impervious to forks either (here’s a history of the times Bitcoin has forked). And there are other ways to create forks, beyond the singular Maginot Line attack that the authors describe on this page.10

On p. 33 they write:

Whether the solution requires these extreme privacy measures or not, the broad model of a new ledger system that we laid out above – distributed, cryptographically secure, public yet private – may be just what’s needed to restore people’s confidence in society’s record-keeping systems. And to encourage people to re-engage in economic exchange and risk-taking.

This comes across as speculation and projecting. We will see later that the authors have a dim view of anything that is not a public blockchain. Why is this specific layout the best?

Either way, future versions should include a citation for how people’s confidence level increase because of the use of some kind of blockchain. At this time, I am unaware of any such survey.

On p. 34 they quote Tomicah Tilleman from the Global Blockchain Business Council, a lobbying organization:

Blockchain has the potential to push back against that erosion and it has the potential to create a new dynamic in which everyone can come to agree on a core set of facts but also ensure the privacy of facts that should not be in the public domain.

This seems like a non sequitur. How does a blockchain itself push back on anything directly? Just replace the word “blockchain” with “database” and see if it makes sense.

Furthermore, as we have empirically observed, there are fractures and special interest groups within each of these little coin ecosystems. Each has their own desired roadmap and in some cases, they cannot agree with one another about facts such as the impact larger block sizes may have on node operators.

On p. 35 they write:

If it can foster consensus in the way it has been shown to with Bitcon, it’s best understood as a Truth Machine.

This is a non sequitur. Just because Nakamoto consensus exists does not mean it that blockchains are machines of truth. They can replicate falsehoods if the blocks are filled with the incorrect information.

Chapter 2

On p. 38 they write:

Consider how Facebook’s secret algorithm choose the news to suit your ideological bent, creating echo chambers of like-minded angry or delighted readers who are ripe to consume and share dubious information that confirms their pre-existing political biases.

There are some really valid points in this first part of the chapter. As it relates to cryptocurrencies, a second edition should also include the astroturfing and censoring of alternative views that take place on cryptocurency-related subreddits which in turn prevent people from learning about alternative implementations.

We saw this front-and-center in 2015 with the block size debate in which moderators of /r/bitcoin (specifically, theymos and BashCo) banned any discussion from one camp, those that wanted to discuss ways of increasing the block size via a hardfork (e.g., Bitcoin XT, Bitcoin Classic).

This wasn’t the first or last time that cryptocurrency-related topics on social media have resulted in the creation of echo chambers.

On p. 43 they write:

The potential power of this concept starts with the example of Bitcoin. Even though that particular blockchain may not provide the ultimate solution in this use case, it’s worth recalling that without any of the classic, centrally deployed cybersecurity tools such as firewalls, and with a tempting “bounty” of more than $160 billion in market cap value at the time we went to print, Bitcoin’s core ledger has thus far proven to be unhackable.

There is a lot to unpack here but I think a future edition should explain in more detail how Bitcoin is a type of cybersecurity tool. Do they mean that because the information is replicated to thousands of nodes around the world, it is more resilient or redundant?

Either way, saying that “Bitcoin’s core ledger” is “unhackable” is a trope that should be removed from the next edition as well.

Why? Because when speaking about BTC or BCH or any variant of Bitcoin, there is only one “ledger” per chain… the word ‘core’ is superfluous. And as described above, the word “unhackable” should be changed to “resource intensive to fork” or something along those lines. “Unhackable” is anarchronistic because what the authors are probably trying to describe is malicious network partitions… and not something from a ’90s film like The Net.

Continuing on p. 43 they write:

Based on the ledger’s own standards for integrity, Bitcoin’s nine-year experience of survival provides pretty solid proof of the resiliency of its core mechanism for providing decentralized trust between users. It suggest that one of the most important non-currency applications of Bitcoin’s blockchain could be security itself.

This last sentence makes no sense and they do not expand on it in the book. What is the security they are talking about? And how is that particularly helpful to “non-currency applications of Bitcoin’s blockchain”? Do they mean piggy-backing like colored coins try to do?

On p. 44 they write:

The public ledger contains no identifying information about the system’s users. Even more important, no one owns or controls that ledger.

Well technically speaking, miners via mining pools control the chain. They can and do upgrade / downgrade / sidegrade the software. And they can (and do) fork and reorg a chain. Is that defined as “control”? Unclear but we’ll probably see some court cases if real large loses take place due to forks.

On p. 44 they write:

As such there is no central vector of attack.

In theory, yes. In practice though, many chains are highly centralized: both in terms of block creation and in terms of development. Thus in theory it is possible to compromise and successfully “attack” a blockchain under the right circumstances. Could be worth rephrasing this in the next edition.

On p. 44 they write:

As we’ll discuss further in the book, there are varying degrees of security in different blockchain designs, including those known as “private” or “permissioned” blockchains, which rely on central authorities to approve participants. In contrast, Bitcoin is based on a decentralized model that eschews approvals and instead banks on the participants caring enough about their money in the system to protect it.

This is a bit of a strawman because there are different types of “permissioned” blockchains designed for different purposes… they’re not all alike. In general, the main commonality is that the validators are known via a legal identity. How these networks are setup or run does not necessarily need to rely on a centralized authority, that would be a single point of trust (and failure). But we’ll discuss this later below.

On p. 44 they write:

On stage at the time, Adam Ludwin, the CEO of blockchain / distributed ledger services company Chain Inc., took advantage of the results to call out Wall Street firms for failing to see how this technology offers a different paradigm. Ludwin, whose clients include household names like Visa and Nasdaq, said he could understand why people saw a continued market for cybersecurity services, since his audience was full of people paid to worry about data breaches constantly. But their answers suggested they didn’t understand that the blockchain offered a solution. Unlike other system-design software, for which cybersecurity is an add-on, this technology “incorporates security by design,” he said.

It is unclear from the comments above exactly how a blockchain solves problems in the world of cybersecurity. Maybe it does. If so, then it should be explored in more detail than what is provided in this area of the book.

As an aside, I’m not sure how credible Ludwin’s comments on this matter are because of the multiple pivots that his companies have done over the past five years.11

On p. 45 they write:

A more radical solution is to embrace open, “permissionless” blockchains like Bitcoin and Ethereum, where there’s no central authority keeping track of who’s using the network.

This is very much a prescriptive pitch and not a descriptive analysis. Recommend changing some of the language in the next edition. Also, they should define what “open” means because there basically every mining pool doxxes themselves.

Furthermore, some exchanges that attempt to enforce their terms-of-service around KYC / AML / CTF do try to keep track of who is doing what on the network via tools from Chainalysis, Blockseer, Elliptic and others. Violating the ToS may result in account closures. Thus, ironically, the largest “permissioned” platforms are actually those on the edges of all cryptocurrencies.

See: What is Permissioned-on-Permissionless

On p. 45 they write:

It’s not about building a firewall up around a centralized pool of valuable data controlled by a trusted third party; rather the focus is on pushing control over information out to the edges of the network, to the people themselves, and on limiting the amount of identifying information that’s communicated publicly. Importantly, it’s also about making it prohibitively expensive for someone to try to steal valuable information.

This sounds all well and good, definitely noble goals. However in the cryptocurrency world, many exchanges and custodial wallets have been compromised and the victims have had very little recourse. Despite the fact that everyone is continually told not to store their private keys (coins) with an intermediary, Chainalysis found that in 2017 more than 80% of all transactions involved a third-party service.

On p. 45 they write:

Bitcoin’s core ledger has never been successfully attacked.

They should define what they mean by “attacked” because it has forked a number of times in its history. And a huge civil war took place resulting in multiple groups waging off-chain social media campaigns to promote their positions, resulting in one discrete group divorcing and another discrete group trying to prevent them from divorcing. Since there is only de facto and not de jure governance, who attacked who? Who were the victims?

On p. 45 they write:

Now, it will undoubtedly be a major challenge to get the institutions that until now have been entrusted with securing our data systems to let go and defer security to some decentralized network in which there is no identifiable authority to sue if something goes wrong. But doing so might just be the most important step they can take to improve data security. It will require them to think about security not as a function of superior encryption and other external protections, but in terms of economics, of making attacks so expensive that they’re not worth the effort.

This seems a bit repetitive with the previous couple of page, recommend slimming this down in the next edition. Also, there are several class action lawsuits underway (e.g., Ripple, Tezos) which do in fact attempt to identify specific individuals and corporations as being “authorities.” The Nano lawsuit also attempted to sue “core developers.”

On p. 46 they write:

A hacker could go after each device, try to steal the private key that’s used to initiate transactions on the decentralized network, and, if they’re lucky, get away with a few thousand dollars in bitcoin. But it’s far less lucrative and far more time-consuming than going after the rich target of a central server.

The ironic part of this is that generally speaking, the private keys controlling millions of bitcoins are being housed in trusted third parties / intermediaries right now. In some cases these are stored on a centralized server. In other cases, the cold wallet managed by hosting providers such as Xapo (which is rumored to secure $10 billion of bitcoin) does geographically split the keys apart into bunkers. Yet at some point those handling the mutli-sig do come together in order to move the coins to a hot wallet.12

On p. 47 they write:

It seems clear to us that the digital economy would benefit greatly from embracing the distributed trust architecture allowed by blockchains – whether it’s simply the data backups that a distributed system offers, or the more radical of an open system that’s protected by a high cost-to-payout ratio.

What does this mean? Are they saying to add proof-of-work to all types of distributed systems? It is only useful in the Bitcoin context in order to make it expensive to Sybil attack the network… because participants were originally unknown. Does that same problem exist in other environments that they are thinking of? More clarity should be added in the next edition.

On p. 48 they write:

The idea, one that’s also being pursued in different forms by startups such as Gem of Los Angeles and Blockchain Health of San Francisco, is that the patient has control over who sees their records.

This is one of the difficulties in writing a long-form book on this general topic right now: projects and companies frequently pivot.

For instance, a couple months after the book was published, Gem announced its “Universal Token Wallet,” a product which currently dominates its front page and social media accounts of the company. There have been no health care-related announcements from the company in over a year.

Similarly, Blockchain Health no longer exists. Its CEO left and joined Chia as a co-founder and the COO has joined the Neighborly team.

On p. 50 they write:

It was a jury-rigged solution that meant that the banking system, the centralized ledger-keeping solution with which society had solved the double-spend problem for five hundred years, would be awkwardly bolted onto the ostensibly decentralized Internet as its core trust infrastructure.

I think there are some legitimate complaints to made towards how online commerce evolved and currently exists but this seems a tad petty. As backwards as financial institutions are (rightly and wrongly) portrayed, it’s not like their decision makers sat around in the early ’90s trying to figure out how to make integrating the Web an awkward process.

On p. 50 they write:

Under this model, the banks charged merchants an interchange fee of around 3 percent to cover their anti-fraud costs, adding a hidden tax to the digital economy we all pay in the form of higher prices.

Again, like their statement above: there are some very legitimate gripes to be had regarding the existing oligopolistic payment systems, but this specific gripe is kind of petty.

Fraud exists and as a result someone has to pay for it. In the cryptocurrency world, there is no recourse because it is caveat emptor. In the world of courts and legal recourse, fees are levied to cover customer service including fraud and insurance. It may be possible to build a payment system in which there is legal recourse and simultaneously no oligopolistic rent seeking but this is not explored in the book. Also, for some reason the fee to miners is not brought up in this section, yet it is a real fee users must pay… yet they do not receive customer service as part of it.

Lastly, the Federal Reserve (and other central banks) monitor historical interchange fees. Not all users are charged the ~3% as mentioned in the book.

For instance (see below): Average Debit Card Interchange Fee by Payment Card Network

Source: Statista

On pages 52 and 53 they write uncritically about Marc Andresseen and VCs who have invested in Bitcoin and cryptocurrencies.

a16z, the venture firm co-founded by Andresseen, arguably has a few areas that may be conflicts-of-interest with the various coin-related projects it has invested in and/or promoted the past several years (e.g., investing in coins which are listed on an exchange they also are an investor and board member of such as 0x). Those ties are not scrutinized in a chapter that attempts to create a black and white narrative: that the legacy players are centralized rent-seekers and the VCs are not. When we know empirically that some VCs, including a16z, have invested in what they believe will become monopolies of some kind.

On page 54 and 55 they write about “Code is not law,” a topic that I have likewise publicly presented on.

Specifically they state:

One risk is that regulators, confused by all these outside-the-box concepts, will overreact to some bad news – potentially triggered by large-scale investors losses if and when the ICO bubble bursts and exposes a host of scams. The fear is that a new set of draconian catchall measures would suck the life out of innovation in this space or drive it offshore or underground. To be sure, institutions like the Washington-based Coin Center and the Digital Chamber of Commerce are doing their best to keep officials aware of the importance of keeping their respective jurisdictions competitive in what is now a global race to lead the world in financial technology.

This is word for word what coin lobbyists have been pitching to policy makers around the world for years. Both Coin Center and Digital Chamber of Commerce lobby on behalf of their sponsors and donors to prevent certain oversight on the cryptocurrency market.13 An entire book could probably be written about how specific people within coin lobbying organizations have attempted to white wash and spin the narrative around illicit usage, using carefully worded talking points. And they have been effective because these authors do not question the motivations and agenda these special interest groups have.

Either way, Bitcoin and many other cryptocurrencies were born in the “underground” and even “offshore.” It is unclear what the authors are trying to excuse because if anything, regulators and law enforcement have arguably been very light handed in the US and most regions abroad.

If anything, once a foreign registered ICO or coin is created, often the parent company and/or foundation opens an office to recruit developers in San Francisco, New York, and other US cities. I know this because all the multiple “blockchain” events I have attended overseas the past two years in which organizers explain their strategy. The next edition of this book could explore this phenomenon.

On p. 57 they write:

By The DAO founders’ own terms, the attacker had done nothing wrong, in other words. He or she had simply exploited one of its features.

Excellent point that should be explored in further detail in the next edition. For instance, in Bitcoin there have been multiple CVEs which if exploited (at least one was) could have resulted in changes in the money supply. Is that a feature or a bug?

And the most recent one, found in pre-0.16.3, was partially downplayed and hidden to prevent others from knowing the extent of potential damage that could have been done.

On p. 59 they write:

The dependence on a trusted middleman, some cryptocurrency purists would argue, overly compromises a blockchain’s security function, rending it unreliable. For that reason, some of them say, a blockchain is inappropriate for many non-currency applications. We, however, view it as a trade-off and believe there’s still plenty of value in recording ownership rights and transfers to digitally represented real-world assets in blockchains.

I think this whole section should be reworded to describe:

  1. what types of blockchains they had in mind?
  2. how the legal hooks into certain blockchains behave versus anarchic chains?
  3. being more precise with the term purist… do they mean maximalists or do they mean someone who points out that most proposed use-cases are chainwashing?

On pages 59 and 60 they write:

Permissioned blockchains – those which require some authorized entity to approve the computers that validate the blockchain – by definition more prone to gatekeeping controls, and therefore to the emergence monopoly or oligopoly powers, than the persmissionless ideal that Bitcoin represents. (We say “ideal” because, as we’ll discuss in the next chapter, there are also concerns that aspects of Bitcoin’s software program have encouraged an unwelcome concentration of ownership – flaws that developers are working to overcome.)

It would be beneficial in the next edition to at least walk through two different “permissioned blockchains” so the reader can get an idea of how validators become validators in these chains. By not including them, each platform is painted in the same light.

And because they are still comparing it with Bitcoin (which was designed for a completely different type of use-case than ‘permissioned chains’ are), keep in mind that the way mining (block making) is done in 2018 is very different than when it was first proposed in the 2008 paper. Back then, mining included a machine that did two things: validated blocks and also generate proofs-of-work. Today, those two functions are completely separate and because of the relatively fierce competition at generating hashes, there are real exit and entry costs to the market.

In many cases, this means that both the mining pool operators and hash generators end up connecting their real world government-issued identities with their on-chain activity (e.g., block validation). It may be a stretch to say that there is an outright monopoly in mining today, but there is a definite trend towards oligopoly in manufacturing, block producing, and hash generation the past several years. This is not explored beyond a superficial level in the book.

On p. 60 they write:

Until law changes, banks would face insurmountable legal and regulatory opposition, for example, to using a system like Bitcoin that relies on an algorithm randomly assigning responsibility at different stages of the bookkeeping process to different, unidentifiable computers around the world.

This is another asinine comment because they don’t explicitly say which laws they would like changed. The authors make it sound like the PFMIs are holding the world back when the opposite is completely true. These principals and best practices arose over time because of the systemic impact important financial market infrastructures could have on society as a whole.

Proof-of-work chains, the ones that are continually promoted in this book, have no ability to prevent forks, by design. Anarchic chains like Bitcoin and Ethereum can only provide probabilistic finality. Yet commercial best practices and courts around the world demands definitive settlement finality. Why should commerce be captured by pseudonymous, unaccountable validators maintained in jurisdictions in which legal recourse is difficult if not impossible?

On p. 60 they continue:

But that doesn’t mean that other companies don’t have a clear interest in reviewing how these permissioned networks are set up. Would a distributed ledger system that’s controlled by a consortium of the world’s biggest banking institutions be incentivized to act in the interest of the general public it serves? One can imagine the dangers of a “too-big-to-fail blockchain” massive institutions could once again hold us hostage to bailouts because of failures in the combined accounting system.

This has been one of Michael Casey’s talking points for the past three years. I was even on a panel with him in January 2016 in which he called R3 a “cartelchain,” months before Corda even existed. His justified disdain towards traditional financial institutions — and those involved with technology being developed in the “permissioned” world — pops up throughout this book. I do think there are some valid critiques of consortia and permissioned chains and even Corda, but those aren’t presented in this edition of the book.

He does make two valid observations here as well: regulated commerce should have oversight. That is one of the reasons why many of the organizations developing “permissioned blockchains” have plans to or already have created separate legal entities to be regulated as some type of FMI.

The other point is that we should attempt to move away from recreating TBTF and SIFI scenarios. Unfortunately in some cases, “permissioned chains” are being pitched as re-enabler of that very scenario. In contrast, dFMI is a model that attempts to move away from these highly intermediated infrastructures. See also my new article on SICNs.

On p. 60 they write:

Either way, it’s incumbent upon us to ensure that the control over the blockchains of the future is sufficiently representative of broad-based interests and needs so that they don’t just become vehicles for collusion and oligpolistic power by the old guard of finance.

The ironic part of this statement is — while well-intended — because of economies of scale there is an oligopoly or even monopoly in most PoW-mined coins. It is unclear how or why that would change in the future. In addition, with the entrance of Bakkt, ErisX, Fidelity and other large traditional financial organizations (e.g., the old guard) into the cryptocurrency world, it is hard to see how “permissionless ecosystems” can prevent them from participating.

On p. 61 they write:

As we stated in The Age of Cryptocurrency, Bitcoin was merely the first crack at using a distributed computing and decentralized ledger-keeping system to resolve the age-old problem of trust and achieve this open, low-cost architecture for intermediary-free global transactions.

But as the authors have stated elsewhere: proof-of-work chains are inherently costly. If they were cheap to maintain then they would be cheap to fork and reorg. You cannot simultaneously have a cheap (“efficient”) and secure PoW network… that’s a contradiction.

See:

Chapter 3

On pages 64 and 65 they provide a definition of a blockchain. I think this could be more helpful more earlier on in the book for newer audiences.

A few other citations readers may be interested in:

On p. 66 they write:

That way, no authorizing entity could block, retract, or decide what gest entered into the ledger, making it censorship resistant.

Could be worth referencing Eligius, a pool run by Luke-Jr. that would not allow Satoshi Dice transactions because its owners religious views.14

On p. 67 they write:

These computers are known as “miners,” because in seeking to win the ten-minute payout, they engage in a kind of computational treasure hunt for digital gold.

I understand the need to make simple analogies but the digital gold one isn’t quite right because gold does not have an inflexible supply whereas bitcoin does. I’ve pointed this out in other book reviews and it bears repeating because of how the narrative of e-cash to HODLing has changed over the last few years.1516

Readers may be interested of a few real life examples of perfectly inelastic supplies.

On p. 67 they write:

Proof of work is expensive, because it chews up both electricity and processing power. That means that if a miner wants to seize majority control of the consensus system by adding more computing power, they would have to spend a lot of money doing so.

This is correct. Yet six pages earlier they say it is a “low-cost” infrastructure. Needs to be a little more consistent in this book. Either PoW is resource intensive or it is not, it cannot be both.

On p. 68 they write:

Over time, bitcoin mining has evolved into an industrial undertaking, with gigantic mining “farms” now dominating the network. Might those big players collude and undermine the ledger by combining resources? Perhaps, but there are also overwhelming disincentives for doing so. Among other considerations, a successful attack would significantly undermine the value of all the bitcoins the attacking miner owns. Either way, no one has managed to attack Bitcoin’s ledger in nine years. That unbroken record continues to reinforce belief in Bitcoin’s cost-and-incentive security system.

It’s worth pointing out that there are ways to fork Bitcoin beyond the singular Maginot Line attack. As mentioned above, Bitcoin and many other coins have forked; see this history. Hundreds of coins have died due to lack of interest by miners and developers.

It could also be argued that between 2015-2017, Bitcoin underwent a social, off-chain attack by multiple different groups attempting to exert their own influence and ideology onto the ecosystem. The end result was a permanent fracture, a divorce which the principal participants still lob social media bombs at one another. There isn’t enough room to discuss it here, but the astroturfing actions by specific people and companies in order to influence others is worth looking into as well. And it worked.

On p. 71 they write:

The caveat, of course, is that if bad actors do control more than 50 percent of the computing power they can produce the longest chain and so incorporate fraudulent transactions, which other miners will unwittingly treat as legitimate. Still, as we’ve explained, achieving that level of computing power is prohibitively expensive. It’s this combination of math and money that keeps Bitcoin secure.

I probably would change some of the wording because with proof-of-work chains (and basically any cryptocurrency), there are no terms of service or end user license agreement or SLA. At most there is only de facto governance and certainly not de jure.

What does that mean? It means that we really can’t say who the “bad actors” are since there is no service agreement. Barring an administrator, who is the legitimate authority in the anarchic world of cryptocurrencies? The original pitch was: if miners want to choose to build on another tree or fork, it’s their decision to do so… they don’t need anyone’s permission to validate blocks and attempt to update the chain as they want to. The next edition should explicitly say who or what is an attacker or what a fraudulent transaction is… these are points I’ve raised in other posts and book reviews.

Also, the authors mention that computational resources involved in PoW are “prohibitively expensive” here. So again, to be consistent they likely should remove “low-cost” in other places.

On p. 71 and 72 they write:

In solving the double-spend problem, Bitcoin did something else important: it magically created the concept of a “digital asset.” Previously, anything digital was too easily replicated to be regarded as a distinct piece of property, which is why digital products such as music and movies are typically sold with licensing and access rights rather than ownership. By making it impossible to replicate something of value – in this case bitcoins – Bitcoin broke this conventional wisdom. It created digital scarcity.

No it did not. This whole passage is wrong. As we have seen with forks and clones, there really is no such thing as this DRM-for-money narrative. This should be removed in the next edition.

Scarcity effectively means rivalrous, yet anyone can copy and clone any of these anarchic chains. PoW might make it relatively expensive to do a block reorg on one specific chain, but it does not really prevent someone from doing what they want with an identically cloned chain.

For instance, here is a list of 44 Bitcoin forked tokens that arose between August 2017 and May 2018. In light of the Bitcoin and Bitcoin Cash divorce, lobbying exchanges to recognize ticker symbols is also worth looking into in a future edition.

On p. 73 they write:

Many startups that were trying to build a business on top of Bitcoin, such as wallet providers and exchanges, were frustrated by an inability to process their customers’ transactions in a timely manner. “I’ve become a trusted third party,” complained Wences Casares, CEO of bitcoin wallet and custodial service Xapo. Casares was referring to the fact that too many of his firms’ transactions with its customers had to be processed “off-chain” on faith that Xapo would later settle the transaction on the Bitcoin blockchain.

This is one of the most honest statements in the book. The entire cryptocurrency ecosystem is now dominated by intermediaries.

Interestingly, Xapo moved its main office from Palo Alto to Switzerland days after Ripple was fined by FinCEN for violating the BSA. Was this just a coincidence?

On p. 73 they wrote:

Making blocks bigger would require more memory, which would make it even more expensive to operate a miner, critics pointed out. That could drive other prospective miners away, and leave Bitcoin mining even more concentrated among a few centralized players, raising the existential threat of collusion to undermine the ledger.

This wasn’t really the argument being made by the “small blockers.” Rather, it was disk space (not memory) that was — at the time — perceived as a limitation for retail (home) users in the long run. Yet it has been a moot point for both Bitcoin and Bitcoin Cash as the price per gigabyte for a hard drive continues to decline over time… and because in the past year, on-chain transactions on both chains have fallen from their peak in December 2017.

In practice, the “miners” that that authors refer to are the roughly 15 to 20 or so mining pools that in a given day, create the blocks that others build on. Nearly all of them maintain these nodes at a cloud provider. So there is already a lot of trust that takes place (e.g., AWS and Alibaba are trusted third parties). Because of economies of scale, spinning up a node (computer) in AWS is relatively inexpensive.

It really isn’t discussed much in the book, but the main argument throughout the 2nd half of 2017 was about UASF — a populist message which basically said miners (mining pools) didn’t really matter. Followers of this philosophy emphasized the need to run a node at home. For instance, if a UASF supporter based in rural Florida is attempting to run a node from his home, there could be a stark difference between the uptime and bandwidth capacity he has at home versus what AWS provides.

On p. 74 they write:

Without a tally of who’s who and who owns what, there was no way to gauge what the majority of the Bitcoin community, composed of users, businesses, investors, developers, and miners, wanted. And so, it all devolved into shouting matches on social media.

I wrote about this phenomenon in Appendix A in a paper published in November 2015. And what eventually happened was a series of off-chain Sybil attacks by several different tribes, but especially by promoters of UASF who spun up hundreds — thousands of nodes — and acted as if those mattered.

Future editions should also include a discussion on what took place at the Hong Kong roundtable, New York agreement, and other multilateral governance-related talks prior to the Bitcoin Cash fork.

On p. 74 they write:

A hard-fork-based software change thus poses a do-or-die decision for users on whether to upgrade or not. That’s bad enough for, say, word processing software, but for a currency it’s downright problematic. A bitcoin based on the old version could not be transferred to someone running software that support the new version. Two Bitcoins. Two versions of the truth.

The authors actually accidentally proved my earlier point: that public chains, specifically, proof-of-work chains, cannot prevent duplication or forks. Proof-of-work only makes it resource intensive to do double-spend on one specific chain.

This is one of the reasons why regulated financial organizations likely will continue to not issue long lifecycle instruments directly onto an anarchic chain like Bitcoin: because by design, PoW chains are forkable.

Also, future editions may want to modify this language because there are some counterarguments from folks like Vitalik Buterin that state: because hard forks are opt-in and thus lead to cleaner long-term outcomes (e.g., less technical debt).

On p. 75 they write a lot about Lightning Network, stating:

So, there are no miners’ fees to pay and no limit on how many transaction can be done at any time. The smart contracts prevent users from defrauding each other while the Bitcoin blockchain is used solely as a settlement layer, recording new balance transactions whenever a channel is opened or closed. It persists as the ultimate source of proof, a guarantee that all the “off-chain” Lightning transactions are legitimate.

What is not discussed in this edition is that:

  1. Lightning has been massively hyped with still relatively subdued traction
  2. Lightning is a separate network – it is not Bitcoin – and thus must be protected and secured through other non-mining means
  3. Lightning arguably distorts the potential transition to a fee-based Bitcoin network in much the same way that intermediaries like Coinbase do. That is to say, users are paying intermediaries the fees instead of miners thus prolonging the time that miners rely on block rewards (as a subsidy) instead of user fees.

Also, it bears mentioning that Bitcoin cannot in its current form act as a legal “settlement layer” as it cannot provide definitive settlement finality as outlined in the PFMIs (principle #8).

On p. 75 they write:

The SegWit/Lightning combination was in their minds the responsible way to make changes. They had a duty, they believed, to avoid big, disruptive codebase alterations and instead wanted to encourage innovators to develop applications that would augment the powers of the limited foundational code. It’s a classic, security-minded approach to protocol development: keep the core system at the bottom layer of the system simple, robust, and hard to change – some of the words “deliberately dumb” – and thus force innovation “up the stack” to the “application layer.” When it works you get the best of both worlds: security and innovation.

The authors should revise this because this is just repeating the talking points of specific Core developers, especially the last line.

Empirically it is possible to create a secure and “innovative” platform… and do so with multiple implementations of a specification. We see that in other cryptocurrencies and blockchain-related development efforts including Ethereum. The Bitcoin Core participants do not have a monopoly on what is or is not “security minded” and several of them are vocally opposed to supporting multiple implementations, in part, because of the politics around who controls the BIP process.

In fact, it could be argued that by insisting on the SegWit/Lightning approach, they caused a disruption because in point of fact, the amount of code that needed to be changed to increase the block size is arguably less than what was needed to build, verify, and release SegWit.

It’s not worth wading deep into these waters in this review, but the next edition of this book should be more even handed towards this schism.

On p. 76 they write:

But a group of miners with real clout was having none of it. Led by a Chinese company that both mined bitcoin and produced some of the most widely used mining equipment, this group was adamantly opposed to SegWit and Lightning. It’s not entirely clear what upset Jihan Wu, CEO of Bitmain, but after lining up with early Bitcoin investor and prominent libertarian Roger Ver, he launched a series of lobbying efforts to promote bigger blocks. One theory was that Bitmain worried that an “off-chain” Lightning solution would siphon away transaction fees that should be rightly going to miners; another was that because such payment channel transactions weren’t traceable as on-chain transactions, Chinese miners were worried that their government might shut them down. Bitmain’s reputation suffered a blow when revelations emerged that its popular Ant-miner mining rigs were being shipped to third-party miners with a “backdoor” that allowed the manufacturer-cum-miner to shut its opponents’ equipment down. Conspiracy theories abounded: Bitmain was planning to subvert SegWit. The company denied this and vowed to disable the feature. But trust was destroyed.

There is a lot of revisionism here.

But to start with, in the process of writing this review I reached out and contacted both Roger Ver and separately an advisor at Bitmain. Both told me that neither of the authors of this book had reached out to them for any comment. Why would the authors freely quote Bitcoin Core / SegWit developers to get their side of this debate but not reach out to speak with two prominent individuals from the other side to get their specific views? The next edition should either include these views and/or heavily revise this section of the book.

There are a few other problems with this passage.

Multiple different groups were actively lobbying and petitioning various influential figures (such as exchange operators) during this time period, not just Jihan and Roger. For instance, as mentioned above, the Hong Kong roundtable and New York agreement were two such examples. Conversely, SegWit and UASF was heavily promoted and lobbied by executives and affiliates at Blockstream and a handful of other organizations.

Regarding this “backdoor,” let’s rewind the clock and look at the overt / covert tempest in a teapot.

Last April Bitmain was alleged by Greg Maxwell (and the Antbleed campaign) of having maybe kinda sorta engaged in something called covert mining via Asicboost. Jimmy Song and others looked into it and said that there was no evidence covert was happening. At the time, some of the vocal self-identified “small block” supporters backing UASF, used this as evidence that Bitmain was a malicious Byzantine actor that must be purged from Bitcoinland. At the time, Greg proposed changing the PoW function in Bitcoin in order to prevent covert Asicboost from working.

In its defense, Bitmain stated that while Asicboost had been integrated into the mining equipment, it was never activated… partly because of the uncertain international IP / patent claims surrounding Asicboost. Recently, they announced a firmware upgrade that miners could activate overt Asicboost… a few days after another organization did (called “braiins”).

So why revisit this?

Two months ago Sia released code which specifically blocked mining equipment from Bitmain and Innosilicon. How and why this action is perceived as being fair or non-political is very confusing… they are definitely picking favorites (their own hardware). Certainly can’t claim to be sufficiently decentralized, right?

Yet in this section of the book, they don’t really touch on how key participants within the tribes and factions, represented at the time. Peruse both lists and look at all of the individuals at the roundtable that claim to represent “Bitcoin Core” in the governance process versus (the non-existent) reps from other implementations.

Even though the divorce is considered over, the tribes still fling mud at one another.

For example, one of the signatories of the HK roundtable, Adam Back, is still heckling Bitmain for supposedly not being involved in the BIP process. Wasn’t participation supposed to be “voluntary” and “permissionless”? Adam is also now fine with “overt” Asicboost today but wasn’t okay with it 18 months ago. What changed? Why was it supposedly bad for Bitmain to potentially use it back then but now it’s kosher because “braiins” (Slush) is doing it? That seems like favoritism.

Either way, the book passage above needs to be rewritten to include views from other camps and also to remove the still unproven conspiracy theories.

On p. 76 they write:

Meanwhile, original bitcoin went on a tear, rallying by more than 50 percent to a new high above $4,400 over a two-week period. The comparative performance of the pair suggested that small-block BTC and the SegWit reformers had won.

The next edition should change the wording because this comes across one-sided.

While an imperfect comparison, a more likely explanation is that of a Keynesian beauty contest. Most unsophisticated retail investors had heard of Bitcoin and hadn’t heard of Bitcoin Cash. Bitcoin (BTC) has brand recognition while Bitcoin Cash and the dozens of other Bitcoin-named forks and clones, did not.

Based on anecdotes, most coin speculators do not seem to care about the technical specifications of the coins they buy and typically keep the coins stored on an intermediary (such as an exchange) with the view that they can sell the coins later to someone else (e.g., “a greater fool“).

On p. 77 they write:

Bitcoin had gone through a ridiculous circus, one that many outsiders naturally assumed would hurt its reputation and undermine its support. Who wants such an ungovernable currency? Yet here was the original bitcoin surging to new heights and registering a staggering 650 percent gain in less than twelve months.

The problem with cherry picking price action dates is that, as seen in the passage above, it may not age well.17

For example, during the write-up of this review, the price of bitcoin declined from where it was a year ago (from over $10,000 then down to around $4,000). What does that mean? We can all guess what happened during this most recent bubble, but to act like non-tech savvy retail buyers bought bitcoin (BTC) because of SegWit is a non sequitur. No one but the tribalists in the civil war really cared.

On p. 77 they write:

Why? Well, for one, Bitcoin had proven itself resilient. Despite its civil war, its blockchain ledger remained intact. And, while it’s hard to see how the acrimony and bitterness was an advantage, the fact that it had proven so difficult to alter the code, to introduce a change to its monetary system, was seen by many as an important test of Bitcoin’s immutability.

There are a few issues here.

What do the authors mean by the “blockchain ledger remained intact”? I don’t think it was ever a question over whether or not copies of the Bitcoin blockchain (and/or forks thereof) would somehow be deleted. Might want to reword this in the future.

Segwit2x / Bitcoin Cash proponents were not trying to introduce a change to Bitcoin’s monetary system. The supply schedule of bitcoins would have stayed the same. The main issue was: a permanent block size increase from 1 MB to at least 2 MB. That proposal, if enacted, would not have changed the money supply.

What do the authors mean by “Bitcoin’s immutability”? The digital signatures are not being reversed or changed and that is what provides transactions the characteristic of “immutability.”

It is likely that the authors believe that a “hard fork” means that Bitcoin is not immutable. That seems to conflate “immutability” of a digital signature with finality (meaning irreversibility). By design, no proof-of-work coin can guarantee finality or irreversibility.

Also, Bitcoin had more than a dozen forks prior to the block size civil war.

On p. 77 and 78 they write:

Solid censorship resistance was, after all, a defining selling point for Bitcoin, the reason why some see the digital currency becoming a world reserve asset to replace the outdated, mutable, fiat-currency systems that still run the world. In fact, it could be argued that this failure to compromise and move forward, seen by outsiders as Bitcoin’s biggest flaw, might actually be its biggest feature. Like the simple, unchanging codebase of TCP/IP, the gridlocked politics of the Bitcoin protocol were imposing secure rigidity on the system and forcing innovation up the stack.

This is not what “censorship resistance” means in the context of Bitcoin. Censorship resistance is narrow and specific to what operators of miners could do. Specifically, the game theory behind Nakamoto Consensus is that it would be costly (resource intensive) for a malicious (Byzantine) actor to try and attempt to permanently censor transactions due to the amount of hashrate (proof-of-work) a Byzantine actor would need to control (e.g., more than 50%).

In contrast, what the authors described in this book was off-chain censorship, such as lobbying by various special interest groups at events, flamewars on Twitter, removing alternative views and voices on reddit, and via several other forms.

The “world reserve asset” is a loaded phrase that should be clarified in the next edition because the passage above comes across a bit like an Occupy Wall Street speech. It needs more of an explanation beyond the colorful one sentence it was given. Furthermore, as I predicted last year, cryptocurrencies continue to rely on the unit-of-account of “fiat systems” and shows no signs of letting up in this new era of “stablecoins.”

The authors definitely need to remove the part that says “unchanging codebase of TCP/IP” because this is not true. TCP/IP is a suite of protocol standards and its constituent implementations continue to evolve over time. There is no single monolithic codebase that lies unchanged since 1974 which is basically the takeaway from the passage above.18

In fact, several governing bodies such as IFTF and IAB continue to issue RFCs in order to help improve the quality-of-service of what we call the internet. It is also worth pointing out that their analogy is flawed for other reasons discussed in: Intranets and the Internet. In addition, the next version of HTTP won’t be using TCP.

As far as whether innovation will move “up the stack” remains to be seen but this seems to be an argument that the ends justify the means. If that is the case, that appears to open up a can of worms beyond the space for this review.

On p. 78 there is a typo: “BTH” instead of “BCH”

On p. 78 they write:

That’s what BTC, the original Bitcoin, promises with its depth of talent at Core and elsewhere. BTH can’t access such rich inventiveness because the community of money-focused bitcoin miners can’t attract the same kinds of passionate developers.

Strongly recommend removing this passage because it comes across as a one-sided marketing message rather than a balanced or neutral explanation using metrics. For instance, how active are the various code repositories for Bitcoin Core, Unlimited, and others? The next edition should attempt to measure how to measure “depth.”

For example, Bitmain has invested $50 million into a new fund focused on Bitcoin Cash called “Permissionless Ventures.” 2-3 years from now, what are the outcomes of that portfolio?

On p. 78 they write about permissioned blockchains:

Under these arrangements, some authority, such as a consortium of banks, choose which entities get to participate in the validation process. It is, in many respects, a step backward from Nakamoto’s achievement, since it makes the users of that permissioned system dependent once again, on the say-so of some trusted third party.

This is a common refrain throughout the book: that the true innovation was Bitcoin.

But it’s an apples-to-oranges comparison. Both worlds can and will co-exist because they were designed for different operating environments. Bitcoin cannot provide the same finality guarantees that “permissioned chains” attempt to do… because it was designed to be forkable. That’s not necessarily a flaw because Satoshi wasn’t trying to create a solution to a problem banks had. It’s okay to be different.

On p. 79 they write:

Most importantly, permissioned blockchains are more scalable than Bitcoin’s, at least for now, since their governance doesn’t depend upon the agreement of thousands of unidentified actors around the world; their members can simply agree to increase computing power whenever processing needs rise.

This doesn’t make sense at all. “Permissioned chains” in the broadest sense, do not use proof-of-work. As a result, there is no computational arms race. Not once have I been in a governance-related meeting involving banks in which they thought the solution to a governance-related issue was increasing or decreasing computational power. It is a non sequitur and should be removed in the next edition.

Also, there are plenty of governance issues involving “permissioned chains” — but those are typically tangential to the technical challenges and limitations around scaling a blockchain.

On p. 79 they write:

To us, permissionless systems pose the greatest opportunity. While there may well be great value in developing permissioned blockchains as an interim step toward a more open system, we believe permissionlessness and open access are ideals that we should strive for – notwithstanding the challenges exposed by Bitcoin’s “civil war.”

The authors repeat this statement in a couple other areas in the book and it doesn’t really make sense. Why? Because it is possible for both operating environments to co-exist. It doesn’t have to be us versus them. This is a false dichotomy.

Also, if any of these “permissioned chains” are actually put into production, it could be the case that end users could have “open access” to the platform, with the exception of participating in the validation of blocks. That’s pretty much how most coin users experience a cryptocurrency network today (e.g., via permissioned endpoints on Coinbase).19

On p. 80 they write:

The problem was that Bitcoin’s single-purpose currency design wasn’t ideally suited for these non-currency applications.

A side note maybe worth mentioning in a footnote is that Satoshi did attempt to build a marketplace early on but gave up.

On p. 81 they mention Nick Szabo with respect to smart contracts. Could be worth exploring the work of Martín Abadi which predates Szabo (the idea of distributed programs that perform authorizations predates Szabo’s “smart contracts”).  Mark S Miller has also done work in this area.

On p. 82 they write about Ethereum:

“Android for decentralized apps.” It would be an open platform much like Google’s smartphone operating system, on which people could design any new application they wanted and run it, not on a single company-owned server but in a decentralized manner across Ethereum’s ownerless network of computers.

This is probably not the best analogy because there is a difference between Google Android and Android Open Source Project. One of them includes proprietary tech. Also, Google can and does add and remove applications from the Play store on a regular basis based on its terms and conditions.

Lastly, someone does in fact own each of the computers that constitute the Ethereum blockchain… mining farms are owned by someone, mining pools are owned by someone, validating nodes are owned by someone. And so forth.

On p. 82 they write about Vitalik Buterin:

Now he was building a universally accessible, decentralized global supercomputer.

The next edition should drop the “supercomputer” verbiage because the Ethereum chain is only as powerful as the least powerful mining pool node… which in practice is typically a common computer located in a cloud provider such as AWS. This isn’t something like Summit over at Oak Ridge.

On p. 82 they write:

Now, with more than six hundred decentralized applications, or Dapps, running on Ethereum, he is looking vindicated. In just the first eleven months of 2017, the system’s internal currency, ether, rose from just over $8 to more than $400. By then the entire market cap for ether stood at $39 billion, a quarter that of Bitcoin’s. The success has made the wunderkind Buterin an instant multi-millionaire and turned him into a cultlike figure for the holders of ether and related tokens who’ve become rich.

The next version of the book should explicitly spell out what are the metrics for success. If it is solely price of a coin going up, what happens when the price of the coins goes down like it has in the past year?

For instance, ether (ETH), peaked in mid-January at around $1,400 and has been hovering near $100 the past several weeks. Does that mean Vitalik is no longer vindicated? Also, what is he vindicated from?

Lastly, it would be worth exploring in the next edition what Dapps are currently being used on a regular basis. As of this writing, the most popular Dapps are gambling apps (like proof-of-weak-hands / FOMO3D) and a few “decentralized exchanges” (DEX).

On p. 82 they write:

Ethereum co-founder Joseph Lubin only added to the complexity when he setup ConsenSys, a Brooklyn-based think tank-like business development unit tasked with developing new use cases and applications of the technology.

ConsenSys markets itself as a “venture studio” — a bit like YCombinator which incubates projects and provides some seed financing to get it off the ground. These projects are typically referred to as “spokes” (like a hub-and-spoke model).  As of this writing there are over 1,100 employees spread across several dozen spokes.  There is more to it than that and it would be interesting to see it explored in the next edition.

On p. 83 they write:

For example, the Parity Wallet, which was designed by Ethereum co-founder and lead architect Gavin Wood as a way to seamlessly engage, via a browser, with Ethereum smart contracts, lost $30 million in a hack.

Actually, Parity had a couple issues in 2017 and it is likely that the book may have been sent to publication around the same time the bigger problem occurred on November 13, 2017. The second one involved a Parity-developed multisig wallet… and $150 million in ether that is now locked away and cannot be accessed (barring a hardfork). Most developers — including those at Parity — characterize this instance as a “bug” that was accidentally exploited by a developer.

On p. 84 they write:

These kinds of dynamics, with large amounts of money at stake, can foster concerns that founders’ interests are misaligned with other users. Ethereum’s answer was the not-for-profit Ethereum Foundation, which was tasked with managing the pool of ether and other assets from the pre-mine and pre-sale- a model since used by many of the ICO token sales.

It would be interesting to explore how this foundation was created and how it evolved and who manages it today. For instance, at one point in 2014 there were conversations around creating a commercial, for-profit entity led in part by Charles Hoskinson who later left and founded Cardano.

On p. 85 they write about The DAO:

After a few modest coding changes failed, they settled on a drastic fix: Ethereum’s core developers “hard-forked” the Ethereum blockchain, implementing a backward-incompatible software update that invalidated all of the attacker’s transactions from a certain date forward. It was a radical move. To many in the cryptocurrency community, it threw into question Ethereum’s all-important claim to immutability. If a group of developers can force a change in the ledger to override the actions of a user, however unsavory those actions are, how can you trust that ledger won’t be tampered with or manipulated again in the interest of one group over another? Does that not destroy the whole value proposition?

This passage should probably be revised because of the usage of the word immutable.

Also, it could be argued that Bitcoin Core and other “core” groups act as gate keepers to the BIP process (or its equivalent) could lobby on behalf of special interest groups to push specific code changes and/or favor certain outcomes on behalf of specific stakeholders.

In either case, it is the miners that ultimately install and use the code. While some developers (like Bitcoin Core) are highly influential, without miners installing and running software, the rules on the network cannot be changed.

See Sufficiently Decentralized Howeycoins.

On p. 85 they write:

Well, in many respects, the Ethereum team operated as policymakers do during real-world crises. They made hard decisions that hurt some but were ultimately taken in the interests of the greater good — determined, hopefully, through as democratic a process as possible. The organizers went to great lengths to explain and gain support for the hard fork.

The next edition should strive to be more specific here: what exactly made the decision making around the hard fork democratic. Who participated, who didn’t participate. And so forth.

Continuing on p. 85:

And, much like the Segwit2x and other Bitcoin reform pro-miners didn’t accept it. For all intents and purposes, the fix was democratic – arguably, much more so than non-participatory democratic models through which crisis policymaking is enacted by national governments. And since Ethereum is more of a community of software engineers than of cryptocurrency investors, it was less contentious than Bitcoin’s struggle over hard-fork proposals.

This makes very little sense as it is written because the authors don’t define or specify what exactly made any of the decision making democratic. Who was enfranchised? Who got to vote and make decision? Also, how do the authors know that Ethereum is “more of a community of software engineers than of cryptocurrency investors.” Is there any hard numbers to back that assertion up?

And lastly how do we measure the level of contentiousness? Is there an objective measure out there?

On p. 85 they write about Ethereum Classic:

This created much confusion and some interesting arbitrage opportunities – as well as some lessons for bitcoin traders when their own currency split two years later – but it can also be viewed as the actions of a dissenting group non-violently exercising their right to secede. More than a year later, Ethereum Classic is still around, though it trades at a small fraction of Ethereum’s value, which means The DAO attacker’s funds – whose movements on the public Ethereum blockchain have been closely watched – are of lower value than if they’d been preserved in ETH.

I don’t think we can really say for sure how much the The DAO fund (and child DAO fundss) would be worth since that is an alternative timeline.

Also, there are some vocal maximalists that have created various Ethereum-branded tribes which are okay with The DAO attacker having access to those funds. Will be interesting to see if there are any sociological studies to reference in a new edition.

On p. 86 they write:

These hacks, and the scrambles to fix them, seem nuts, right? But let’s put them in perspective. First, is this monetary chaos anything less unsettling than the financial crisis of 2008? Or the audacity of the subsequent Wall Street trading scandals?

This is a whataboutism. Also, strangely the authors are saying the bar for judgement is as low as the financial engineering and socialized loses of the GFC. Isn’t the narrative that cryptocurrencies are supposed to be held to a higher standard because the coin creators seek to architect a world that doesn’t have arbitrary decision making?

On p. 87 and 88 they write:

When the FBI auctioned the 144,000 bitcoins (worth $1.4 billion as of late November 2017) that it seized from Ross Ulbricht, the convicted mastermind of the Silk Road illicit goods marketplace, those coins fetched a significantly higher price than others in the market. The notion was that hey had now been “whitewashed” by the U.S. government. In comparison, other bitcoins with a potentially shady past should be worth less because of the risk of future seizure. That’s hardly fair: imagine if the dollar notes in your wallet were hit with a 10 percent tax because the merchant knew that five years ago, unbeknownst to you, they had been handled by a drug dealer. To avoid these distortions and create a cryptocurrency that works more like fungible cash, Wilcox’s Zcash uses sophisticated “zero-knowledge proofs” to allow miners to prove that holders of the currency aren’t’ double-spending without being able to trace the addresses.

What the authors likely mean by “whitewashed” is probably “cleansed.” In the US there have been discussions on how this could take place via the existing Uniform Commercial Code (see Section 3.3). To date, there hasn’t been a specific update to the UCC regarding this issue (yet) but it has been discussed in multiple places such as Bitcoin’s lien problem.

As far as the “fairness” claim goes, it could be worth revising the passage to include a discussion around nemo dat quod non habet and bona fide purchasers. Legal tender is explicitly exempt because of the very scenario the authors describe. But cryptocurrencies aren’t legal tender, so that exemption doesn’t exist (yet).

Lastly, only “shielded” transactions in Zcash provide the functionality described in the passage above… not all transactions on Zcash utilize and opt-in to this mode.

On p. 89 they describe EOS. Worth updating this section because to-date, they have not achieved the 50,000 transactions per second on mainnet that is stated in the book. There has also been a bit of churn in the organizations as Ian Grigg (named in the book) is no longer at the organization, nor are employees 2 through 5.

On p. 90 they write about proof-of-stake:

One criticism of the model has been that without the electricity consumption costs of proof of work, attackers in a proof-of-stake system would simply mine multiple blocks to boost their chances of inserting a fraudulent one into the ledger.

This “nothing at stake” scenario is a valid criticism of some early attempts at building a proof-of-stake mechanism but isn’t valid for some other proposals (such as, theoretically, “Slasher“).

Chapter 4

On p. 91 they write:

It was clear that investors bought into Brave’s promise of a token that could fundamentally change the broken online advertising industry.

How do we know this was clear to investors? Anecdotally it appears that at least some investors participated as speculators, with the view that the token price would increase. A future edition should probably change the wording unless there is a reference that breaks down the motivation of the investors.

What about Civil?

On p. 96 they write about StorJ

Other models include that of the decentralized computer storage platform Storj, which allows hard-drive-starved users to access other’s excess space in exchange for storj tokens.

Could be worth pointing out that Storj had two public ICOs and it is still unclear if that will result in legal or regulatory issues. Putting that aside, currently Storj has just under 3,000 users. This stat is worth looking at again in future versions, especially in light of less-than-favorable reviews.

On p. 98 they talk about BAT:

The point is that it’s all on the community – the society of BATs users – not on external investors, to bear the risk of that happening

[…]

Once the 1 billion tokens had sold out in twenty-four seconds, it was revelead that only 130 accounts got them and that the biggest twenty holdings covered more than two-thirds of the total. Those distortions left many investors angry.

There is currently a debate around whether these types of ICOs in 2017 (and earlier) were investment contracts (e.g., securities). In the US, this has led to more than a hundred subpoenas with some quiet (and not so quiet) enforcement action.

The language used in this chapter (and elsewhere in the book) suggests that the participants involved in the ICO were investing with the expectation of profit in a common enterprise managed by the Brave team. Worth revisiting in a future edition.

On p. 102 they write about ERC20 tokens:

But because of the ERC-20 solution, they didn’t need to develop their own blockchain with all the independent computing power that would require. Instead, Ethereum’s existing computing network would do the validation for them.

This piggybacking may be initially helpful to token issuers but:

  1. it is a form of centralization which could have legal and regulatory consequences with respect to being viewed as not sufficiently decentralized
  2. in the long run this could create a top-heavy issue as miners are not being compensated in proportion to the amount of value they are trying to secure (see Section 2.1)

On p. 102 they write:

This low-cost solution to the double-spending challenge launched a factory of ICOs as issuers found an easy way to tap a global investing community. No painful negotiations with venture capitalists over dilution and control of the board. No wining and dining of Wall Street investment banks to get them to put their clients on the order book. No wait for SEC approval. Just straight to the general public: here are more tokens; they’re cool, buy them. It was a simple, low-cost formula and it lowered the barrier to entry for some brilliant innovators to bring potentially world-changing ideas to market. Unfortunately, it was also a magnet for scammers.

Could be worth updating this section to include more details on the scams and fraud that took place throughout 2017. Many of the tokens that raised capital from outside investors during this time not only have not delivered a working product, but in most cases, the token underperformed both ether and bitcoin.

Also bears mentioning that beginning in late 2017 through the time of this writing, there was a clear divergence between public sale ICOs and private sale of tokens… the latter of which basically involves a private placement to accredited investors, including the same type of funds that the passage above eschewed.

On p. 104 they write about Gnosis:

With the other 95 percent controlled by the founders, those prices meant that the implied valuation of the entire enterprise stood at $300 million – a figure that soon rose above $1 billion as the Gnosis token promptly quadrupled in price in the secondary market. By Silicon Valley standards, it meant we had the first ICO “unicorn.”

Actually, Ethereum did an ICO back in 2014 — and as the price of ether (measured in USD) increased, it is likely that ETH could be seen as the first ICO “unicorn.” But that’s not really an apples-to-apples comparison though because ETH (or Gnosis) holders do not have say, voting rights, which equity holders of a traditional company would.  Plus, “marketcap” is a poorly defined metric in the coin world (see Section 6).

On p. 104 and 105 they write:

One day, Paul received a call from a businessman who’d read one of his stories in The Wall Street Journal and wanted more information about how to get started and where to get legal advice. The man said he’d tried to reach the lawyer Marco Santori, a partner at the law firm Cooley who’d been quoted in the story, but couldn’t get through. Santori later told us that he was getting so many calls about ICOs, he simply couldn’t answer them all.

In January 2018, the SEC Chairman gave a public speech in which he singled out the “gatekeepers” (legal professionals) regarding the advice they gave clients. Could be worth revisiting who the main ICO-focused lawyers and lawfirms were during this time period and where they are now and if there were any enforcement actions undertaken.

On p. 105 they write:

“Most of these will fail,” said Olaf Carlson-Wee, the CEO of Polychain Capital, citing poorly conceived ideas and a lack of coding development. “Most of these are bad ideas from the beginning.” That said, Polychain is an investment firm that Carlson-Wee founded expressly to invest in these new projects. In fact, most of the people investing seemed to be taking a very VC-like approach to it. They understood that most of the projects would fail. They just hoped to have a few chips down on the one winner.

Carlson-Wee’s comments seem accurate insofar as the inability of many projects to execute and deliver based on the narratives each pitched investors. However, it could be worth digging into Polychain itself, which among other drama, may have “flipped” tokens due to a lack of lock-up periods.20 21

On p. 108 and 109 they compare Blue Apron and block.one (EOS). Even though it’s not an apples-to-apples comparison could be worth revisiting this in the future because of the churn and drama with both organizations.

Pages 110 and 111 aged quickly as most of the ICO rating websites and newsletters have fallen to the wayside due to payola scandals and inability to trust the motivations behind the ratings.

Similarly, the authors describe accredited investors and SAFTs. There is a typo here as the authors likely mean that an individual needs to have an income of $200,000 not $200 million. The SAFT model has fallen out of favor for several reasons that could be explored in a future version.22

On p. 112 they write about ASICs:

But developers of Vertcoin have shown that it’s also possible to create a permanent commitment to ASIC-resistance by introducing something from the real, non-digital world of social organizations: a pact. If the platform’s governing principles include a re-existing commitment from all users of the coin to accept a fork – a change to the code – that would add new, ASIC-resistant elements as soon as someone develops such a chip, the coin’s community can protect the distributed, democratic structure of a GPU-led mining network.

Putting aside the fanciful ASIC-resistance utopia that is peddled by some coin issuers, the passage above raises a couple flags.

Who gets to decide what the governing principles are? Do these principles get to change overtime? If the answer is yes to either, who are those decision makers and how are they chosen? So far, there has not really been any “democratic” way of participating in that decision making process for any cryptocurrency. How can that change in the future?

Why is a GPU-led mining network considered more democratic? In practice, most of these farms are located in basically the same type of structure and geography as ASIC-based equipment… in some cases they are swapped out over time. In light of the Sia coin fork… which clearly shows favoritism at play, a future edition of the book could include a chart or spectrum explaining how the mining of one coin more or less democratic versus another.

On p. 113 there is more discussion of ICOs and token sales as it relates to “open protocols” but in practice it has largely been reinventing the same intermediated system we have to do, but with fewer check and balances or even recourse for retail investors.

On p. 114 they speculate that:

This speaks to our broader notion that tokens, by incentivizing the preservation of public goods, might help humanity solve the Tragedy of the Commons, a centuries-in-the-making shift in economic reality.

That’s a big claim that requires evidence to back it. Let’s revisit next time.

On p. 115 they write:

Much like Wall Street bond traders, these will “make markets” to bring financial liquidity to every countervailing pair of tokens – buying some here and selling other there – so that if anyone wants to trade 100 BATs for a third of a Jackson Pollock, they can be assured of a reasonable market price.

But how does a blockchain actually do this? They mention Lykke as an startup that could help match tokens at a fair price… but to-date there is nothing listed on Lykke that really stands out as different than what you could fine at other cryptocurrency exchanges. Perhaps a future version of the book could walk the reader step-by-step through how a blockchain can enable this type of “fairness” whereas previous technology could not.

On p. 116 they discuss several projects they label as “interoperability” initiatives including Interledger, Cosmos, sidechains, and Lightning. It may be helpful for the reader to see a definition for what “interoperability” means because each of these projects — and its supporters — may be using the term in a different way. Perhaps a comparison chart showing the similarities and differences?

On p. 117 they write:

In an age where U.S. presidents peddle “alternative facts” and pundits talk openly about our “post-truth society,” using the truth machine to put a value on honesty sounds appealing.

On the face of it, that end goal seems like more than a stretch because it’s unclear how a blockchain (today) controls off-chain behavior. The example they go on to use is Augur. But Augur is a futures market and there are many of those already in existence. How would Augur or a futures market “with a blockchain” prevent politicians from lying? Walking through this process could be helpful to the reader.

On p. 118 they mention Erick Miller’s investment fund called CoinCircle… and a couple of “special value tokens” called Ocean Health Coin and Climate Coin.

Maybe worth following up in the next edition because neither has launched and each of the pitches sounds very handwavy, lacking in substance. Also, one of the ICOs CoinCircle advised – Unikrn – is part of a class action lawsuit.

Most of p. 119 and 120 come across as more political discourse, which is fine… but unclear how a blockchain in some form or fashion could directly impact the various issues raised. Perhaps the next edition could include a chart with a roadmap in how they see various projects achieving different milestones?

Chapter 5

If the reader is unfamiliar with IoT then the first 1/3 of chapter five is pretty helpful and informative.

Then there are some speedbumps.

On p. 130 they write about authenticating and verifying transactions involving self-driving cars:

The question, though, is: would this transaction be easily processed if it were based on a private blockchain? What are the chances, in a country of more than 230 million cars, that both vehicles would belong to the same closed network run by a group of permissioned validating computers? If they weren’t part of the same network, the payment couldn’t go through as the respective software would not be interoperable.

This is a red herring. Both “permissioned” and “permissionless” blockchains have similar (though not identical) scaling challenges. And interoperability is a separate issue which has been a known hurdle for years.

In fact, recently the Hyperledger Fabric team announced that it now supports the EVM. This comes a couple weeks after Hyperledger joined EEA as a member and vice-versa. Maybe none of these immediate efforts and experiments amount to many tangible outputs in the short-run but it does show that several ecosystems are attempting to be less tribal and more collaborative.

Also, the issue of payments is also separate from a blockchain-related infrastructure. Payments is a broad term and can include, for instance, a proposed central bank digital currency (e.g., “cash on ledger”)… or it can involve plugging into existing external payment systems (like Visa or ACH). It would be helpful if the next edition was more specific.

Continuing on p. 130 they write:

Other car manufacturers might not want to use a permissioned verification system for which, say GM, or Ford, is the gatekeeper. And if they instead formed a consortium of carmakers to run the system, would their collective control over this all-important data network create a barrier to entry for newer, startup carmakers? Would it effectively become a competition-killing oligopoly?

These are possible scenarios and good questions but this is kind of an unfair characterization of consortia. Let’s flip it around: why shouldn’t carmakers be allowed to build their own blockchains or collaborate with others who do? Do they need someones permission to do so? Depending on local regulations, maybe they do need permission or oversight in a specific jurisdiction. That could be worth exploring in another version.

On this topic they conclude that:

A truly decentralized, permissionless system could be a way around this “walled-garden” problem of siloed technology. A decentralized, permissionless system means any device can participate in the network yet still give everyone confidence in the integrity of the data, of the devices, and of the value being transacted. A permissionless system would create a much more fluid, expansive Internet of Things that’s not beholden to the say-so and fees of powerful gatekeepers.

That sounds well and good and a bit repetitive from earlier passages which said something similar. The passage aboves seems to be redefining what make something “permissioned” and “permissionless.” What does it mean for every device participate on a ‘decentralized, permissionless system’? Does that mean that each device is capable of building and/or creating a new block? If so, how do they choose which chain to build on?

And why is it so hard to imagine a world in which open-sourced platforms are also permissioned (e.g., validation is run by known, identifiable participants)… and these platforms are interoperable. Could be worth exploring because that scenario may be just as likely as the ones presented in this chapter.

Lastly, how does a “permissionless system” create a more fluid IoT world? These claims should be explored in more detail next time.

On p. 131 and 132 they write about IOTA, a specific project that markets itself as a purpose-built blockchain for IoT devices. But that project is beset by all kinds of drama that is beyond the scope of this review. Suffice to say that the February software build of IOTA cannot be run on most resource constrained IoT devices.

On p. 138 they mention in passing:

Exergy is a vital concept for measuring energy efficiency and containing wasteful practices; it doesn’t just measure the amount of energy generated but also the amount of useful work produced per each given amount of energy produced.

Fun fact: back in May 2014 I wrote an in-depth paper on Bitcoin mining that utilized the concept of “exergy.”

On pages 139-145 they talk about a number of vendors, use-cases, and platforms typically centered around the supply chain management world. Would be interesting to see which of these gained traction.

On p. 147 they write:

Blockchain-proven digital tokens point to what blockchain consultant and entrepreneurs Pindar Wong calls the “packetization of risk.” This radical idea introduces a negotiable structure to different phases of the chain. Intermediate goods that would otherwise be encumbered by a pre-established chain of unsettled commitments can instead be put out to bid to see if other buyers want to take on the rights and obligations associated with them.

It would be useful in this explanation to have a diagram or two to explain what Pindar proposes because it is a bit hard to follow.

On p. 147 they write:

This is why many people believe that the concept of a “circular economy” – where there is as much recycling as possible of the energy sources and materials in production – will hinge on the transparency and information flows that blockchain systems allow.

Does this mean that other “non-blockchain” systems do not allow transparency and information flows?

On p. 147 they write:

The principal challenge remains scaling. Open-to-all, permissionless blockcahins such as Bitcoin’s and Ethereum’s simply aren’t ready for the prime time of global trade. If all of the world’s supply chains were to pass their transactions through a permissionless blockchain, there would need to be a gargantuan increase in scalability, either off-chain or on-chain. Solutions may come from innovations such as the Lightning Network, discussed in chapter three, but they are far from ready at this stage.

Can we propose a moratorium on additional usages of “Lightning” in the next edition unless there is significant adoption and usage of it? Also, it is unclear why the worlds supply chains should for some reason be connected onto an anarchic chain: what is the benefit of putting this information onto a chain whose operators are unaccountable if a fork occurs?

On p. 148 they write:

Instead, companies are looking at permissioned blockchains, which we’ll discuss in more detail in chapter six. That makes sense because many big manufacturers think of their supply chains as static concepts, with defined members who have been certified to supply this or that component to a finished product. But in the rapidly changing world of the Fourth Industrial Revolution, this might not be the most competitive option. Emerging technologies such as additive manufacturing, where production can be called up anywhere and delivered by anyone with access to the right software files and a sufficiently configured 3D printer, are pointing to a much more fluid, dynamic supply-chain world, where suppliers come and go more easily. In that environment, a permissionless system would seem necessary. Once scaling challenges are resolved, and with robust encryption and reliable monitoring systems for proving the quality of suppliers work, permissionless blockchain-based supply chains could end up being a big leveler of the playing field for global manufacturing.

There are way too many assumptions in this paragraph to not have somewhere written that there are many assumptions.

Is a blockchain really needed in this environment? If so, a future edition should explain how a 3D printer would be more useful connected to a blockchain than some other network. Also, this seems to be a misuse of the term “permissionless” — why does the network need to be anarchic? How would the supply chain benefit from validators who are unknown?

On p. 148 they write:

It will be difficult to marry that old-world body of law, and the human-led institutions that manage it, with the digital, dematerailized, automated, and de-nationalized nature of blockchains and smart contracts.

How are blockchains “de-nationalized”? As of this writing there are probably a couple dozen publicly announced state-sponsored blockchain platforms of some kind (including various cryptocurrency-related initiatives). This phrase should probably be removed.

On p. 150 they write about the Belt and Road Blockchain Consortium:

Hence the opportunity for blockchain technologies to function as an international governance system. Hong Kong’s role will be important: the territory’s British legal traditions and reputation for respecting property rights have made it a respected safehouse for managing intellectual property and other contractual obligations within international trade. If the blockchain is to be inserted into global trade flows, the region’s bridging function may offer the fastest and most impactful route. For Hong Kong residents who want the territory to retain its British legal traditions, that role could be a vital protection against Beijing undermining them.

From publicly available information it is unclear if the Belt and Road Blockchain Consortium has seen much traction. In contrast, the Ping An-led HKMA trade finance group has turned on its “blockchain” platform.

Chapter 6

On p. 151 they wrote about a public event held on August 5, 2015:

As far as bankers were concerned, Bitcoin had no role to play in the existing financial system. Banking institutions thrive on a system of opacity in which our inability to trust each other leaves us dependent on their intermediation of our transactions. Bankers might give lip service to reforming the inner workings of their system, but the thought of turning it over to something as uncontrollable as Bitcoin was beyond heresy. It wasn’t even conceivable.

This is a bit of a red herring. I’ve been in dozens of meetings with banks and financial institutions over the past four years and in general there is consensus that Bitcoin – the network – is not fit for purpose as financial market infrastructure to handle regulated financial instruments. Why should banks process, say payments, on a network in which the validators are neither accountable if a problem occurs nor directly reachable in case users want to change or upgrade the software? Satoshi wasn’t trying to solve interbank-related issues between known participants so this description shouldn’t be seen as a slight against Bitcoin.

Now, bitcoin, the coin, may become more widespread in its usage and/or ownership at banks. In fact, as of this writing, nearly every large commercial bank owns at least a handful of cryptocurrencies in order to pay off ransomware issues. But the passage above seems to conflate the two.

See also: Systemically important cryptocurrency networks

On p. 151 they write:

At the same time, committed Bitcoin fans weren’t much interested in Wall Street, either. Bitcoin, after all, was designed as an alternative to the existing banking system. An improvement.

This is a bit revisionist. For instance, the original whitepaper uses the term “payment” twelve times. It doesn’t discuss banking or specific product lines at banks. Banks do a lot more than just handle payments too. Satoshi attempted to create an alternative payment system… the “be your own bank” narrative is something that other Bitcoin promoters later added.

On p. 152 they discuss the August 2015 event:

In essence, Symbiont was promising “blockchain without bitcoin” – it would maintain the fast, secure, and cheap distributed network model, and a truth machine at its center that validated transactions, but it was not leaderless, permissionless, and open to all. It was a blockchain that Wall Street could control.

This has some hyperbole in it (does “Wall Street” really control it?) but there is a kernel that the authors could expand on in the next version: vendor-dependence and implementation monopoly. In the example above, the authors could have pointed out that the same market structure still exists, so what benefit does a blockchain provide that couldn’t already be used? In addition to, what do the authors mean by “cheap distributed network model” when they have (rightly) mentioned that proof-of-work is resource intensive? As of this writing, Symbiont uses BFT-SMaRt and doesn’t use PoW.

Also, the authors seem to conflate “open to all” with blockchains that they prefer. Yet nearly all of the blockchains they seem to favor (like Bitcoin) involve relatively centralized gatekeeping (BIP process) and permissioned edges via exchanges.

Again, when I wrote the paper that created this distinction in 2015, the “permissionless’ness” is solely an attribute of mining not on sending or receiving coins.

On p. 153 they write:

But these permissioned systems are less open to experiments by computer engineers, and access rights to the data and software are subject to the whim of the official gatekeeper. That inherently constrains innovation. A private blockchain, some say, is an oxymoron. The whole point of this technology is to build a system that is open, accessible, and public. Many describe them with the generic phrase “distributed ledger technology” instead of “blockchain.”

This is why it would be important for the authors to explicitly mention what “blockchain” they are referring to. In many cases their point is valid: what is the point of using a blockchain if a single entity runs the network and/or monopolizes the implementation?

Yet their argument is diminished by insisting on using loaded phrases like “open” and “public.” What does it mean to be open or public here? For instance, in order to use Bitcoin today, you need to acquire it or mine it. There can be substantial entry and exit costs to mining so most individuals typically acquire bitcoins via a trusted, permissioned gateway (an exchange). How is that open?

Lastly, the euphemism of using the term “blockchain” instead of using the term “bitcoin” dates back to late 2015 with investors like Adam Draper explicitly stating that was his agenda. See: The great pivot?

On p. 156 they write:

Though Bitcoin fans frowned upon permissioned blockchains, Wall Street continued to build them. These tweaked versions of Bitcoin shared various elements of the cryptocurrency’s powerful cryptography and network rules. However, instead of its electricity-hungry “proof-of-work” consensus model, they drew upon older, pre-Bitcoin protocols that were more efficient but which couldn’t achieve the same level of security without putting a centralized entity in charge of identifying and authorizing participants.

There is a few issues with this:

  1. Which Bitcoin fans are the authors referring to, the maximalists?
  2. Proof-of-work is not an actual consensus model
  3. There are newer Byzantine fault tolerant protocols such as HoneybadgerBFT which are also being used by different platforms

Their last sentence uses a false dichotomy because there are different security assumptions based on the targeted operating environment that result in tradeoffs. To say that Bitcoin is more or less secure versus say, an instance of Fabric is a bit meaningless because the users have different expectations that the system is built around.

On p. 157 they write about R3:

The biggest winner in this hiring spree was the research and development company R3 CEV, which focused on the financial industry. It sought to build a distributed ledger that could, on the one hand, reap the benefits of real-time securities settlement and cross-industry harmonization but, on the other, would comply with a vast array of banking regulations and meet its members’ proprietary interest in keeping their books private.

This seems like a dated pitch from a couple use cases from mid-2015 because by the time I departed in September 2017, real-time securities settlement wasn’t the primary use (for Corda) being discussed externally.

Also, the “CEV” was formally removed from the name about two years ago. See: A brief history of R3 – the Distributed Ledger Group

By the spring of 2017, R3 CEV had grown its membership to more than one hundred. Each member firm paid annual dues of $250,000 in return for access to the insights being developed inside the R3 lab. Its founders also raised $107 million in venture funding in 2017, mostly from financial institutions.

I don’t think the full details are public but the description of the funding – and what was exchanged for it – is not quite correct. The original DLG members got equity stakes as part of their initial investment. Also, as far as the Series A that was announced in May 2017, all but one of the investors was a financial institution of some kind.

On p. 157 they write:

Some of that money went to hire people like Mike Hearn, a once prominent Bitcoin developer who dramatically turned his back on the cryptocurrency community with an “I quit” blog post complaining about the bitter in fighting. R3 also hired Ian Grigg – who later left to join EOS – another prominent onetime rebel from the cryptocurrency space.

To be clear on the timing: Mike Hearn began working at R3 in October 2015 (along with James Carlyle).23 Several months later he published a widely discussed post about Bitcoin itself. Based on his public talks since January 2016, he still seems to have some passing interest in cryptocurrencies; he did a reddit AMA on /r/btc this past spring.

Also, Ian Grigg has since left EOS and launched a new startup, Chamapesa.

On p. 157 they write about me:

Before their arrival, R3 had also signed on Tim Swanson as research director. Swanson was a distributed ledger/blockchain analyst who was briefly enthused by Bitcoin but who later became disillusioned with the cryptocurrency’s ideologues. He became a vocal, anti-Bitcoin gadfly who seemed to delight in mocking its travails.

This is also revisionist history.

Not to dive too much into the weeds here – and ignoring everything pre-2014 – a quick chronology that could be added if the authors are looking to be balanced is the following:

Over the course of under four months, after doing market research covering a few dozen projects, I published Great Chain of Numbers in March 2014… which was a brief report that quickly became outdated.

Some of the feedback I received – including from Bob, an expert at a data analytics startup – was that I was too charitable towards the claims of cryptocurrency promoters at payment processors and exchanges.24 That is to say, Bob thought that based on analytics, the actual usage of a payment processor was a lot lower than what the executives from that processor told me. In retrospect, Bob was absolutely correct.

A couple months later I ended up – by accident – doing an interview on Let’s Talk Bitcoin. The original guest did not show up and while we (the co-hosts) were waiting, I ended up getting into a small debate with another co-host about the adoption and usage of cryptocurrencies like Bitcoin. You can listen to it here and read the corresponding long-read that provides more citations and supporting links to back up the comments I made in the podcast.

From this moment forward (June 2014) – because I fact-checked the claims and did not blindly promote cryptocurrencies – I quickly became labeled as a pariah by several of the vocal cryptotwitter personalities. Or as the authors of this book unfairly label me: “anti-Bitcoin gadfly.” To call this order of events “disillusionment” is also unfair.

Lastly, a quick fix to the passage in the book: I technically became a formal advisor to R3 at the end of 2014 (after their second roundtable in Palo Alto)… and then later in August 2015 came on full-time as director of market research (although I subsequently wore several different hats).

On p. 158 they write:

Of a similar breed was Preston Byrne, the general counsel of Eris Ltd., later called Monax which designed private blockchains for banks and a variety of other companies. When Byrne’s Twitter feed wasn’t conveying his eclectic mix of political positions – pro-Trump, anti-Brexit, pro-Second Amendment, pro-encryption, anti-software utopianism – or constant references to marmots (the Eris brand’s mascot), it poured scorn on Bitcoin’s fanatic followers. For guys like Swanson and Byrne, Bitcoin’s dysfunctional governance was a godsend.

Again, chronologically I met Preston online in early 2014. He helped edit and contributed to Great Chain of Numbers. Note: he left Eris last year and recently joined a US law firm.

This is an unfair description: “For guys like Swanson and Byrne, Bitcoin’s dysfunctional governance was a godsend.”

This is unfair for several reasons:

  • We were hardly the first people to spend time writing about the governance problems and frictions involved in cryptocurrencies. For instance this includes: Ray Dillinger, Ben Laurie, and likely dozens of others. Nor were we the only ones discussing it in 2014 and 2015.
  • Preston and I have also – separately – written and discussed issues with other cryptocurrencies and blockchains during that time frame… not just Bitcoin.

Thus to single us out and simultaneously not mention others who had similar views, paints us as some type of cartoonish villains in this narrative. Plus, the authors could have reached out to us for comment. Either way, the next version should attempt to fix the word choices and chronology.

I reached out to Preston Byrne and he provided a response that he asked to have included in a footnote.25

On p. 159 they write more about R3:

On the one hand, regulators were comfortable with the familiar membership of R3’s consortium: they were more accustomed to working with bankers than with T-shirt-and-jeans-wearing crypto-investors. But on the other, the idea of a consortium of the world’s biggest banks having say-so over who and what gets included within the financial system’s single and only distributed ledger conjured up fears of excessive banking power and of the politically unpopular bailouts that happened after the crisis. Might Wall Street be building a “too-big-to-fail” blockchain?

This is some strange criticism because many of the developers of Corda (and other pieces of software) wore casual and business casual attire while working in the offices.

Corda is not the “single and only distributed ledger” being used by enterprises. Nearly all of the banks that invested in R3 also invested in other competing entities and organizations including Axoni and Digital Asset. Thus the statement in the middle should be updated to reflect that R3 does not have some kind of exclusivity over banking or enterprise relationships.

Michael Casey has said multiple times in public (even prior to the existence of Corda) that R3 was a “cartel coin” or “cartel chain” — including on at least one panel I was on with him in January 2016.  This is during a time in which R3 did not have or sell any type of product, it was strictly a services-focused company.  Maybe the organization evolves in the future – there may even be some valid criticism of a mono-implementation or a centrally run notary – but even as of this writing there is no Corda Enterprise network up and running.26

Lastly, all of these banks are members of many different types of consortia and multilateral bodies. Simply belonging to or participating in organizations such as IOSCO does not mean something nefarious is afoot.

On p. 160 they write:

The settlement time is also a factor in a financial crisis, and it contributed to the global panic of 2008.

This is a good point and it would be great to go into further details and examples in the next edition.

On p. 160 they write:

This systemic risk problem is what drew Blythe Masters, one of the key figures behind blockchain innovation on Wall Street, into digital ledger technology; she joined Digital Asset Holdings, a blockchain service provider for the financial system’s back-office processing tasks, as CEO in 2014.

Two small quibbles:

  1. Pretty sure the authors meant to say “distributed” not “digital”
  2. Blythe Masters joined as CEO in March 2015, not in 2014

On p. 162 they write:

It’s just that to address such breakdowns, this new wave of distributed ledger system designers have cherry-picked the features of Nakamoto’s invention that are least threatening to the players in the banking system, such as its cryptographic integrity, and left aside its more radical, and arguably more powerful, features, especially the decentralized, permissionless consensus system.

This is revisionist history. Satoshi bundled together existing ideas and libraries to create a blockchain. He or she did not invent cryptography from the ground up. For more details, readers are encouraged to read “Bitcoin is worse is better” from Gwern Branwen. IT systems at financial institutions were (and are) already using various bits of cryptography, encryption, permissioning, data lakes, and distributed storage methods.

Furthermore, because the participants in the financial system are known, there is no reason to use proof-of-work, which is used in Bitcoin because the participants (miners) are unknown.

Lastly, the authors touch on it and do have a valid point about market structure being changed (or unchanged) and should try to expand that in the next edition.

On p. 162 they write:

The DTCC, which settles and clears the vast majority of US stock and bond trades, handles 10,000 transactions per second; Bitcoin, at the time of this writing, could process just seven. And as strong as Bitcoin’s value – and incentive-based security model has proven to be, it’s not at all clear that a few hundred million dollars in bitcoin mining costs would deter rogue traders in New York or London when government bond markets offer billion dollar fraud opportunities.

Firstly, at the time of this writing, on-chain capacity for Bitcoin (even with Segwit activated) is still less than seven transaction per second.

Second, it is not clear how “rogue traders” in New York or London would be able to directly subvert the mining process of Bitcoin. Are the authors thinking about the potential security delta caused by watermarked tokens and colored coins?27

On p. 162 they write:

Either way, for the firms that R3 and Digital Asset serve – managers of the world’s retirement funds, corporate payrolls, government bond issuances, and so forth -these are not security risks they can afford. For now – at least until solutions as Lightning provide large-scale transaction abilities – Bitcoin isn’t anywhere near ready to service Wall Street’s back-office needs.

But Bitcoin is not fit for purpose for regulated financial institutions. Satoshi wasn’t trying to solve back-office problems that enterprises had, why are the authors intent on fitting a round peg in a square hole?

Also, Lightning isn’t being designed with institutions in mind either. Even if one or more of its implementations becomes widely adopted and used by Bitcoin users, it still doesn’t (currently) meet the functional and non-functional requirements that regulated institutions have. Why market it as if it does?

On p. 162 they write:

There are also legal concerns. R3’s Swanson has argued that the mere possibility of a 51 percent attack – that scenario in which a minder gains majority control of a cryptocurrency network’s computing power and fraudulently changes transactions – means that there can never be “settlement finality” in a cryptocurrency transaction. That of perpetual limbo is a scenario that Wall Street lawyers can’t live with, he said. We might retort that the bailouts and various other deals which banks reversed their losses during the crisis make a mockery of “finality,” and that Bitcoin’s track record of irreversibility is many magnitudes better than Wall Street’s. Nonetheless, Swanson’s catchy critique caught on among bankers. After all, he was preaching to the choir.

So there are a few issues with this statement.

I did not invent the concept of “settlement finality” nor did ‘Wall Street lawyers.’  The term dates back decades if not centuries and in its most recent incarnation is the product of international regulatory bodies such as BIS and IOSCO. Regulated financial institutions – starting with financial market infrastructures – are tasked with reducing risk by making sure the payment systems, for instance, are irreversible. Readers should peruse the PFMIs published in 2012.

The next issue is, they make it sound like I lobbied banks using some ‘gotcha’ loophole to scare banks from using Bitcoin. Nowhere in my presentations or speeches have I justified or handwaved away the (criminally?) negligent behavior of individuals at banks that may have benefited from bailouts. This is another unfair characterization that they have painted me as.

To that point, they need to be more specific about what banks got specific transactions reversed. Name and shame the organizations and explain how it would not be possible in a blockchain-based world. Comparing Bitcoin with ‘Wall Street’ doesn’t make much sense because Bitcoin just handles transfers of bitcoin, nothing else. ‘Wall Street’ encompasses many different product lines and processes many other types of transactions beyond payments.

All in all, painting me as a villain is weak criticism and they should remove it in their next edition.

On p. 163 they write about permissioned ledgers:

They’re not racing each other to win currency rewards, which also means they’re not constantly building a wasteful computing infrastructure a la Bitcoin.

They say that as if it is a good thing. Encourage readers to look through the energy costs of maintaining several different proof-of-work networks that handle almost no commerce.

On p. 163 they write:

That’s why we argue that individuals, businesses, and governments really need to support the various hard-core technical solutions that developers are pursuing to help permissionless ledgers like Bitcoin and Ethereum overcome their scaling, security, and political challenges.

This agenda has been pretty clear throughout the book, though it may be more transparent to the reader if it comes earlier in chapter 1 or 2.

From a historical perspective this argument doesn’t make much sense. If Karl Benz had said the same thing in the 19th century about getting engineers to build around his car and not others. Or the Wright Brothers had been ‘more successful’ at suing aerospace competitors. Why not let the market – and its participants – chose to work on platforms they find of interest?

On p. 165 they write about the MIT Digital Currency Inititative but do not disclose that they solicit financial support from organizations such as central banks, some of whom pay up to $1 million a year to collaborate on research projects. Ironically, the details of this program are not public.

On p. 167 they write:

A broad corporate consortium dedicated to a mostly open-source collaborative approach, Hyperledger is seeking to develop nothing less than a common blockchain / distributed ledger infrastructure for the global economy, one that’s targeted not only at finance and banking but also at the Internet of Things, supply chains, and manufacturing.

The next edition should update that passage. All of the projects incubated by the Hyperledger Project are open sourced, there is no “mostly.” And not all of these projects involve a blockchain, some involve identity-related efforts.28

On p. 169 and again on p. 172 the authors quote Joi Ito who compares TCP/IP with “walled gardens” such as AOL and Prodigy.

That is comparing apples-and-oranges. TCP/IP is a suite of protocols, not a business. AOL and Prodigy are businesses, not protocols. AOL used a proprietary protocol and you could use TCP/IP via a gateway. Today, there are thousands of ‘walled gardens’ called ISPs that allow packets to jump across boundaries via handshake agreements. There is no singular ‘Internet’ but instead there are thousands of intranets tied together using common standards.

Readers may be interested in: Intranets and the Internet

On p. 173 they write:

Permissionless systems like those of Bitcoin and Ethereum inherently facilitate more creativity and innovation, because it’s just understood that no authorizing company or group of companies can ever say this or that thing cannot be built.

How are they measuring this? Also, while each platform has its own terms of service, it cannot be said that you need explicit permission to build an application on top of a specific permissioned platform. The permissioning has to do with how validation is handled.

On p. 173 they write:

It’s the guarantee of open access that fosters enthusiasm and passion for “permissionlessness” networks That’s already evident in the caliber and rapid expansion in the number of developers working on public blockchain applications. Permissioned systems will have their place, if nothing else because they can be more easily programmed at this early stage of the technology’s life to handle heavier transaction loads. But the overarching objective for all of us should be to encourage the evolution of an open, interoperable permissionless network.

This is just word salad that lacks supporting evidence. For the next edition the authors should tabulate or provide a source for how many developers are working on public blockchain applications.

The passage above also continues to repeat a false dichotomy of “us versus them.” Why can’t both of these types of ‘platforms’ live in co-existence? Why does it have to be just one since neither platform can fulfill the requirements of the other?

It’s like saying only helicopters provide the freedom to navigate and that folks working on airplanes are only doing so because they are less restricted with distances. Specialization is a real.

On p. 173 they conclude with:

There’s a reason we want a world of open, public blockchains and distributed trust models that gives everybody a seat at the table. Let’s keep our eyes on that ball.

This whole chapter and this specific statement alone comes across as preachy and a bit paternalistic. If the message is ‘permissionlessness’ then we should be allowed to pursue our own goals and paths on this topic.

Also, there are real entry and exit costs to be a miner on these public chains so from an infrastructure point of view, it is not really accurate to say everybody gets a seat at the table.

Chapter 7

This is probably their strongest chapter. They do a good job story telling here. Though there were few areas that were not clear.

On p. 179 they write:

But as Bitcoin and the blockchain have shown, the peer-to-peer system of digital exchange, which avoids the cumbersome, expensive, and inherently exclusionary banking system, may offer a better way.

The authors have said 5-6 times already that proof-of-work networks like Bitcoin can be very costly and wasteful to maintain. It would be helpful to the reader for the authors to expand on what areas the banking system is expensive.

And if a bank or group of banks used a permissioned blockchain, would that reduce their expenses?

On p. 181 they write about time stamps:

The stamp, though, is incredibly powerful. And that, essentially, is the service that blockchains provide to people. This public, recognizable open ledger, which can be checked by any time by anybody, acts in much the same way as the notary stamp: it codified that certain action took place at a certain time, with certain particulars attached to it, and it does this in a way that the record of that transaction cannot be altered by private parties, whether they be individuals or governments.

In the next edition the authors should differentiate time stamps and all the functions a notary does. Time stamps may empower notaries but simply stamping something doesn’t necessarily make it notarized. We see this with electronic signatures from Hello Sign and Docusign.

Also, these blockchains have to be funded or subsidized in some manner otherwise they could join the graveyard of hundreds of dead coins.

On p. 181 they write about Factom and Stampery. It would be good to get an update on these types of companies because the founder of Stampery who they single out – Luis Ivan Cuende – has moved on to join and found Aragon.

On p. 183 they discuss data anchoring: taking a hash of data (hash of a document) and placing that into a blockchain so that it can be witnessed. This goes back to the proof-of-existence discussion earlier on. Its function has probably been overstated and is discussed in Anchor’s Aweigh.

On p. 184 they discuss Chromaway. This section should be updated because they have come out with their own private blockchain, Chromapolis funded via a SAFT.

On p. 185 they write:

The easier thing to do, then, for a reform-minded government, is to hire a startup that’s willing to go through the process of converting all of an existing registry, if one exists, into a digital format that can be recorded in a blockchain.

Why? Why does this information have to be put onto a blockchain? And why is a startup the right entity to do this?

On p. 186 they mention several companies such as Bitfury, BitLand, and Ubiquity. It would be good to update these in the next edition to see if any traction occurred.

On p. 187 they write:

They key reason for that is the “garbage-in/garbage-out” conundrum: when beginning records are unreliable, there’s a risk of creating an indisputable permanence to information that enshrines some abuse of a person’s property rights.

This GIGO conundrum doesn’t stop and isn’t limited to just the beginning of record keeping. It is an ongoing challenge, potentially in every country.

On p. 188-192 they describe several other use cases and projects but it is unclear why they can’t just use a database.

On p. 193 they write:

Part of the problem is that cryptocurrencies continue to sustain a reptutation among the general public for criminality. This was intensified by the massive “WannaCry” ransomware attacks of 2017 in which attackers broke into hospitals’ and other institutions’ databases, encrypted their vital files and then extorted payments in bitcoin to have the data decrypted. (In response to the calls to ban bitcoin that inevitably arose in the wake of this episode, we like to point that far more illegal activity and money laundering occurs in dollar notes, which are much harder to trace than bitcoin transactions. Still, when it comes to perception, that’s beside the point – none of these incidents help Bitcoin’s reputation.)

This is a whataboutism. Both actions can be unethical and criminal, there is no need to downplay one versus the other. And the reason why bitcoin and other cryptocurrencies are used by ransomware authors is because they are genuinely useful in their operating environment. Data kidnapping is a good use case for anarchic networks… and cryptocurrencies, by design, continue to enable this activity. The authors can attempt to downplay the criminal element, but it hasn’t gone away and in fact, has been aided by additional liquidity to coins that provide additional privacy and confidentiality (like Monero).

On p. 193 they write about volatility:

This is a massive barrier to Bitcoin achieving its great promise as a tool to achieve financial inclusion. A Jamaican immigrant in Miami might find the near-zero fees on a bitcoin transaction more appealing than the 9 percent it costs to use a Western Union agent to send money home to his mother.

This financial inclusion narrative is something that Bitcoin promoters created after Satoshi disappeared. The goal of Bitcoin — according to the whitepaper and announcement threads – wasn’t to be a new rail for remittance corridors. Maybe it becomes used that way, but the wording in the passage above as a “great promise” is misleading.

Also, the remittance costs above should be fact-checked at the very handy Save On Send site.

On p. 194 they write about BitPesa. Until we see real numbers in Companies House filings, it means their revenue is tiny. Yet the authors make it sound like they have “succeeded”:

The approach is paying dividends as evident in the recent success of BitPesa, which was established in 2013 and was profiled in The Age of Cryptocurrency. The company, which offers cross-border payments and foreign-exchange transactions in and out of Kenya, Nigeria, Tanzania, and Uganda, reported 25 percent month-on-month growth, taking its transaction volume midway through 2017, up from $1 million in 2016.

They also cited some remittance figures from South Korea to the Philippines which were never independently verified and are old.

On p. 194 they dive into Abra a company they described as a remittance company but earlier this year they pivoted into the investment app category as a Robinhood-wannabe, with a coin index.

On p. 196 they discuss the “Somalia dilemma” in which the entire country is effectively unable to access external financial systems and somehow a blockhain would solve their KYC woes. The authors then describe young companies such as Chainalysis and Elliptic which work with law enforcement to identify suspicious transactions. Yet they do not close the loop on the narrative as to how the companies would help the average person in Somalia.

On p. 198 they discuss a startup called WeTrust and mention that one of the authors – Michael – is an advisor. But don’t disclose if he received any compensation for being an advisor. WeTrust did an ICO last year. This is important because the SEC just announced it has fined and settled with Floyd Mayweather and DJ Khaled for violating anti-touting regulations.

Chapter 8

Chapter 8 dives into self-sovereign identity which is genuinely an interesting topic. It is probably the shortest chapter and perhaps in the next edition can be updated to reflect any adoption that took place.

On p. 209 they write about physical identification cards:

Already, in the age of powerful big data and network analytics – now enhanced with blockchain-based distributed trust systems to assure data integrity – our digital records are more reliable indicators of the behavior that defines who we are than are the error-prone attestations that go into easily forged passports and laminated cards.

How common and how easily forged are passports? Would be interesting to see that reference and specifically how a blockchain would actually stop that from happening.

On p. 212 they write about single-sign ons:

A group of banks including BBVA, CIBC, ING, Societe Generale, and UBS has already developed such a proof of concept in conjunction with blockchain research outfit R3 CEV.

Earlier they described R3 differently. Would be good to see more consistency and also an update on this project (did it go anywhere?).

On p. 213 they describe ConsenSys as a “think tank” but it is actually a ‘venture studio’ similar to an incubator (like 500 Startups). Later on p. 233 they describe ConsenSys as an “Ethereum-based lab”.

On p. 216 they write about Andreas Antonopoulos:

What we should be doing, instead of acting as judge and executioner and making assumptions “that past behavior will give me some insight into future behavior,” Antonpolous argues, is building systems that better manage default risk within lenders’ portfolios. Bitcoin, he sustains, has the tolls to do so. There’s a lot of power in this technology to protect against risk: smart contracts, multi-signature controls that ensure that neither of the two parties can run off with the funds without the other also signing a transaction, automated escrow arrangements, and more broadly, the superior transparency and granularity of information on the public ledger.

There are at least two issues with this:

Nowhere in this section do the authors – or Antonopolous – provide specific details for how someone could build a system that manages default risk on top of Bitcoin. It would be helpful if this was added in the next edition.
And recently, Antonopoulos claims to have been simply educating people about “blockchain technology” and not promoting financial products.

If you have followed his affinity marketing over the past 4-5 years he has clearly promoted Bitcoin usage as a type of ‘self-sovereign bank‘ — and you can’t use Bitcoin without bitcoins.29 He seems to be trying to have his cake and eat it too and as a result got called out by both Nouriel and Buttcoin.

On p. 219 they write:

If an attestation of identifying information is locked into an immutable blockchain environment, it can’t be revoked, not without both parties agreeing ot the reversal of the transaction. That’s how we get to self-sovereignty. It’s why, for example, the folks at Learning Machine are developing a product to prove people’s educational bona fides on Blockcerts, an MIT Media Lab-initiated open-source code for notarizing university transcripts that hashes those documents to the bitcoin blockchain. Note the deliberate choice of the most secure, permissionless blockchain, Bitcoin’s. A permissioned blockchain would fall short of the ideal because there, too, the central authority controlling the network could always override the private keys of the individual and could revoke their educational certificates. A permissionless blockchain is the only way to give real control/ownership of the document to the graduate, so that he/she can disclose this particularly important attribute at will to anyone who demands it.

This disdain for ‘permissioned blockchains’ is a red herring and another example of the “us versus them” language that is used throughout the book. If a blockchain has a central authority that can do what the authors describe, it would be rightly described as a single point of failure and trust. And this is why it is important to ask what ‘permissioned’ chain they had in mind, because they are not all the same.

They also need to explain how they measure ‘most secure’ because Bitcoin – as described throughout this review – has several areas of centralization include mining and those who control the BIP process.

On p. 219 they quote Chris Allen. Could be worth updating this because he left Blockstream last year.

Chapter 9

This chapter seemed light on details and a bit polemical.

For instance, on p. 223 they write:

Many of our politicians seem to have no ideas this is coming. In the United States, Donald Trump pushes a “Buy America First” campaign (complete with that slogan’s echoes of past fascism), backed by threats to raise tariffs, tear up trade deals, boot undocumented immigrants out of the country, and “do good deals for America.” None of this addresses the looming juggernaut of decentralized software systems. IoT systems and 3D printing, all connected via blockchains and smart-contract-triggered, on-demand service agreements, will render each presidential attempt to strong-arm a company into retaining a few hundred jobs in this or that factory town even more meaningless.

Putting the politics aside for a moment, this book does not provide a detailed blue print for how any of the technology listed will prevent a US president from strong-arming a company to do any specific task. How does a 3D printer connected to a blockchain prevent a president from executing on their agenda?

On p. 224 they write about universal basic income:

This idea, first floated by Thomas Paine in the eighteenth century, has enjoyed a resurgence on the left as people have contemplated how robotics, artificial intelligence, and other technologies would hit working-class jobs such as truck driving. But it may gain wider traction as decentralizing force based on blockchain models start destroying middle-class jobs.

This speculation seems like a non sequitur. Nowhere in the chapter do they detail how a “blockchain-based model” will destroy middle class jobs. What is an example?

On p. 227 they write:

In case you’re a little snobbish about such lowbrow art, we should also point out that a similar mind-set of collaborative creation now drives the world of science and innovation. Most prominently, this occurs within the world of open-source software development; Bitcoin and Ethereum are the most important examples of that.

If readers were unfamiliar with the long history of the free open source software movement, they might believe that. But this ignores the contributions of BSD, Linux, Apache, and many other projects that are regularly used each and every day by enterprises of all shapes and sizes.

Also, during the writing of this review, an open source library was compromised — potentially impacting the Copay wallet from Bitpay — and no one noticed (at first). Eric Diehl, a security expert at Sony, has a succinct post up on the topic:

In other words, this is an example of a software supply chain attack. One element in the supply chain (here a library) has been compromised. Such an attack is not a surprise. Nevertheless, it raises a question about the security of open source components.

Many years ago, the motto was “Open source is more secure than proprietary solutions.” The primary rationale was that many eyes reviewed the code and we all know that code review is key for secure software. In the early days of open source, this motto may have been mostly true, under some specific trust models ( see https://eric-diehl.com/is-open-source-more-secure/, Chapter 12 of Securing Digital Video…). Is it still true in our days?

How often do these types of compromises take place in open-source software?

On p. 232 they write:

Undaunted, an unofficial alliance of technologists, entrepreneurs, artists, musicians, lawyers, and disruption-wary music executives is now exploring a blockchain-led approach to the entire enterprise of human expression.

What does that even mean?

On p. 232 they write about taking a hash of their first book and inserting it into a block on the Bitcoin blockchain. They then quote Dan Ardle from the Digital Currency Council who says:

“This hash is unique to the book, and therefore could not have been generated before the book existed. By embedding this hash in a bitcoin transaction, the existence of the book on that transaction date is logged in the most secure and irrefutable recordkeeping system humanity has ever devised.”

These plattitudes are everywhere in the book and should be toned down in the next edition especially since Ardle – at least in the quote – doesn’t explain how he measures secure or irrefutable. Especially in light of hundreds of dead coins that were not sustainable.

On p. 233 they write:

The hope now is that blockchains could fulfill the same function that photographers carry out when they put a limited number of tags and signatures on reproduced photo prints: it turns an otherwise replicable piece of content into a unique asset, in this case a digital asset.

This seems to be solutionism because blockchains are not some new form of DRM.

Continuing on this topic, they write:

Copying a digital file of text, music, or vidoe has always been trivial. Now, with blockchain-based models, Koonce says, “we are seeing systems develop that can unequivocally ensure that a particular digital ‘edition’ of a creative work is the only one that can be legitimately transferred or sold.” Recall that the blockchain, as we explained in chapter three, made the concept of a digital asset possible for the first time.

This is empirically untrue. It is still trivially possible to download and clone a blockchain, nothing currently prevents that from happening. It’s why there are more than 2,000 cryptocurrencies at the time of this writing and why there are dozens of forks of Bitcoin: blockchains did not make the concept of a digital asset possible. Digital assets existed prior to the creation of Bitcoin and attempting to build a DRM system to prevent unauthorized copies does not necessarily require a blockchain to do.

On p. 238 they write:

Yet, given the amssive, multitudinous, and hetergeneous state of the world’s content, with hundreds of millions of would-be creators spread all over the world and no way to organize themselves as a common interest, there’s likely a need for a permissionless, decentralized system in which the data can’t be restricted and manipulated by a centralized institution such as a recording studio.

Maybe, but who maintains the decentralized system? They don’t run themselves and are often quite expensive (as even the authors have mentioned multiple times). How does a decentralized system fix this issue? And don’t some artists already coordinate via different interest groups like the RIAA and MPAA?

On p. 240 they discuss Mediachain’s acquisition by Spotify:

On the other hand, this could result in a private company taking a technology that could have been used publicly, broadly for the general good, and hiding it, along with its innovative ideas for tokens and other solutions, behind a for-profit wall. Let’s hope it’s not the latter.

This chapter would have been a bit more interesting if the authors weren’t as heavy handed and opinionated about how economic activities (like M&A) should or should not occur. To improve their argument, they could include links or citations for why this type of acquisition has historically harmed the general public.

Chapter 10

On p. 243 they write:

Bitcoin, with its new model of decentralized governance for the digital economy, did not spring out of nowhere, either. Some of the elements – cryptography, for instance – are thousands of years old. Others, like the idea of electronic money, are decades old. And, as should be evident in Bitcoin’s block-size debate, Bitcoin is still very much a work in progress.

This statement is strange because it is inconsistent with what they wrote on p. 162 regarding permissioned chains: “… cherry-picked the features of Nakamoto’s invention that are least threatening to the players in the banking system, such as its cryptographic integrity…”

In this section they are saying that the ideas are old, but in the passage above in chapter 6, they make it sound like it was all from Nakamoto. The authors should edit it to be one way or the other.

Also, Bitcoin’s governance now basically consists of off-chain shouting matches on social media. Massive influence and lobbying campaigns on reddit and Twitter is effectively how the UASF / no2x movement took control of the direction of the BIP process last year.

On p. 245 they write:

That can be found in the individual freedom principles that guide the best elements of Europe’s new General Data Protection Regulation, or GDPR.

All blockchains that involve cross-jurisdictional movement of data will likely face challenges regarding compliance with data privacy laws such as GDPR. Michele Finck published a relevant paper on this topic a year ago.

See also: Clouds and Chains

On p. 247 they write about if you need to use a blockchain:

Since a community must spend significant resources to prove transactions on a blockchain, that type of record-keeping system is most valuable when a high degree of mutual mistrust means that managing agreements comes at a prohibitively high price. (That price can be measured in various ways: in fees paid to middlemen, for instance, in the time it takes to reconcile and settle transactions, or in the fact that it’s impossible to conduct certain business processes, such as sharing information across a supply chain.) When a bank won’t issue a mortgage to a perfectly legitimate and creditworthy homeowner, except at some usurious rate, because it doesn’t trust the registry of deeds and liens, we can argue that the price of trust is too high and that a blockchain might be a good solution.

Not all blockchains utilize proof-of-work as an anti-Sybil attack mechanism, so it cannot be said that “a community must spend significant resources”.

In the next edition it would be interesting to see a cost / benefit analysis for when someone should use a blockchain as it relates the mortgage use case they describe above.

On p. 248 they talk about voting:

Every centralized system should be open for evaluation – even those of government and the political process. Already, startups such as Procivis are working on e-voting systems that would hand the business of vote-counting to a blockchain-based backend. And some adventurous governments are open to the idea. By piloting a shareholder voting program on top of Nasdaq’s Linq blockchain service, Estonia is leading the way. The idea is that the blockchain, by ensuring that no vote can be double-counted – just as no bitcoin can be double-spent – could for the first time enable reliable mobile voting via smartphones. Arguably it would both reduce discrimination against those who can’t make it to the ballot box on time and create a more transparent, accountable electoral system that can be independently audited and which engenders the public’s trust.

A month ago Alex Tapscott made a similar argument.

He managed to temporarily unite some of the warring blockchain tribes because he penned a NYT op-ed about how the future is online voting… powered by blockchains. Below is a short selection of some Twitter threads:

  • Arvind Narayanan, a CS professor at Princeton said this is a bad idea
  • Angela Walch, a law professor at St. Mary’s said this is a bad idea
  • Philip Daian, a grad student at Cornell said this is a bad idea.
  • Luis Saiz, a security researcher at BBVA said this is a bad idea
  • Joseph Hall, the Chief Technologist at the Center for Democracy & Technology said this a bad idea
  • Preston Byrne, a transatlantic attorney and father of marmotology said this is a bad idea
  • Matt Blaze, a CS professor at UPenn, said this is a bad idea

NBC News covered the reaction to Tapscott’s op-ed.  Suffice to say, the next edition should either remove this proposal or provide more citations and references detailing why this is a good idea.

Throughout this chapter projects like BitNation and the Economic Space Agency are used as examples of projects that are “doing something” — but none of these have gotten much traction likely because it’s doing-something-theater.

On p. 252 – 255 they uncritically mention various special interest groups that are attempting to influence decision makers via lobbying. It would be good to see some balance added to this section because many of the vocal promoters at lobbying organizations do not disclose their vested interests (e.g., coin positions).

On p. 255 they talk about “Crypto Valley” in Switzerland:

One reason they’ve done so is because Swiss law makes it easier to set up the foundations needed to launch coin offerings and issue digital tokens.

MME – the Swiss law firm that arguably popularized the approach described in this section – set up more than a dozen of these foundations (Stiftung) before stopping. And its creator, Luke Mueller, now says that:

“The Swiss foundation actually is a very old, inflexible, stupid model,” he said. “The foundation is not designed for operations.”

Could be worth updating this section to reflect what happened over the past year with lawsuits as well.

On p. 255 they write:

The next question is: what will it take for U.S. policymakers to worry that America’s financial and IT hubs are losing out to these foreign competitors in this vital new field.

This is FOMO. The authors should tabulate all of the companies that have left the US – or claim to leave – and look at how many jobs they actually set up overseas because of these laws. Based on many anecdotes it appears what happens in practice is that a company will register or hold an ICO overseas in say, Singapore or Panama, but then open up a development arm in San Francisco and New York. They effectively practice regulatory arbitrage whereby they bypass securities laws in one country (e.g., the US) and then turn around and remit the proceeds to the same country (the US).

On p. 263 they conclude the chapter with:

No state or corporation can put bricks around the Bitcoin blockchain or whitewash its record. They can’t shut down the truth machine, which is exactly why it’s a valuable place to record the voices of human experience, whether it’s our love poems or our cries for help. This, at its core, is why the blockchain matters.

Their description basically anthropromorphizes a data structure. It also comes across as polemical as well as favoritism towards one specific chain, Bitcoin. Furthermore, as discussed throughout this review, there are clear special interest groups – including VC-backed Bitcoin companies — that have successfully pushes Bitcoin and other cyrptocurrencies – into roadmaps that benefit their organizations.

Conclusion

Like their previous book (AoC), The Truth Machine touches on many topics but only superficially.  It makes a lot of broad sweeping claims but curious readers – even after looking at the references – are left wanting specifics: how to get from point A to point B.

There also seems to be an anti-private enterprise streak within the book wherein the authors condescendingly talk down efforts to build chains that are not anarchic. That becomes tiring because – as discussed on this blog many times – it is not a “us versus them” proposition.  Both types of blockchains can and do exist because they are built around different expectations, requirements, and operating environments.

In terms of one-sided narratives: they also did not reach out to several of the people they villify, such as both myself and Preston Byrne as well as coin proponents such as Roger Ver and Jihan Wu.  The next edition should rectify this by either dropping the passages cited above, or in which the authors reach out to get an on-the-record comment from.

Lastly, while some churn is expect, many of the phrases throughout the book did not age well because it relied on price bubbles and legal interpretations that went a different direction (e.g., SAFTs are no longer popular).  If you are still looking for other books to read on the topic, here are several other reviews.

Endnotes

  1. See A brief history of R3 — the Distributed Ledger Group []
  2. Developers of various coins will include “check points” which do make it virtually impossible to roll back to a specific state. Both Bitcoin and Bitcoin Cash have done this. []
  3. See Why the payment card system works the way it does – and why Bitcoin isn’t going to replace it any time soon by Richard Brown []
  4. See Learning from the past to build an improved future of fintech and Distributed Oversight: Custodians and Intermediaries []
  5. Unsurprisingly users want to be able to hold someone accountable for their lack of care and/or difficulty in safely and securely backing up their keys. []
  6. Ibid []
  7. Technically every orphaned block alters the blockchain, because you thought one thing and now you are asked to think another. []
  8. Readers may be interested in The Path of the Blockchain Lexicon by Angela Walch []
  9. Recall that generating hashes is a means to an end: to make Sybil attacks costly on a network with no “real” identities. []
  10. For instance, Selfish Mining []
  11. Albumatic -> Koala -> Chain.com the Bitcoin API company -> Chain.com the enterprise company, etc. []
  12. This is slightly reminiscent of Dr. Strangelove in which General Turgidson says, “I admit the human element seems to have failed us here.” []
  13. See The Revolving Door Comes to Cryptocurrency by Lee Reiners and Is Bitcoin Secretly Messing with the Midterms? from Politico []
  14. See also his role in attacks on CoiledCoin and BBQcoin []
  15. David Andolfatto, from the St. Louis Fed, also pointed this out back in May 2015, skip to the 28 min mark []
  16. See the “no” side of the debate: Can Bitcoin Become a Dominant Currency? []
  17. Ironically in his most recent op-ed published today, he asks people to “quit this ugly obsession with price.”  There are at least 3-4 instances of the co-authors using price as a metric for “strength” in this book. []
  18. See also this related thread from Don Bailey []
  19. Some exchanges, such as Gemini, want proof of mining activity. See also: What is Permissioned-on-Permissionless []
  20. See also the Polly Pocket Investor Day []
  21. Ryan Zurrer, second-in-command at Polychain, was recently fired from Polychain amid weak performance this year. []
  22. The whole public sale thing is problematic from a MSB perspective. The colorability of the position taken by Cooley in that section was questionable at the time and possibly indefensible now. []
  23. Mike wrote the first line of code for Corda over three years ago. []
  24. The initial conversation with Bob took place in San Francisco during Coin Summit. Bob later became a key person at Chainalysis. []
  25. According to Preston:

    Eris, now Monax, was the first company to look at the combination of cryptographic primitives that make up Bitcoin and attempt to use them to make business processes more efficient. In shorthand, the company invented “blockchains without coins” or “permissioned blockchains.”

    Bitcoin’s dysfunctional governance wasn’t a “godsend” for our business, as we weren’t competing with Bitcoin. Rather we were trying to dramatically expand the usecases for database software that had peer to peer networking and elliptic curve cryptography at its core, in recognition of the fact that business counterparties reconcile shared data extremely inefficiently and their information security could benefit from a little more cryptography.

    In exchange for our efforts, Bitcoiners of all shapes and sizes heaped scorn on the idea that any successor technology could utilize their technology’s components more efficiently. We responded with pictures of marmots to defuse some of the really quite vitriolic attacks on our company and because I like marmots; these little critters became the company’s mascot through that process.

    Subsequent developments vindicated my approach. Cryptographically-secure digital cash being trialled by Circle, Gemini, and Paxos utilizes permissioning, a concept that Circle’s Jeremy Allaire said was impossible in 2015 – “they’re not possible separately” – and I predict that as those USD coins seek to add throughput capacity and functionality they will migrate off of the Ethereum chain and onto their own public, permissioned chains which are direct conceptual descendants of Eris’ work.

    They will compete with Bitcoin in some respects, much as a AAA-rated bond or USD compete with Bitcoin now, but they will not compete with Bitcoin in others, as they will cater to different users who don’t use Bitcoin today and are unlikely to use it in the future.

    Ultimately, whether Eris’ original vision was right is a question of how many permissioned chains there are, operating as secure open financial services APIs as Circle and Gemini are using them now. I predict there will be rather a lot of those in production sooner rather than later. []

  26. Oddly the authors of the book do not name “Corda” in this book… they use the phrase: “R3’s distributed ledger” instead. []
  27. Readers may also be interested in reading the 2016 whitepaper from the DTCC []
  28. At the time of this writing there are: 5 incubated “Frameworks” and 6 incubated “Tools.” []
  29. Antonopolous recently gave a talk in Seattle where he promoted the usage of cryptocurrencies to exit the banking system.  Again, a user cannot use a cryptocurrency without absorbing the exposure and risks attached to the underlying coins of those anarchic networks. []
Send to Kindle

Leave a Reply

Your email address will not be published. Required fields are marked *