Appendix to Parasitic Stablecoins

[Note: this is part of a standalone document written by Martin Walker in late 2019. It has been edited and condensed as it provides important considerations surrounding the topic of stablecoins. For more context, be sure to read the accompanying Parasitic Stablecoins article.]

Introduction

In spite of the relative immaturity of “Stablecoins” as both an asset class and as a form of financial sector technology, they has recently attracted a huge degree of attention from regulators, central banks, academia, the media and many parts of the financial sector. This attention has particularly intensified since the announcement by Facebook of its own stablecoin (Libra) on June 18, 2019.

Reportedly prompted by this, a joint committee was formed by central banks from the G7 group of major economies, the International Monetary Fund (IMF) and the Bank for International Settlements (BIS).1 This group reported its own findings, focusing on potential regulatory and economic impact in October 2019.2

Defining stablecoins can be challenging business because there are already a significant number of variations and some of the most discussed stablecoins are still in development. The most basic and broadest definition includes three main characteristics,

  • They are intended to perform at least two of the main characteristics of money, acting as a means of exchange and as a short-medium term store of value
  • They use some variant of Distributed Ledger Technology (DLT) to record and transfer ownership in a similar way to cryptocurrencies such as Bitcoin and Ether
  • They are intended to have a value that is relatively stable compare to major currencies.
Characteristics of stablecoins

While most research on stablecoins focuses on the economic and regulatory implications, the purpose of the this paper is to present an analysis of the practical implications for key processes such as payments and settlement, not to mention the potential impact on systems within financial institutions and overall financial market infrastructure. Stablecoins as both an asset class and to some extent a form of financial sector. Consequently they have challenges to adoption in terms of competing with the current world and interacting with it.


Stability and Collateral

The most straightforward step to create a form of digital currency that has a stable value is to peg its value to a financial asset with a stable value. Most stablecoins are pegged in value to a specific currency. Tether is pegged in value to the U.S. dollar on a one-to-one basis. Others are pegged (or proposed to be pegged) to a basket of currencies. Libra was originally proposed to be pegged in value to a basket consisting of the U.S. dollar, euro, yen, British pound and Singapore dollar. Other stablecoins attempt to achieve a higher degree of stability by pegging their value to a basket of assets, including cryptocurrencies, in the belief that diversification alone will achieve a higher degree of stability. Finally there are stablecoins pegged in value to commodities such as gold or oil. Claiming to have a pegged value does not (as is discussed below) mean a stablecoin is fully backed by funds in that currency.

Maintaining a peg is much harder than simply claiming a stablecoin has a value pegged to another asset or basket of assets.3 The degree of stability depends on

  • The type of reserves
  • The proportion of reserves relative to the amount of stablecoins issued
  • The nature of the issuer of the stablecoins
  • The legal structure including the protection of the reserves from the issuers creditors in the event of the issues default

Real or proposed stablecoins have reserves in one or more of the following types

  1. Deposits in a commercial bank marketed as providing one-to-one back – this is the backing claimed by Tether, the Gemini Dollar, Pax and many others.4
  2. Backed by the balance sheet of the issuer where the issuer is a bank. JPM Coin, at least based on initial news about the proposed stablecoin, would be supported by the balance sheet (i.e. the assets and capital of JPMorgan). From a credit and valuation perspective it should be broadly equivalent to funds deposited in a JPMorgan bank account.
  3. Backed by a basket of bank accounts and other financial assets – According to the Libra whitepaper the stablecoin would be supported by assets held by the Libra foundation consisting of bank deposits and short term debt denominated in a basket currencies, subsequently announced as the U.S. dollar, euro, yen, British pound and Singapore dollar.5 Potentially the set of assets held by the Libra Foundation could include central bank reserves, subject to being allowed to open reserve accounts.
  4. Stablecoins backed by a reserve of cryptocurrencies can be one of the most transparent ways of demonstrating the existence of a reserve. If created correctly holders would be able to check the balances of cryptocurrencies held by addresses relevant to the stablecoin. Unfortunately due the relatively high correlation of all major cryptocurrencies to each other means it is unlikely that the degree of diversification that could be obtained would provide much stability.
  5. Algorithmic stablecoins such as the proposed, “Basis” Coin are intended to be a form of currency that had stable value but which was not fully collateralised. The plan for Basis was for it to be partially collateralised but to use an algorithm to maintain stability by buying or selling the coin in the market. The problem with a “currency” created like this is that it creates the incentive to short the asset, perhaps one of the reasons Basis was abandoned.

It is easy to claim a stablecoin is pegged to the value of an established currency and is backed by reserves is not by itself, it is another matter to maintain a stable value for a stablecoin some of which, such as USDT, experience periods of extreme instability.


Maintaining Stability

Central Banks could potentially issue a form of electronic money that had the same economic characteristics as physical cash or central bank reserves. This is typically referred to as Central Bank Digital Currency (CBDC). CBDC could be issued on some form of DLT (making it a form of stablecoin) or a centralised system. While there have been experiments by central banks with central bank money issued on distributed ledgers, no central bank has announced plans to create a “stablecoin.” The People’s Bank of China has been developing the concept of a form of using digital cash (potentially using DLT) for five years but nothing is in production yet. As of late-2019 the closest thing to a real world CBDC system was Ecuador’s failed attempt, the Dinero Electrónico, which was launched in 2015 and closed in 2018.6

Other relevant issues to maintaining the stability, or even basic credibility of stablecoin relate to legal and operational issues.  If the issuer of a stablecoin fails, the assets ideally should be in a legal structure that is “bankruptcy remote” (i.e. the holders of the coins can claim the reserves in preference to other creditors of the issuer). The bankruptcy remoteness of the Libra foundation, or even the general recourse Libra holders would have to the reserves of the Libra foundation are currently unclear. For the stablecoins used in cryptocurrency trading such as Tether and the Gemini Dollar there are varying degrees of bankruptcy remoteness. In the USC model, Fnality funds would be set up in a bankruptcy remote structure. JPM Coin (or almost any commercial bank issued stablecoin) is supported by the overall balance sheet of the bank. Holders of JPM Coins would most likely be treated like any other bank account holder.

For any stablecoin to remain truly stable it would need an issuer willing to buy and sell the stablecoin at par, or a very small spread above and below par. Even existing stablecoins with better controls that Tether such as Pax or the Gemini Dollar shows significant fluctuations in price. Convertibility on demand causes challenges for stablecoins, it would increase the probability in most jurisdictions that issuers would need to treat the owners of their coins as their customers for AML/KYC purposes. It would also cause challenges in terms of liquidity management. According to the Libra white paper, only specified liquidity providers will be able to buy and sell Libra directly with the Libra foundation. Other holders of Libra will not be able to redeem their Libra directly. JPM Coins will simply be transferred to or from client’s existing J.P. Morgan bank accounts.

Auditing of the reserves and the controls that are put in place to ensure the reserves are segregated from the issuers other liabilities is another fundamental feature required for maintaining price stability against the assets pegged against. One of the major reasons for the volatility of Tether was the lack of a recognised audit of their reserves and the worry, subsequently proved to be correct, that the Tether was not fully backed by reserves held as bank balances.7


Payment and Settlement Processes

For stablecoins to be effective as a part of conventional Financial Market Infrastructure as opposed to just being a tool to support cryptocurrency trading, they need to support the following fundamental processes that involve the transfer of money, either one way movement or synchronised with the movement of money or securities in the other direction.

ProcessDescription
Domestic PaymentsPayments in between two parties in the same jurisdiction in the local currency.
International PaymentsInternational payments typically involve a foreign exchange transaction as the sender’s home currency is converted in the recipient’s home currency. In many cases such as cross-border payments within the Eurozone there may be no need for a foreign exchange transaction.
DVPDelivery versus Payment is the synchronised exchange of a security for cash. DVP is used in both the settlement of purchase/sale of securities and the temporary exchange of cash in securities in areas such as Repo and Securities Lending. In conventional financial markets. Currently DVP requires the use of a trusted third parties such as a Central Securities Depository/Securities Settlement System e.g. DTCC or Euroclear or a custodian.
PVPPayment versus Payment, is the synchronised exchange of two different currencies. PVP is used for the majority of transactions by volume in the foreign exchange payments using the services of CLS Bank.
CustodyHolding a financial asset on behalf of the economic owner of the asset. Custodians provide of a variety of services in addition to basic safe keeping of assets including, lending securities, financing long positions and dealing with corporate actions and events.
CollateralTemporarily delivering financial assets to another party to offset credit risk is fundamental part of the operation of most financial markets. Collateral in the form of money, securities or other financial assets may be delivered to the counterparty, a central bank, a tri-party agent or a CCP depending on the nature of the transaction
NovationNovation is the transfer or contractual obligations and rights from one of the original parties to a contract to another party.

Payments

Domestic payments between customers within the same bank are always the most technically and operationally simple to process. Most banks should have little difficulty in processing payments in anything less than a few seconds and at minimal cost. Fundamentally all users of a particular stablecoin will essentially have an “account” at the same virtual bank, or in the case of JPM Coin or Signet, the same actual bank. Even if a bank has archaic batch-based or even paper-based solutions for internal transfers, using DLT is just one of many possible approaches to speeding up transfers.

Domestic payments between parties that bank use different banks is more considerably more complicated than payments within the same bank because of the need for banks to manage intra-day liquidity in order to avoid running out of the funds required to meet their liabilities.

However huge progress has been made in this area over the last two decades. Payments between parties that bank at different banks has been made close to instant in most developed countries through the implementation of low cost and efficient Real-Time Gross Settlement (RGTS) systems and internationally via initiatives such as SWIFT gpi.

Previously settlement of domestic payments was based on systems that used Deferred Net Settlement (DNS), basically settlement of payments was made at the end of the day after all payment instructions had been received and the net amount each bank owed each other was calculated. The existence of RTGS in over 90 countries has demonstrated that making payments instantly and settling in central bank cash does not remove the problems of liquidity or even credit risk. Central Banks have found the need to implement additional measures to avoid problems resulting from the “lumpy” nature of payments flow between banks, stress conditions and banks passively releasing their own payments after receiving payments from other banks.8

To deal with these issues central banks introduced a variety of mechanisms including Liquidity Savings Mechanisms (LSM), which group together payments before releasing to get smoothing payment flow, targets for the proportion of payments released immediately, and lower fees for the releasing payments earlier during the day. Stablecoins, if they reach sufficient scale, would not get rid of any of these problems and it is likely they would have to replicate the same mechanisms. It is worth noting that as part of its experiment with DLT in domestic payments (Project Ubin) the Monetary Authority of Singapore implemented an LSM using DLT.9

While small scale international payments for many countries can take minutes, wholesale payments can still take days, particularly if they involve the settlement of a related foreign exchange transaction. Based on analysis by SWIFT some of the key sources of delays in international payments include, errors within the systems and processes of both the sending and recipient banks, the need to carry out checks for Anti-Money Laundering (AML) and combatting the financing of terrorism (CFT) and in some countries the operations of exchange controls.

Stablecoins do not innately solve any of these issues, particularly where the desired end result of a payment in a deposit in the bank account of the ultimate recipient in the appropriate currency. More retail-focused stablecoins such as Libra may simplify international payments if Libra is used to directly purchase goods and services. However, holders of Libra (assuming Libra is backed by assets in a basket of currencies) will be exposed to the market risk of fluctuations in exchange rates. It is also unclear what the costs will be on converting into and from Libra.

PVP

The need for payment-versus-payments is an essential need for wholesale FX trading, to avoid settlement or “Herstatt” risk. This is risk that one party to an FX transaction delivers the currency they have sold but the other party does not deliver the currency they are owed, for example due to bankruptcy.

PVP currently requires a trusted third-party to manage cash flows including the release of funds when both parties have delivered the required currency. The majority of foreign exchange transactions are settled through CLS Bank, which provides multilateral netting and connections to the RTGS systems of 17 central banks. On a typical day CLS settles $5 trillion of transactions. The ability to net settlements on a multilateral basis for over 90 of the world’s largest financial institutions allows CLS to reduce the net amount of funds that have to be transferred by 96%.10

The potential opportunity claimed for some stablecoins is the ability to implement a PVP mechanism without the need for having a third party involved and a shorter (if not instant) settlement cycle. The mechanisms required to support PVP using a stablecoin depend on where and how the two currencies are represented. Excluding cryptocurrency related stablecoins such as Tether or Pax, there are the following combinations.

  • Scenario 1 – Currency 1 and Currency 2 are stablecoins created by the same issuer
  • Scenario 2 – Currency 1 and Currency 2 are stablecoins created by different issuers
  • Scenario 3 – Currency 1 is a stablecoin and Currency 2 is a fiat currency

Scenario 1 – USC is currently planned for up to 5 currencies and also plans to have separate ledgers for each currency. Therefore to achieve PVP they would need to create smart contracts that operate on two ledgers simultaneously. Fnality plans to use an architecture called Ion produced by Clearmatics but this is still a work in progress.11 Ion is also planned to support PVP between different ledger technologies such as Ethereum and Hyperledger Fabric.

A more commonly discussed model for dealing with assets on different ledgers, potentially ledgers implemented using different DLT is the “Atomic Swap” where a smart contract on one ledger will only allow the transfer of funds if funds have been transferred on the other ledger:

“Atomic swaps solve this problem through the use of Hash Timelock Contracts (HTLC). As its name denotes, HTLC is a time-bound smart contract between parties that involves the generation of a cryptographic hash function, which can be verified between them. Atomic swaps require both parties to acknowledge receipt of funds within a specified timeframe using a cryptographic hash function. If one of the involved parties fails to confirm the transaction within the timeframe, then the entire transaction is voided, and funds are not exchanged.”12

All the proposed technical models for achieving PVP for ledger-based assets are in the early stages of development. In some proposed stablecoins the degree of centralisation of the stablecoin would make it easier to use an established technology and process design to achieve PVP.

Achieving PVP between a stablecoin and a conventional currency, without involving an intermediary is considerably more problematic. The nature of conventional forms of money mean they are inherently centralised either as a record at a commercial bank or a central bank. Possible models of interaction with existing payment infrastructure is described in the next section “Interaction with Current Financial Market Infrastructure.”

In terms of shortened settlement cycles, stablecoins used for PVP are likely to come into competition with services such as CLS Now, which allows same day settlement of FX transactions using PVP for Canadian dollars, Euros, Pound Sterling and US dollars.

Interest Charges and Payments

It is very easy in a low interest rate environment to forget stablecoins are likely to need some capacity for the payment and collection of interest on balances. This is a particularly strong requirement even now for stablecoins that are proposed to be based by central bank reserves.

For currencies (at time of writing) where the central bank has negative interest rates on balances in reserve accounts (for example the -0.5 % charged by the European Central Bank), it will be necessary to pass on the charge to the holders of stablecoins otherwise the issuer of stablecoins will rapidly become involvement. The issuer of the stablecoins (who holds the backing funds in a reserve account) will need to carefully track who held what balances for what time periods and charge relevant holder, deducting interest owed from balance in the stablecoin or be able to charge interest directly if there are insufficient balances in their stablecoin wallet to pay interest. This inherently introduces and element of credit risk.

Similarly, where a central bank pays interest on reserve accounts it will be necessary for interest to largely be paid on to the relevant stablecoin holder otherwise there is a major disincentive (even at low positive rates) for firms to hold balances in stablecoins for anything other than the shortest possible duration.

DVP

Delivery versus payment is the synchronised exchange of a security for cash. DVP is used in both the settlement of purchase/sale of securities and the temporary exchange of cash in securities in areas such as Repo and Securities Lending. Currently DVP requires the use of a trusted third parties such as a Central Securities Depository (e.g. DTCC or Euroclear or a custodian).

DVP presents many of the same challenges and opportunities as PVP. Three key scenarios would need to be dealt which are similar to the PVP scenarios.

  • Scenario 1 – Stablecoin and securities are both created by the same issuer that contains the same overall network but data is stored on different ledgers
  • Scenario 2 – Stablecoin and securities are recorded on different ledgers run by different organisations and potentially using different forms of DLT.
  • Scenario 3 – Stablecoins would need to be exchanged for securities where ownership is recorded on a central database controlled by a Central Securities Depository or a Share Registrar.

Neither Fnality, JP Morgan, nor Libra have currently announced plans to issue securities on the ledgers they are planning to build to support their stablecoins. This currently leaves only scenarios 2 & 3 as plausible short-term possibilities. Scenario 2 raises the same challenges described for PVP but assumes a significant number of securities would be available as securities that are initially issued as on a distributed ledger or are tokenised versions of conventional securities.

A “tokenised” security is one where the original security is “immobilised” i.e. held in trust by a third party such as custodian and economically and legally equivalent representation of the security is recorded on a Distributed Ledger. There is currently only a small number of securities either issued on distributed ledgers or tokenised. Those that have been issued are typically small scale pilots. Interacting with a CSD to achieve DVP is problematic for the same reasons as trying to achieve PVP between a stablecoin and a conventional asset.

Custody

In the existing financial world, financial assets are held in the name of a third party for a variety of reasons including security and the desire to gain access to the range of service offered by custodians. Custodians provide a range of services that go beyond simply safe keeping of assets. These include operating lending programmes for securities, lending funds against the security of assets held and the processing of corporate actions on securities.

Keeping cryptocurrencies and other crypto-assets with a third party has grown in popularity because of the inherent vulnerability to theft of that most cryptocurrencies and crypto-assets. Obtaining a private key is all that is necessary to transfer all the assets associated with that key.

It is nearly impossible to cancel ore reverse transactions if assets are stolen or even sent to the wrong party by mistake. This is a feature included in cryptocurrencies such as Bitcoin, by design. Reversing transactions in the event of crime or area depends on either law enforcement seizing the private keys or other parties co-operating to return assets (which may have costs) – This is due to lack of central control. Anyone can attempt to “fork” most blockchain based systems but this technical process which basically comes down to re-writing history and pretending certain events did not happen is dependent on the co-operation of a critical mass of infrastructure providers called “miners.” And the loss of the private key means the assets are essentially gone for ever and impossible to retrieve.

Custody of most crypto-assets means handing over the private keys to a third party and attempting to ensure that private key is not used by the third party or their staff to steal. With some custodians, private keys are printed on paper and kept in physical safes. Private keys are broken up into pieces and distributed across multiple systems. In the worst case this simply increases the risk of losing access to the crypto assets.

The need for this form of custody essentially depends on the extent to which a stablecoin is operated on a decentralised ledger. For Libra the extent of decentralisation is currently unclear. For Fnality and JPM Coin the high degree of central issuance makes it unlikely that cryptocurrency type of custody would be required. It is likely that organisations wishing to hold wholesale forms of stablecoins may wish a third party to hold their balances in order to outsource the processing of stablecoin transactions, including payments, receipts and conversion to or from conventional currencies.

Collateral

The final area of processing that stablecoins would need to support is the ability to give or receive them as collateral. Collateral is provided either to a counterparty or trusted third party such as tri-party agent or CCP to offset the credit risk arising from other financial transactions such as derivatives trades. In principal there should be no major issues providing stablecoins as long as the recipient has the technical infrastructure to process stablecoin transactions, value stablecoins and the ability to represent them correctly in systems such as their risk, finance, accounting and operational systems.

Inter-Operating and Competing with Existing Infrastructure

Overview

Stablecoins that are designed to appeal to a wider range of users than cryptocurrencies have to be capable of integration with existing financial market infrastructure. To be accepted by regulators they also need to comply with the appropriate regulations for each jurisdiction. This section describes the types of market infrastructure that will need to be integrated with and the challenges that creates.

The Challenge of Integration

One of the major and inherent weaknesses in the design of cryptocurrencies is the problems that arise when a new form of financial infrastructure is designed without giving any thought to how to integrate with existing infrastructure, whether in terms of market level infrastructure or internal to financial services firms.

The current cryptocurrency industry did not grow to its existing size by operating as a parallel payments and banking system that provides alternative ways to make payments or store value. It grew by throwing away the basic principles of decentralisation and disintermediation by recreating centralised systems (i.e., intermediaries) that kept a parallel record of cryptocurrency holdings to that stored on the ledgers of the relevant cryptocurrency. The repeated hacks, thefts, and other failings consistently demonstrated that this centralised infrastructure to support decentralised assets was seldom built with any regard to meeting the BIS Principles, or even in some cases local laws.13

Challenges to integration largely arise from the factors present in most forms of DLT:

  • Lack of central control over the operation of the system
  • Lack of central control of the deployment of changes to code
  • General inability to stop transactions
  • General inability to reverse transactions
  • Global visibility of all transactions
  • Owners not identifiable
  • Dependence on a cryptocurrency to pay for processing of transactions

Many of these features have been abandoned or worked around as the various forms of DLTs have evolved but to vary degree represent challenges both in terms of integration to FMI and the operation of the key processes related to settlements and payments. Sometimes to the point where it is questionable why a form of DLT makes any sense at call compared to conventional Centralised or Distributed Systems.

Forms of inter-operability

The following are the potential conventional forms of infrastructure that the next generation of proposed stablecoins will would potentially need to interact with.

Strawman

In the following section we focus on the conventional types of financial market infrastructure described below that would be significantly impacted by the more widespread adoption of stablecoins.14

SystemsDescription15
Payment Systems (PS)“A set of instruments, procedures, and rules for the transfer of funds between or among participants; the system includes the participants and the entity operating the arrangement.” This includes the various RTGS.
Central Securities Depositories (CSD)“An entity that provides securities accounts, central safekeeping services, and asset services, which may include the administration of corporate actions and redemptions, and plays an important role in helping to ensure the integrity of securities issues (that is, ensure that securities are not accidentally or fraudulently created or destroyed or their details changed).”
Securities Settlement Systems (SSS)“An entity that enables securities to be transferred and settled by book entry according to a set of predetermined multilateral rules. Such systems allow transfers of securities either free of payment or against payment.”
Central Counterparties (CCP)“An entity that interposes itself between counterparties to contracts traded in one or more financial markets, becoming the buyer to every seller and the seller to every buyer and thereby ensuring the performance of open contracts.”
CLS“CLS Bank (CLS) is a limited purpose bank for settling FX, based in New York with its main operations in London. It is owned by 69 financial institutions which are significant players in the FX market. It currently settles trades in 17 currencies. CLS removes principal risk by using PVP – you get paid only if you pay. On settlement day, each counterparty to the trade pays to CLS the currency it is selling – eg by using a correspondent bank, as with the example in the previous box. However, unlike the previous example, CLS pays out the bought currency only if the sold currency is received. In effect, CLS acts as a trusted third party in the settlement process.”16
Internal Financial System InfrastructureThe core internal infrastructure of banks and financial institutions. This includes systems used for risk management, P&L calculation, transaction execution and accounting

Payment Systems (PS)

Stablecoins that are backed (in whole or in part) by bank balances at commercial or central banks will need some degree of integration with a payments system or the payments infrastructure of a given bank. This will be necessary to process the receipt of funds that preceded the issuance of new coins, outgoing payments when there is a redemption and potentially payments or receipts of interest on stablecoin balances. A stablecoin based on central bank reserves would generally need to be connected to some of Real-Time Gross Settlement system to minimise delays in the issuance of new coins.

Such integration is generally straightforward assuming the issuer of stablecoins is allowed to access directly relevant payment systems.  A more interesting question is the impact of stablecoins as a competitor to conventional payment systems.

A stablecoin denominated in a single currency needs to demonstrate it has some form of superiority in terms one or more of the following

  • Transaction Speed
  • Transaction Cost
  • Reduced Operational Risk
  • Ability make payment conditional on other parts of a financial transaction (as in the case of PVP, DVP etc.)

While at the same time dealing with the challenges of ensuring there is sufficient liquidity in the stablecoin network for parties to meet their obligations. The experience of introducing RTGS in over 90 central banks since 1980s demonstrated that allowing a pure system of gross settlements in payments, with participants free to release payments at any time can cause liquidity issues that need to be dealt with by technical changes, such as the implementation of Liquidity Saving Mechanisms (LSM).17

To quote the New York Fed:

“Liquidity-saving mechanisms (LSMs) are queuing arrangements for payments that operate alongside traditional real-time gross settlement (RTGS) systems. LSMs allow banks to condition the release of queued payments on the receipt of offsetting or partially offsetting payments;”18

Some central banks also created rules/targets for when payments should be released or financial incentives for early release of payments.

Retail focused stablecoins need to be able compete with faster payments, credit card and debit card networks. Payments mechanisms that can be highly efficient in many economies. In cross-border payments, stablecoins need to be able to demonstrate they are a more efficient mechanism for dealing with the major areas of delays and costs such as compliance with AML rules and in some markets exchange controls.

Central Securities Depositories & Securities Settlement Systems

For infrastructure such as Euroclear, DTCC, ASX’s CHESS system or Takasbank in Turkey to perform delivery versus payment, they need to have access to a security register to update ownership records and a funds belonging to participants, either held directly at the FMI or at a Central Bank. They also need to be able to provide trade capture, matching and netting capabilities.

For a stablecoin to be used in the DVP settlement, the FMI needs to be able to directly access stablecoin balances belonging to the participants in trades, either directly or on behalf of participants by a third party. This would require work by both the CSD/SSS and the stablecoin provider. There is no obvious benefit from this arrangement. Other systems belonging to the CSD/SSS would need to be modified to represent what is effectively a new currency. For countries that have long established infrastructure in this area, it quite likely adding an additional currency would require additional effort.

Central Counterparties (CCP)

Any organisation likely to acquire large balances in high quality stablecoins is likely to want to be able to provide those stablecoins as collateral in bilateral transactions, with central banks and with Central Counterparties. Should CCPs chose to accept stablecoins they would need to make significant changes to their systems to interact with the relevant distributed ledgers and set them up as new currencies or asset classes within their systems.

CLS

CLS is such a fundamental part of the global financial market infrastructure that any stablecoin that is used on a very large scale is likely to need some degree of integration. It should be remembered though that the vast majority of currencies (by number not importance) are not supported by CLS. Potentially a stablecoin could be added as another CLS currency allowing the benefits of multilateral netting and integration into the core global FX processing. However it would depend on a very high degree of demand and a many regulatory approvals.

In many ways stablecoins compete directly with existing CLS services so it is also questionable the extent to which CLS may support their adoption.

Interoperability with Financial Sector Internal Systems

There are two main areas where the internal systems of financial sector firms would require modification. Their outward facing interfaces that would need to interact with a range of distributed ledgers (unless they outsource this interaction to third parties – essentially creating a new class of correspondent bank) and modifications to inward facing systems such as those belonging to the risk, finance, trading, operations and treasury departments. Perhaps the closet analogy was the creation of an offshore version of the Chinese Yuan, commonly known as “CNH.” Though no wholescale re-engineering was required, it did commonly require changes to be made across a great many systems to recognise the difference between CNH and the on-shore version of the Yuan, “CNY.” This had a particularly large impact for those banks offering services in CNH.

Having two versions (or more) of essentially the same currency creates a great deal of scope for confusion in trading, treasury and support processes. Subtle differences in liquidity and conversion costs also mean that the different versions of the same currency have to be treated differently in many different ways including charges, interest rates and the curves used in pricing positions.

Interoperability with Distributed Ledger Based Infrastructure

Interoperability with emerging infrastructure based on DLT is also likely to create a number of challenges.

Some forms of Market Infrastructure in-progress (or beta) such as ASX’s CHESS system (for securities settlement) and the HQLA-X system for exchange of High-Quality Liquid Assets for lower grade assets are essentially centralised systems that use elements of DLT as part of the overall system design. Interfaces would need to be like any other form of FMI. Those interfaces would need to take into consideration security, privacy and the need for agreed data standards. There would also be the complications of adding what is effectively a new currency.

One of the proposed methods of allowing interaction between different types of ledger or even different instances of the same DLT but recording different assets or used by different parties, is the Atomic Swap. Using this method, funds on the two different ledgers are only released when both parties acknowledge that assets have been transferred. If the two acknowledgements are not received within the agreed time, the assets will be transferred back to the original addresses.

Atomic Swaps are still an emerging technology that have been widely tested in cryptocurrencies. However on a theoretical level they raise governance issues. If assets are on ledgers ultimately controlled by two different parties, whose has governance over the transaction? It also provides an element of optionality to each party to change their mind about whether to go ahead with the transaction. They could simply not deliver and have their asset returned to them. There are similar problems in the current world. Some counterparties have high rates of settlement failure on securities related trades because of issues in their operational processes or systems. Others at times have financial incentives to allow trades to fail, which had created significant problems in the operation of the Repo market.19 This has resulted in stricter rules and fines in many jurisdictions.

Conclusions

Creating stablecoins as forms of either financial market infrastructure (i.e. used by multiple financial bodies in the case of USC or as essentially internal systems, as is in the case of JPM Coin, Wells Fargo Digital Cash or Signet) clearly does not require the use of any form of Distributed Ledger Technology. Most of the use cases ultimately involve some form of book transfer of funds within essentially the same systems. Allowing customers of the same bank to transfer funds between each other in real-time 24*7 at little to no cost is a service provided by many banks today. The only bottleneck to allowing this in other banks is either a lack of willingness to provide the service or the use of antiquated systems that rely on batch processing.

Liquidity issues out of hours

At the market level, real-time payments within a currency bloc, that settle in central bank money have been implemented using Real-Time Gross Settlement Systems in over 90 countries to date. Some of those payments systems such as the Eurosystem’s TARGET2 have been extended to support securities settlement (T2S) and smaller scale instant payments (TIPS). For the cross-border market CLS connects together the RTGS of 17 currencies to allow PVP settlement against central bank reserves.

The challenges faced in creating creditable stablecoins that can grow beyond simply supporting speculation in cryptocurrency trading are large. Stablecoins backed by Central Bank reserves require the explicit backing of the relevant central banks. Stablecoins such as Libra have attracted extreme scrutiny if not outright opposition from Central Banks and politicians both because of concerns over the stability of the financial system and a lack of trust by some politicians in Facebook as an organisation. Any stablecoin that is regarded as a key part of Financial Market Infrastructure is likely to be required to meet strict regulatory controls, reflecting the principles laid out by the BIS in “Principles for financial market infrastructures.”

Creating interoperability between the infrastructure on which stablecoins operate and existing infrastructure, not to mention potential future infrastructure that runs on different versions of DLT is a non-trivial task, not made any easier by the use of DLT. Such interoperability will be vital if stablecoins ever hope to be anything more than parallel RTGS systems.

Finally the obstacles that have been encountered by RTGS in managing liquidity are unlike to be removed by the use of DLT. In many countries the introduction of RTGS, identified the need to create mechanisms to ensure firms did not hold back payments, creating intra-day funding needs, intra-day credit risk and general systemic risk. If is very likely that if stablecoins were used in a significant volume of transactions there would be a need to introduce many of those measure described that had to introduced for RTGS such as Liquidity Savings Mechanisms.

Then there are the challenges with DLT. None of the various forms of DLT have proven themselves at scale and in a regulated environment and it is questionable whether they a better form of technology, even for implementing stablecoins that existing technologies.

Stablecoins may succeed in the long-run if they can demonstrate an ability to support better ways to manage liquidity including broader, if not continuous, settlement cycles for both money and securities. Finally one of the key concepts between more advanced forms of DLT such as Ethereum or Fabric was to allow parties to agree bilaterally or in groups to deploy agreed business logic in the form of “Smart Contracts” that can be executed when transactions are processed. This type of flexibility could be a potential path to the a higher degree of standardisation in processing financial transactions without the need to have a central, and inherently slow moving body, setting standards for a whole area of business or jurisdiction.


References

  1. Financial TimesFacebook’s Libra currency draws instant response from regulators” 18th June 2019 []
  2. Investigating the impact of global stablecoins” by G7, IMF, and BIS []
  3. As it is for state-issued currencies. The RTGS Dollar in Zimbabwe was pegged in value to the U.S. dollar but lacked sufficient reserves causing it to crumble in the face of market forces. []
  4. Tether (the company) changed its statements about the backing of Tether the current early in 2019. []
  5. Libra whitepaper []
  6. The World’s First Central Bank Electronic Money Has Come – And Gone: Ecuador, 2014-2018 from Seeking Alpha []
  7. Tether Lawyer Admits Stablecoin Now 74% Backed by Cash and Equivalents from Coindesk []
  8. Liquidity Saving in Real-Time Gross Settlement Systems – An Overview from B. Norman []
  9. Project Ubin: Central Bank Digital Money using Distributed Ledger Technology from MAS []
  10. CLSSettlement []
  11. Ion: The Vision []
  12. Atomic Swaps Defined []
  13. Principles for financial market infrastructures – from CPMI and IOSCO []
  14. The complete list of FMI’s listed by the Bank for International Settlement includes Trade Depositories  – “an entity that maintains a centralised electronic record (database) of transaction data” []
  15. Definitions/Descriptions quoted from BIS “Principles for financial market infrastructures” and BIS Quarterly Review, September 2008 []
  16. Extract from page 57 of BIS Quarterly Review, September 2008 []
  17. How has the Liquidity Saving Mechanism reduced banks’ intraday liquidity costs in CHAPS? from Quarterly Bulletin []
  18. An Economic Analysis of Liquidity-Saving Mechanisms from Martin and McAndrews []
  19. Why $200bn in US trades are failing each day from Financial Times []

Leave a Reply

Your email address will not be published. Required fields are marked *