Buckets of Permissioned, Permissionless, and Permissioned Permissionlessness Ledgers

A few hours ago I gave the following presentation to Infosys / Finacle in Mysore, India with the Blockchain University team.  All views and opinions are my own and do not represent those of either organization.

Learning from the past to build an improved future of fintech

[Note: below is a slightly edited speech I gave yesterday at a banking event in Palo Alto.  This includes all of the intended legalese, some of which I removed in the original version due to flow and time.  Special thanks to Ryan Straus for his feedback.  The views below are mine alone and do not represent those of any organization or individual named.]

Before we look to the future of fintech, and specifically cryptocurrencies and distributed ledgers, let’s look at the most recent past.  It bears mentioning that as BNY Mellon is the largest custodial bank in the world, we will see the importance of reliable stewardship in a moment below.

In January 2009 an unknown developer, or collective of developers, posted the source code of Bitcoin online and began generating blocks – batches of transactions – that store and update the collective history of Bitcoin: a loose network of computer systems distributed around the globe.

To self-fund its network security, networks like Bitcoin create virtual “bearer assets.” These assets are automatically redeemable with the use of a credential.  In this case, a cryptographic private key.  From the networks point of view, possession of this private key is the sole requirement of ownership.  While the network rules equivocate possession and control, real currency – not virtual currency – is the only true bearer instrument.  In other words, legal tender is the only unconditional exception to nemo dat quod non habet – also known as the derivative principal – which dictates that one cannot transfer better title than one has.

Several outspoken venture investors and entrepreneurs in this space have romanticized the nostalgia of such a relationship, of bearer assets and times of yore when a “rugged individual” can once again be their own custodian and bank.1 The sentimentality of a previous era when economies were denominated by precious metals held – initially not by trusted third parties – but by individuals, inspired them to invest what has now reached more than $800 million in collective venture funding for what is aptly called Bitcoinland.

Yet, the facts on the ground clearly suggests that this vision of “everyone being their own bank” has not turned into a renaissance of success stories for the average private key holder.  The opposite seems to have occurred as the dual-edged sword of bearer instruments have been borne out.  At this point, it is important to clearly define our terms.  The concepts of “custody” and “deposit” are often conflated.  While the concepts are superficially similar, they are very different from a legal perspective.  Custody involves the transfer of possession/control.  A deposit, on the other hand, occurs when both control and title is transferred.

Between 2009 and early 2014, based on public reports, more than 1 million bitcoins were lost, stolen, seized and accidentally destroyed.2 Since that time, several of the best funded “exchanges” have been hacked or accidentally sent bitcoins to the wrong customer.  While Mt. Gox, which may have lost 850,000 bitcoins itself, has attracted the most attention and media coverage – rightfully so – there is a never ending flow of unintended consequences from this bearer duality.3

For instance, in early January 2015, Bitstamp – one of the largest and oldest exchanges – lost 19,000 bitcoins due to social engineering and phishing via Gmail and Skype on its employees including a system administrator.4 Four months later, in May, Bitfinex, a large Asian-based exchange was hacked and lost around 1,500 bitcoins.5 In another notable incident, last September, Huobi, a large Bitcoin exchange in Beijing accidentally sent 920 bitcoins and 8,100 litecoins to the wrong customers.6  And ironically, because transactions are generally irreversible and the sole method of control is through a private key they no longer controlled them: they had to ask for the bitcoins back and hope they were returned.

A study of 40 Bitcoin exchanges published in mid-2013 found that at that time 18 out of 40 – 45% — had closed doors and absconded with some portion of customer funds.7 Relooking at that list today we see that about another five have closed in a similar manner.  All told, at least 15% if not higher, of Bitcoin’s monetary base is no longer with the legitimate owner.  Can you imagine if a similar percentage of real world wealth or deposits was dislocated in the same manner in a span of 6 years?8

In many cases, the title to this property is encumbered, leading to speculation that since many of these bitcoins are intermixed and pooled with others, a large percentage of the collective monetary base does not have clean title, the implications of which can be far reaching for an asset that is not exempted from nemo dat, it is not fungible like legal tender.9

As a consequence, because people in general don’t trust themselves with securing their own funds, users have given – deposited – their private keys with a new batch of intermediaries that euphemistically market themselves as “hosted wallets” or “vaults.” What does that look like in the overall scheme?  These hosted wallets, such as Coinbase and Xapo, have collectively raised more than $200 million in venture funding, more than a quarter of the aggregate funding that the whole Bitcoin space has received. Simultaneously, the new – often unlicensed – parties collectively hold several million bitcoins as deposits; probably 25-30% of the existing monetary base.10 Amazingly, nobody is actually certain whether a “hosted wallet” is a custodian of a customers bitcoin or acquired title to the bitcoin and is thus a depository.

Yet, in recreating the same financial intermediaries that they hoped to replace – in turning a bearer asset into a registered asset – some Bitcoin enthusiasts have done so in fashion that – as described earlier – has left the system ripe for abuse.  Whereas in the real world of finance, various duties are segregated via financial controls and independent oversight.11 In the Bitcoin space, there have been few financial controls.  For example, what we call a Bitcoin exchange is really a broker-dealer, clearinghouse, custodian, depository and an exchange rolled into one house which has led to theft, tape painting, wash trading, and front-running.12 All the same issues that led to regulatory oversight in the financial markets in the first place.

And while a number of the better funded and well-heeled hosted wallets and exchanges have attempted to integrate “best practices” and even third-party insurance into their operation, to date, there is only one Bitcoin “vault” – called Elliptic — that has been accredited with meeting the ISAE 3402 custodial standard from KPMG. Perhaps this will change in the future.

But if the point of the Bitcoin experiment, concept, lifestyle or movement was to do away or get away from trusted third parties, as described above, the very opposite has occurred.

What can be learned from this?  What were the reasons for institutions and intermediation in the first place?  What can be taken away from the recent multi-million dollar educational lesson?

We have collectively learned that a distributed ledger, what in Bitcoin is called a blockchain, is capable of clearing on-chain assets in a cryptographically verifiable manner, in near-real time all with 100% uptime because its servers – what are called validators – are located around the world.  As we speak just under sixty four hundred of these servers exist, storing and replicating the data so that availability to any one of them is, in theory, irrelevant.13

Resiliency, accountability and transparency, what’s not to like?  Why wouldn’t financial institutions want to jump on Bitcoin then, why focus on other distributed ledger systems?

One of the design assumptions in Bitcoin is that its validators are unknown and untrusted – that there is no gating or vetting process to become a validator on its open network.  Because it is purposefully expensive and slow to produce a block that the rest of the network will regard as valid, in theory, the rest of the network will reject your work and you will have lost your money.  Thus, validators, better technically referred to as a block maker, attempt to solve a benign math problem that takes on average about 10 minutes to complete with the hope of striking it rich and paying their bills. There are exceptions to this behavior but that is a topic for another time.14

The term trust or variation thereof appears 13 times in the final whitepaper.  Bitcoin was designed to be a solution for cypherpunks aiming to minimize trust-based relationships and mitigate the ability for any one party to censor or block transactions. Because mining validators were originally unknown and untrusted, to protect against history-reversing attacks, Bitcoin was purposefully designed to be resource-intensive and inefficient.15 That is to say attackers must expend real world resources, energy, to disrupt or rewrite history.  The theory is that this type of economic attack would stave off all but the most affluent nation-state actors; in practice this has not been the case, but that again is a topic for another speech.

Thus Bitcoin is perhaps the world’s first, commodity-based censorship resistance-as-a-service.  To prevent attackers on this communal network from reversing or changing transactions on a whim, an artificially expensive anti-Sybil mechanism was built in dubbed “proof of work” – the 10 minute math problem.  Based on current token value, the cost to run this network is roughly $300 million a year and it scales in direct proportion to the bitcoin market price.16

Thus there are trade-offs that most financial institutions specifically would not be interested in.

Why you may ask?

Because banks already know their customers, staff and partners. Their counterparties and payment processors are all publicly known entities with contractual obligations and legal accountability.  Perhaps more importantly, the relationship created between an intermediary and a customer is clear with traditional financial instruments.  For example, when you deposit money in your bank account, you know (or should know) that you are trading your money for an IOU from the bank.17 On the other hand, when you place money in a safe deposit box you know (or should know) that you retain title to the subject property.  This has important considerations for both the customer and intermediary.  When you trade your money for an IOU, you are primarily concerned with the financial condition of the intermediary.  However, when you retain title to an object held by somebody else, you care far more about physical and logical security.

As my friend Robert Sams has pointed out on numerous occasions, permissionless consensus as it is called in Bitcoin, cannot guarantee irreversibility, cannot even quantify the probability of a history-reversing attack as it rests on economics, not technology.18 Bitcoin is a curious design indeed where in practice many participants on the network are now known, gated and authenticated except the transaction validators.  Why use expensive proof-of-work at all at this point if that is the case?  What is the utility of turning a permissionless system into a permissioned system, with the costs of both worlds and the benefits of neither?

But lemonade can still be squeezed from it.

Over the past year more than a dozen startups have been created with the sole intent to take parts of a blockchain and integrate their utility within financial institutions.19 They are doing so with different design assumptions: known validators with contractual terms of service. Thus, just as PGP, SSL, Linux and other open source technology, libraries and ideas were brought into the enterprise, so too are distributed ledgers.

Last year according to Accenture, nearly $10 billion was invested in fintech related startups, less than half of one percent of which went to distributed ledger-related companies as they are now just sprouting.20

What is one practical use?  According to a 2012 report by Deutsche Bank, banks’ IT costs equal 7.3% of their revenues, compared to an average of 3.7% across all other industries surveyed.21)  Several of the largest banks spend $5 billion or more in IT-related operating costs each year.  While it may sound mundane and unsexy, one of the primary use cases of a distributed ledger for financial institutions could be in reducing the cost centers throughout the back office.

For example, the settlement and clearing of FX and OTC derivatives is an oft cited and increasingly studied use case as a distributed ledger has the potential to reduce counterparty and systemic risks due to auditability and settlement built within the data layer itself.22

How much would be saved if margining and reporting costs were reduced as each transaction was cryptographically verifiable and virtually impossible to reverse? At the present time, one publicly available study from Santander estimates that “distributed ledger technology could reduce banks’ infrastructure costs attributable to cross-border payments, securities trading and regulatory compliance by between $15-20 billion per annum by 2022.”23

With that said, in its current form Bitcoin itself is probably not a threat to retail banking, especially in terms of customer acquisition and credit facilities.  For instance, if we look at on-chain entities there are roughly 370,000 actors.  If the goal of Bitcoin was to enable end-users to be their own bank without any trusted parties, based on the aggregate VC funding thus far, around $2,200 has been spent to acquire each on-chain user all while slowly converting a permissionless system into a permissioned system, but with the costs of both.24

That’s about twice as much as the average bank spends on customer acquisition in the US.  While there are likely more than 370,000 users at deposit-taking institutions like Coinbase and Xapo, they neither disclose the monthly active users nor are those actual Bitcoin users because they do not fully control the private key.

If we were to create a valuation model for the bitcoin network (not the price of bitcoins themselves), the network would be priced extremely rich due to the wealth transfer that occurs every 10 minutes in the form of asset creation.  The network in this case are miners, the block makers, who are first awarded these bearer instruments.

How can financial institutions remove the duplicative cost centers of this technology, remove this $300 million mining cost, integrate permissioned distributed ledgers into their enterprise, reduce back office costs and better serve their customers?

That is a question that several hundred business-oriented innovators and financial professionals are trying to answer and we will likely know in less time it took Bitcoin to get this far.

Thanks for your time.

Endnotes:

  1. Why Bitcoin Matters by Marc Andreessen []
  2. Tabulating publicly reported bitcoins that were lost, stolen, seized, scammed and accidentally destroyed between August 2010 and March 2014 amounts to 966,531 bitcoins. See p. 196 in The Anatomy of a Money-like Informational Commodity []
  3. Mt. Gox files for bankruptcy, hit with lawsuit from Reuters []
  4. Bitstamp Incident Report []
  5. Bitfinex Warns Customers to Halt Deposits After Suspected Hack from CoinDesk []
  6. Why One Should Think Twice Before Trading On The Bitcoin Exchanges from Forbes []
  7. See Beware the Middleman: Empirical Analysis of Bitcoin-Exchange Risk by Tyler Moore and Nicolas Christin []
  8. This has occurred during times of war.  See The Monuments Men []
  9. Bitcoin’s lien problem from Financial Times and Uniform Commercial Code and Bitcoin with Miles Cowan []
  10. Based on anecdotal conversations both Coinbase and Xapo allegedly, at one point stored over 1 million bitcoins combined. See also: Too Many Bitcoins: Making Sense of Exaggerated Inventory Claims []
  11. See Distributed Oversight: Custodians and Intermediaries []
  12. See Segregation of Duties in the CEWG BitLicense comment []
  13. See Bitnodes []
  14. See Majority is not Enough: Bitcoin Mining is Vulnerable from Ittay Eyal and Emin Gün Sirer []
  15. See Removing the Waste from Cryptocurrencies: Challenges and More Challenges by Bram Cohen and Cost? Trust? Something else? What’s the killer-app for Block Chain Technology? by Richard Brown []
  16. See Appendix B []
  17. See A Simple Explanation of Balance Sheets (Don’t run away… it’s interesting, really!) by Richard Brown []
  18. Needing a token to operate a distributed ledger is a red herring []
  19. See The Distributed Ledger Landscape and Consensus-as-a-service []
  20. Fintech Investment in U.S. Nearly Tripled in 2014 from Accenture []
  21. IT in banks: What does it cost? from Santander []
  22. See No, Bitcoin is not the future of securities settlement by Robert Sams []
  23. The Fintech 2.0 Paper: rebooting financial services from Santander []
  24. One notable exception are branchless banks such as Fidor which is expanding globally and on average spends about $20 per customer.  See also How much do you spend on Customer Acquisition? Are you sure? []

A blockchain with emphasis on the “a”

Over the past month a number of VCs including Chris Dixon and Fred Wilson use the term “the blockchain” in reference to Bitcoin, as if it is the one and only blockchain.1

There are empirically, many blockchains around.  Some of them do not involve proof-of-work, some of them are not even cryptocurrencies.  Yet despite this, Dixon blocked Greg Slepak on Twitter (creator of okTurtles and DNSChain) for pointing that out just a couple weeks ago.

But before getting into the weeds, it is worth reflecting on the history of both virtual currencies and cryptocurrencies prior to Bitcoin.

The past

Below are several notable projects that pre-date the most well-known magic internet commodity.

  • DigiCash (1990)
  • e-gold (1996)
  • WebMoney (1998)
  • PayPal (1998) “Bitcoin is the opposite of PayPal, in the sense that it actually succeeded in creating a currency.”  — Peter Thiel
  • Beenz (1998)
  • Flooz (1999)
  • Liberty Reserve (2006)
  • Frequent flyer points / loyalty programs
  • WoW gold, Linden Dollars, Nintendo Points, Microsoft Points

According to an excellent article written a couple years ago by Gwern Branwen:

Bitcoin involves no major intellectual breakthroughs, so Satoshi need have no credentials in cryptography or be anything but a self-taught programmer! Satoshi published his whitepaper May 2009, but if you look at the cryptography that makes up Bitcoin, they can basically be divided into:

  • Public key cryptography
  • Cryptographic signatures
  • Cryptographic hash functions
  • Hash chain used for proof-of-work
    • Hash tree
    • Bit gold
  • cryptographic time-stamps
  • resilient peer-to-peer networks

And what were the technological developments, tools and libraries that spearheaded those pieces?  According to Branwen:

  • 2001: SHA-256 finalized
  • 1999-present: Byzantine fault tolerance (PBFT etc.)
  • 1999-present: P2P networks (excluding early networks like Usenet or FidoNet; MojoNation & BitTorrent, Napster, Gnutella, eDonkey, Freenet, i2p etc.)
  • 1998: Wei Dai, B-money
  • 1997: HashCash; 1998: Nick Szabo, Bit Gold; ~2000: MojoNation/BitTorrent; ~2001-2003, Karma, etc
  • 1992-1993: Proof-of-work for spam
  • 1991: cryptographic timestamps
  • 1980: public key cryptography
  • 1979: Hash tree

Other prior art can be found in The Ecology of Computation from Huberman.2 One open question for permissionless systems is whether or not a blockchain is a blockchain if it is neither proof-of-work-based or proof-of-stake-based (“Cow system” in Bram Cohen’s terminology).  But that’s a topic for another post.

The present

About two weeks ago, /r/bitcoin learned that Bitcoin was not the creator of all this fundamental technology.  That indeed, there were over 30 years of academic corpus that cumulatively created the system we now call “a blockchain,” in this case, Nakamoto consensus.  And this has spawned a sundry of other experiments and projects that have since been kickstarted.

For example:

  • CoinMarketCap currently tracks 592 cryptocurrencies / 59 assets
  • CoinGecko tracks 225 cryptocurrencies/assets
  • Ray Dillinger’s “Necronomicon” includes over 100 dead altcoins
  • Map of Coins is currently tracking 686 derivatives of various cryptocurrencies; this includes all hashing functions (e.g., scrypt, X11, X13) and includes existing and defunct chains
  • These are just publicly known blockchains and there are likely dozens if not hundreds of private trials, proof of concepts in academia, institutions and from hobbyists (e.g., Citibank announced in July 2015 that it was testing out three blockchains with a “Citicoin” to better understand use-cases)

So it appears that there are more than one in the wild.

Yet, a couple weeks ago Fred Wilson wrote that:

If you think of the blockchain as an open source, peer to peer, massively distributed database, then it makes sense for the transaction processing infrastructure for it to evolve from individuals to large global corporations. Some of these miners will be dedicated for profit miners and some of them will be corporations who are mining to insure the integrity of the network and the systems they rely on that are running on it. Banks and brokerage firms are the obvious first movers in the second category.

He later clarified in the comments and means the Bitcoin blockchain, not others.

One quibble is that transaction processing is not clearly defined relative to hashing.  Today, bitcoin transactions are actually processed by very small, non-powerful computers (even a Raspberry Pi).

What about the pictures with entire rooms filled with computers?  Why does it cost so much to run a hashing farm then?

Because of the actual workhorse of the network: ASICs designed to generate proofs-of-work.  These hashing systems do not do any transaction processing, in fact, they cannot even run a Bitcoin client on them.3

Tangentially William Mougayar, investor and author, stated the following in the AVC thread:

Only trick is that mining is not cheap initially, and the majority is done in China. It presents an interesting energy challenge: you need lots of electricity to run the computers, but also to keep them cool. So, if you’re using solar you still need to cool them. And if you put them in cool climates like near the north pole, there is no solar. Someone needs to solve that equation.

Mining cannot be made “cheaper” otherwise the network becomes cheaper to attack.

In fact, as Bram Cohen mentioned last week, “energy efficient” proofs-of-works is a contradiction in terms.

Thus, there is no “equation to solve.”  In the long run, miners will bid up the marginal costs to which they equal the marginal value (MC=MV) of a bitcoin in the long run.  We see this empirically, there is no free lunch.  If hashing chips somehow became 50% more efficient, hashing farms just add 50% more of them — this ratcheting effect is called the Red Queen effect and this historically happens in a private seigniorage system just as it does in proof-of-work cryptocurrencies.4

organ proportionalismAs shown in the chart above, hashrate follows price; the amount of resources expended (for proof-of-work) is directly proportional to market value of a POW token.

Furthermore, in terms of Wilson’s prediction that banks will begin mining: what benefit do banks have for participating in the mining process?  If they own bitcoins, perhaps it “gives them a seat at the table.”  But if they do not own any, it provides no utility for them.

Why?  What problem does mining solve for organizations such as banks?  Or to put another way: what utility does proof-of-work provide a bank that knows its customers, staff and transaction processors?5

Permissioned Permissionlessness, BINO-style

One goal and innovation for Bitcoin was anonymous/pseudonymous consensus which comes with a large requirement through trade-offs: mining costs and block reorganization risk.

To quote Section 1 of the Nakamoto whitepaper regarding the transaction costs of the current method of moving value and conducting commerce:

These costs and payment uncertainties can be avoided in person by using physical currency, but no mechanism exists to make payments over a communications channel without a trusted party

Thus:

  • Bitcoin was designed with anonymous consensus to resist censorship by governments and other trusted third parties.
  • If you are running a ledger between known parties who abide by government regulations, there is no reason to pay that censorship-resistance cost.  Full stop.

Today several startups and VC funds have (un)intentionally turned an expensive permissionless system into a hydra, a gated permissioned network without the full benefits of either.  Consequently, through this mutation, some of these entities have also turned a bearer asset into a registered asset with the full costs of both.

For instance, it is currently not possible to build a censorship-resistant cash system on top of a permissioned ledger (due to the KYC requirements) yet this is basically what has attempted with many venture funded wallets such as Coinbase.

The end result: Bitcoin in name only (BINO).  In which a permissionless network is (attempted to be) turned into a permissioned network.  It bears mentioning that companies such as Peernova and Blockstack are not trying to compete with Bitcoin — they are not trying to build censorship-resistant cash.

While financial institutions can indeed download a client and send tokens around, Bitcoin was purposefully designed not to interface with financial intermediaries as it was modeled on the assumption that no one can be trusted and that parties within the network are unknown.  Therefore if parties transacting on the network are both known and trusted, then there probably is no reason to use Bitcoin-based proof-of-work.  Instead, there are other ways to secure transactions on a shared, replicated ledger.

Ask the experts

I reached out to several experts unaffiliated with Bitcoin itself to find out what the characteristics of a blockchain were in their view.

Ian Grigg has spent twenty years working in the cryptocurrency field and is the author of the Financial Cryptography blog as well as the Ricardian Contract and most recently the “Nakamoto signature.”  Below are his thoughts:

As far as *history* is concerned, it looks like just about every individual component of Bitcoin was theorised before 2009.  The last thing that I’d thought was new was the notion of a shared open repository of transactions, but it seems Eric Hughes actually proposed it in the 1990s.  And of course Todd Boyle was banging the triple entry drum in the late 1990s.

Bitcoin has no monopoly on any term except bitcoin and BTC as far as I can see. The big question is really between permissioned and permissionless ledger designs.

If you go for a permissioned ledger, then you can do some more analysis and also reduce the need for the consensus signing to be complicated. At the base level, just one signatory might be enough, or some M of N scheme. But we don’t need the full nuclear PoW-enfused Nakamoto Signature.

But also, the same analysis says we don’t need a block. What’s a block? It’s a batch of transactions that the ‘center’ works on to make them so. But if we’ve got permissioned access, and we’ve reduced the signing to some well-defined set, why not go for RTGS and then we haven’t got a block.

The block in the blockchain exists because of the demands of the networking problem – with a network of N people all arguing over multiple documents, we know it can’t be done in less than a second for a small group and less than 10 seconds for a large group. So to get the scaling up, we *have to make a block* or batch of *many* transactions so we can fit the consensus algorithm over enough tx to make it worthwhile.

Therefore the block, the Nakamoto Signature, PoW and the incentive structure all go together. That’s the blockchain.

Zaki Manian, co-founder of SKUChain and all around Bay-area crypto guru:

Cryptography is interesting right now because the primitives have matured and pre-cryptographic systems are becoming less and less robust.

Commitment schemes are widely used in cryptography. Nakamoto signatures (if Adam Back wants to concede the naming rights) are the thermodynamic commitment to a set of values. A conventional signature in attributable commitment.

A cryptocurrency is an application of a ledger. A distributed ledger needs to syndicate the order of stored transaction. There is a lot of value to syndicating and independently validating the commitments to interested parties. Generalized Byzantine Agreement, n-of-m signatures and transaction syndication decrease the discretion in the operating of systems. Ultimately, discretion is a source of fragility. I think Ian’s reference to RTGS is somewhat disingenuous. Systems with a closed set of interacting parties aren’t particularly helpful. Open participation systems are fundamentally different.

There don’t seem to be any settle lines between the properties of permissioned and permission-less systems. We have both and time will tell.

Pavel Kravchenko, formerly chief cryptographer at Stellar, now chief cryptographer at Tembusu Systems:

I’ve seen the discussion, it seems rather political and emotional. Since the term blockchain is not clearly defined people tend to argue. To make everything clear I would start from security model – who is the adversary, what security assumptions we are making, what is the cost of a particular attack etc. For now (still very early days of crypto-finane) using blockchain as a common word for such variety of conditions is acceptable for me.

Vlad Zamfir, who has helped spearhead the cryptoeconomics field alongside others at Ethereum (such as Vitalik).  In his view:

“Blockchains” are a class of consensus protocols (hence why I like to pedantically refer to them as blockchain-based consensus protocols).  They are not necessarily ledgers, although blocks always do contain ordered logs.

These logs need not be transactions – although we can call them transactions if we want, and so you can call it a ledger if you want – it’s just misleading.

Blockchains are characterized by the fact that they have a fork-choice rule – that they choose between competing histories of events.

Traditional consensus protocols don’t do this, so they don’t need to chain their blocks – for them numbering is sufficient.

Economic consensus protocols contain a ledger in their consensus state, in which digital assets are defined – assets who are used to make byzantine faults expensive.

It is much less misleading to refer to this class of protocols as ledgers, than to blockchains generally speaking – although it is still misleading.

You can make an economic consensus protocol that lets people play chess. It would have a ledger, but it wouldn’t be fair to call it a distributed ledger – it’s a distributed chess server.

Economic consensus allows for public consensus, which acts as a (crappy) public computer.

Public consensus protocols have no “permissioned” management of the computers that make up this crappy public computer.

Non-public consensus protocols have “permissioned” management of these computers.

I think the main thing that is consistently lacking from these discussions is the fact that you can have permissioned control of the state of a public consensus protocol without “permissioning” the validator set.

Robert Sams, co-founder of Clearmatics who has done a lot of the intellectual heavy lifting on the “permissioned ledger” world (I believe he first coined the term in public), thinks that:

If I were to guess, I’d say that the block chain design will eventually yield to a different structure (eg tree chains). It’s the chaining that’s key, not the particular object of consensus (although how the former works is parasitic on the latter).

I think Szabo’s use of “block chain” rather than “blockchain” is more than a question of style. Out of habit I still merge adjective and noun like most people, but it’s misleading and discourages people from thinking about it analytically.

I tell you though, the one expression that really gets on my nerves is “the blockchain” used in contexts like “the blockchain can solve problem X”. Compound the confusion with the definite article. As if there’s only one (like “the internet”). And even when the context assumes a specific protocol, “the” subconsciously draws attention away from the attacker’s fork, disagreements over protocol changes and hard forks.

Anyway this debate with people talking up their Bitcoin book and treating innovation outside its “ecosystem” as apostasy is tiresome and idle.

Christopher Allen, who has had a storied career in this space including co-authoring the TLS standard:

I certainly was an early banner waiver — I did some consulting work with Xanadu, and later for very early Digicash. At various points in the growth of SSL both First Virtual and PGP tried to acquire my company. When I saw Nick’s “First Monday” article the day it came out, as it immediately clicked a number of different puzzle pieces that I’d not quite put together into one place. I immediately started using the term smart contracts and was telling my investors, and later Certicom, that this is what we really should be doing (maybe because I was getting tired of battles in SSL/TLS standards when that wasn’t what Consensus Development had been really founded to solve).

However, in the end, I don’t think any thing I did actually went anywhere, either technically or as a business, other than maybe getting some other technologists interested. So in the end I’m more of a witness to the birth of these technologies than a creator.

History in this area is distorted by software patents — there are a number of innovative approaches that would be scrapped because of awareness of litigious patent holders. I distinctly remember when I first heard about some innovative hash chain ideas that a number of us wanted to use hash trees with it, but we couldn’t figure out how to avoid the 1979 Merkle Hash Tree patent whose base patent wouldn’t expire until ’96, as well as some other subsidiary hash tree and time stamp patents that wouldn’t expire until early 2000s.

As I recall, at the time were we all trying to inspired solve the micropayment problem. Digicash had used cryptography for larger-sized cash transactions, whereas First Virtual, Cybercash and others were focused on securing the ledger side and needed larger transaction fees and thus larger amounts of money to function. To scale down we were all looking at hash chain ideas from Lamport’s S/KEY from the late 80’s and distributed transactional ledgers from X/Open’s DTP from the early 90s as inspirations. DEC introduced Millicent during this period, and I distinctly remember people saying “this will not work, it requires consumers to hold keys in a electronic wallet”. On the cryptographic hash side of this problem Adam Back did Hashcash, Rivest and his crew introduced PayWord and Micromint. On the transaction side CMU introduced NetBill.

Nick Szabo wrote using hashes for post-unforgeable transaction logs in his original smart contract paper in ’97, in which he referred to Surety’s work (and they held the Merkle hash tree and other time signature patents), but in that original paper he did not look at Proof of Work at all. It was another year before he, Wei Dai, and Hal Finney started talking about using proof-of-work as a possible foundational element for smart contracts. I remember some discussions over beer in Palo Alto circa ’99 with Nick after I became CTO of Certicom about creating dedicated proof-of-work secure hardware that would create tokens that could be used as an underlying basis for his smart contract ideas. This was interesting to Certicom as we had very good connections into cryptographic hardware industry, and I recommended that we should hire him. Nick eventually joined Certicom, but by that point they had cancelled my advanced cryptography group to raise profits in order to go public in the US (causing me to resign), and then later ceased all work in that area when the markets fell in 2001.

I truly believe that would could have had cryptographic smart contracts by ’04 if Certicom had not focused on short-profits (see Solution #3 at bottom of this post for my thoughts back in 2004 after a 3-year non-compete and NDA)…

What is required, I believe, is a major paradigm shift. We need to leave the whole business of fear behind and instead embrace a new model: using cryptography to enable business rather than to prevent harm. We need to add value by making it possible to do profitable business in ways that are impossible today. There are, fortunately, many cryptographic opportunities, if we only consider them.

Cryptography can be used to make business processes faster and more efficient. With tools derived from cryptography, executives can delegate more efficiently and introduce better checks and balances. They can implement improved decision systems. Entrepreneurs can create improved auction systems. Nick Szabo is one of the few developers who has really investigated this area, through his work on Smart Contracts. He has suggested ways to create digital bearer certificates, and has contemplated some interesting secure auctioning techniques and even digital liens. Expanding upon his possibilities we can view the ultimate Smart Contract as a sort of Smart Property. Why not form a corporation on the fly with digital stock certificates, allow it to engage in its creative work, then pay out its investors and workers and dissolve? With new security paradigms, this is all possible.

When I first heard about Bitcoin, I saw it as having clearly two different parts. First was a mix of old ideas about unforgeable transaction logs using hash trees combined into blocks connected by hash chains. This clearly is the “blockchain”. But in order for this blockchain to function, it needed timestamping, for which fortunately all the patents had expired. The second essential part of Bitcoin was through a proof-of-work system to timestamp the blocks, which clearly was based on Back’s HashCash rather than the way transactions were timestamped in Szabo’s BitGold implementation. I have to admit, when I first saw it I didn’t really see much in Bitcoin that was innovative — but did appreciate how it combined a number of older ideas into one place. I did not predict its success, but thought it was an interesting experiment and that might lead to a more elegant solution. (BTW, IMHO Bitcoin became successful more because of how it leveraged cypherpunk memes and their incentives to participate in order to bootstrap the ecosystem rather than because of any particularly elegant or orginal cryptographic ideas).

In my head, Bitcoin consists of blocks of cryptographic transactional ledgers chained together, plus one particular approach to time-stamping this block chain that uses proof-of-work method of consensus. I’ve always thought of blockchain and mining as separate innovations.

To support this separation for your article, I have one more quote to offer you from Nick Szabo:

Instead of my automated market to account for the fact that the difficulty of puzzles can often radically change based on hardware improvements and cryptographic breakthroughs (i.e. discovering algorithms that can solve proofs-of-work faster), and the unpredictability of demand, Nakamoto designed a Byzantine-agreed algorithm adjusting the difficulty of puzzles. I can’t decide whether this aspect of Bitcoin is more feature or more bug, but it does make it simpler.

As to your question of when the community first started using the word consensus, I am not sure. The cryptographic company I founded in 1988 that eventually created the reference implementation of SSL 3.0 and offered the first TLS 1.0 toolkits was named “Consensus Development” so my memory is distorted. To me, the essential problem has always been how to solve consensus. I may have first read it about it in “The Ecology of Computation” published in 1988 which predicted many distributed computational approaches that are only becoming possible today, which mentions among other things such concepts as Distributed Scheduling Protocols, Byzantine Fault-Tolerance, Computational Auctions, etc. But I also heard it from various science fiction books of the period, so that is why I named my company after it.

The future

What about tokens?

Virtual tokens may only be required for permissionless ledgers – where validators are unknown and untrusted – in order to prevent spam and incentivize the creation of proofs-of-work.  In contrast, if parties are known and trusted – such as a permissioned ledger – there are other historically different mechanisms (e.g., contracts, legal accountability) to secure a network without the use of a virtual token. 6

Is everything still too early or lack an actual sustainable use-case?

Maybe not.  It may be the case, as Richard Brown recently pointed out, that for financial institutions looking to use shared, replicated ledgers, utility could be derived from mundane areas, such as balance sheets.  And you don’t necessarily need a Tom Sawyer botnet to protect that.

What attracts or repels use-cases then?

  • Folk law: “Anything that needs censorship-resistance will gravitate towards censorship-resistant systems.”
  • Sams’ law: “Anything that doesn’t need censorship-resistance will gravitate towards non censorship-resistant systems.”

Many financial institutions (which is just one group looking at shared, replicated ledgers) are currently focused on: fulfilling compliance requirements, reducing cost centers, downscaling branching and implementing digital channels.  None of this requires censorship-resistance.  Obviously there are many other types of organizations looking at this technology from other angles and perhaps they do indeed find censorship-resistance of use.

In conclusion, as copiously noted above, blockchains are a wider technology than just the type employed by Bitcoin and includes permissioned ledgers.  It bears mentioning that “permissioned” validators are not really a new idea either: four years ago Ben Laurie independently called them “mintettes” and Sarah Meiklejohn discussed them in her new paper as well.

Endnotes

  1. See The financial cloud from Adam Ludwin []
  2. Thanks to Christopher Allen for pointing this out. []
  3. See The myth of a cheaper Bitcoin network: a note about transaction processing, currency conversion and Bitcoinland []
  4. See Bitcoins: Made in China []
  5. Why would banks want to use a communal ledger, validated by pseudonomyous pools whom are not privy to a terms of service or contractual obligation with? See Needing a token to operate a distributed ledger is a red herring and No, Bitcoin is not the future of securities settlement []
  6. See also Needing a token to operate a distributed ledger is a red herring and Consensus-as-a-service []

Panel with financial service professionals involved with baking shared, replicated ledgers into organizations

The last part of the PwC discussion 10 days ago involved a panel with myself moderating, Peter Shiau (COO of Blockstack) and Raja Ramachandran (co-founder of eFXPath and an advisor at R3CEV).  Robert Schwentker (from Blockchain University) also helped provide a number of questions for us.

We cover a number of topics including use-cases of distributed ledgers for financial institutions.

Q&A regarding the Distributed Ledger Landscape

About 10 days ago I had the pleasure of speaking at Blockchain University (hosted over at PwC) regarding distributed ledgers (permissioned and permissionless).  One of the slides was intentionally taken out of context by a user on reddit and unsurprisingly the subsequent /r/bitcoin thread covering it involved a range of ad hominem attacks that really missed what was being discussed at the actual talk: what are the characteristics of a blockchain.

I will likely write a post on this topic at length in the next couple of days.  In the meantime, below is the video which incidentally pre-emptively answered a few of the questions from that thread.

Also, for those curious to know who were asking the good questions in the audience, this included: Jeremy Drane (PwC), Christopher Allen (co-creator of the TLS standard) and Nick Tomaino (Coinbase) among others.

Bram Cohen: “Removing the Waste from Cryptocurrencies: Challenges and More Challenges”

Bram Cohen, the creator of BitTorrent, has opined on Bitcoin over the years on social media (such as Twitter).  Over the last couple of weeks he has been increasingly vocal on some hurdles such as the increase in block sizes (via a hard fork) and the dangers of accepting and institutionalizing zero-confirmation transactions.

Last week he gave a presentation at the SF Bitcoin Dev meetup in which he covered a variety of alternatives to proof-of-work such as proof-of-steak (which he dubs “Cow systems”).

The Distributed Ledger Landscape: Who is developing shared, replicated ledgers and why

Earlier today I gave a presentation for Blockchain University hosted at PricewaterhouseCoopers in San Francisco.  It covers the different startups developing permissioned ledgers, the use-cases they are looking at and the reasons for why permissionless systems are currently inadequate to fulfill similar business requirements.

Unable to dynamically match supply with demand

This post will look at an amalgam of ideas touched on by Eli Dourado in a post several days ago regarding Bitcoin.  This includes volatility, cross-border payments, nemo dat, settlement finality and machine-to-machine transactions.

I also answered a few frequently-asked-questions that have been emailed to me that intersect with some of the same ideas.

Volatility

On Sunday Eli Dourado posted a response to Noah Smith and JP Koning both of whom previously discussed why bitcoin has not become a medium-of-exchange.

I don’t want to turn this into a post solely on volatility so if you’re interested in other ideas, skip to the next section titled cross-border payments.

The problem with Dourado’s analysis on volatility is that it does not look at what the actual causes of volatility are, the core of which is a perfectly inelastic money supply.

What does it mean to have a “perfectly inelastic money supply”?  In short, irrespective of the quantity demanded, the money supply itself does not change or shift.  For a Bitcoin-like network, its supply is programmed to remain static irrespective of external conditions.  While some advocates and enthusiasts consider this a feature, it is a bug if bitcoin wants to be used as a modern medium-of-exchange.  Why?  Because the only way to reflect changes in demand is through a change in price, which as described below, is done so via volatility, often violently.

And consequently, determining what the elasticity of demand could be is effectively impossible due to the opaqueness in both the exchange and OTC markets, which partly explains the unpredictability around cryptocurrency prices in general.1

In contrast to Dourado’s view, Robert Sams recently provided a more cohesive look at the fundamental reasons for why, despite the creation of new “liquidity” venues, uncertainty cannot be removed in a similar manner:

volatility 1

volatility 2

volatility 3

The three slides above appear in an April 2015 presentation by Sams.

Yet it is Sams’ short white paper on stable coins that probably, succinctly, describes the issue of future uncertainty with present day prices:

It is the nature of markets to push expectations about the future into current prices. Deterministic money supply combined with uncertain future money demand conspire to make the market price of a coin a sort of prediction market on its own future adoption.  Since rates of future adoption are highly uncertain, high volatility is inevitable, as expectations wax and wane with coin-related news, and the coin market rationalises high expected returns with high volatility (no free lunch).

In other words, at present bitcoin’s price inelasticity of demand means bitcoin’s price isn’t a function of the availability of bitcoin or, for that matter, demand for it.  This makes bitcoin vulnerable largely to the machinations of prognosticators (e.g., pumpers), not tangible market forces.2

Below are a few other questions that have hit my inbox related to volatility which tie into the ideas addressed by Dourado and others above.

Some short Q&A on volatility and prices

Visible volatility appears to have declined in the past 5 months, why?

One possible explanation relates to the inelasticity argument: if traders “feel” that this is a good price and there is no motivation or incentive to trade, thereby moving it up or down, it will tend to stay there (i.e., trading based on sentiment).

Another potential explanation for why there has been less volatility in the last couple months could be that as participants have left the market, there has been less demand from speculators due to a lack of interest and thereby a corresponding lack of volume.3  We may not know for sure what the actual trading volume is at exchanges in aggregate for years to come.

For instance, contrary to the Goldman report, the Chinese RMB does not compromise 80% of the trading volume; this “volume” as discussed by Changpeng Zhao (former CTO of OKCoin) were a combination of internal market making bots, wash trades and tape painting.4  If there was a legitimate increase in demand from speculator then there would have been corresponding increases.  Maybe “whales” will return again after Fed tightening or concerns over Greece.  Or maybe not.

In addition, VC funded companies like BitPay are stating on record that they absorbing some (all?) bitcoins onto their balance sheet, this likely in the short run reduces some of the volatility but is not sustainable.

Why not?

Because with roughly $400,000 – $800,000 in trade volume per day that BitPay processes, it simply does not have the cash on hand to absorb all of the incoming bitcoins for more than a few weeks at most.  Thus, despite the claims (video) from Jason Dreyzehner — that BitPay tries to keep all of the bitcoins that they process — after talking with several contacts at large exchanges, it turns out BitPay does in fact sell bitcoins in bulk to exchange and OTC partners.  See also, A pre-post-mortem on BitPay.

Another common question I have received: with a string of “positive” developments lately such as GBTC, new exchange infrastructure, and more VC funding, why hasn’t bitcoin’s price risen?

It hasn’t risen in part because of elasticity.  Bitcoin’s value can be susceptible to external factors, but it does not need to be if there is inelasticity of demand.  In that case, steady prices amounts to Newton’s First Law.5

In addition, thus far there is no compelling reason for:

1) Consumer-based transactional demand.  To most consumers in developed countries, trying to use bitcoin is an added friction, so they are not interested in doing that.  What are the demographics of a bitcoin owner?  Based on several sources we know what the owner demographics are: a North American / European male in his early 30s, they have access to other payment platforms and own bitcoins primarily as an investment, not virtual cash.6

2) Speculative demand has not increased (yet) because it is now an old story for some active traders — they know what a “bitcoin” as an asset is and how to get it.  As Nathaniel Popper (from NYT) discussed a couple weeks ago at Plug and Play, editors and writers at large media companies are tired of the same stories, these Bitcoin companies need to now go execute which few have actually done.

What about the new exchange companies and liquidity providers being added to the market?

As noted above, as of this writing the price of bitcoin is largely a function of speculative demand still.  Companies like Coinalytics have looked at the on-chain data to show that there has not been much of an increase in on-chain usage or demand from above-board commercial entities.7 Perhaps that will change.

Therefore if consumers are not participating, bitcoin is left with movements dictated by changes in the unpredictable demand curve (and appetite) of speculators.  There are startups that provide different types of instruments: SolidX, LedgerX, Mirror, Tera Exchange and Hedgy but none has likely gotten much volume and only have limited capital to absorb the continual bitcoin production rate of miners and other sell-side participants.  Again, maybe this will change over time.

What if bitcoin adoption were to proceed more aggressively in non-currency applications (real-time securities settlement, for e.g.), what is the impact from that on bitcoin’s price?

First off, the Bitcoin network is not a real-time securities settlement, at most it clears one batch in roughly 10 minutes — not real-time.  But if we are truly defining post-trade finality in terms of title transfer, Bitcoin itself cannot do that with off-chain assets.  Why not?  Because Bitcoin’s validators — in this case mining pools — have no control over off-chain assets.  Title still resides and is controlled off-chain, out of the purview of miners.8

Ignoring that for a moment the main reason why watermarked methods have seen a surge in interest is so that a company (or financial institution) does not need to buy gobs of bitcoins in order to represent socially-recognized value on the edges (houses, cars, airplanes, boats) — thus since watermarking takes a small fraction of a bitcoin, even in aggregate it probably does not add much demand to bitcoin itself.  Whether that is a secure method for transferring value is another topic altogether.9

On this point I also spoke with George Samman, co-founder of BTC.sx and weekly contributor to CoinTelegraph.  In his view:

When talking about settlement and clearing the sheer size – in dollar terms – of the FX and equity markets, it makes a 51% attack on watermarked assets much more of an eventuality than a probability simply because it’s now worth the effort to do so.  Why?  Because the increase in aggregate asset value transferred on a blockchain incentivizes attacks.  In fact a new paper suggests that an attacker does not even need 51% to achieve their goals.

How might Bitcoin help FX traders and arbitrageurs more easily and quickly align their books and execute a global strategy?

As of June 2015, probably none. The market simply is not deep or liquid enough compared to the multi-trillion dollar FX space.  Even if we took the volume of Bitcoin exchanges at face value — that operators are not exaggerating their numbers which we know they are10 — you would need volume to increase by several orders of magnitude before FX traders probably are interested in using it either as a vehicle or as part of their “global strategy.”

According to Bitcoinity — which uses self-reported volumes — total global bitcoin trading volume over the past 24 hours amounted to 312,532 BTC (~$78 million), though 70-80% of that is likely market making bots and wash trading.  For comparison, according to the BIS, in April 2013 the daily FX turnover globally was $5.3 trillion.  This number has stayed roughly the same over the past several years.11

What impact can the BitLicense have now that it has been finalized?

Again, I’m one of the few people that thinks the BitLicense is not a bad thing — it may seem expensive but if a Bitcoin company provides the same good and service as a traditional company then it would make sense to have them liable to the same type of compliance — why do they get an exception just because of the word Bitcoin?  With that said I do think that it could bring in more players who believe this now provides regulatory certainty.

For example, I am looking forward to seeing how Gemini impacts the network now that there is a legitimate exchange you can “short” bitcoin on — it may provide a new incentive to destabilize the network in order to gain.

For perspective I reached out to Raffael Danielli, Quantitative Analyst at ING Investment Management.  In his view:

The points made in Robert Sams recent post are worth looking at. It is a reason to be wary of a professional exchange such as Gemini. Also it adds to the volatility problem. It is probably just a question of time until we see some hedge fund disrupt the network somehow while profiting from it with a massive short. The incentives will be in place sooner or later.

Honestly, I believe that the misconception about volatility (“it will go down over time”) might blow up in the face of many people. The argument that Robert Sams makes is strong. As long as supply cannot be dynamically adjusted to match changes in demand expectations (essentially what the Fed is trying to do) volatility is unlikely to decrease.

It is worth pointing out that a trader can currently “short” bitcoin on Tera Exchange and Crypto Facilities via their forwards contracts (and swaps in the case of the former).  So far the only participants interested are miners for obvious reasons (though it is unclear if anyone involved is generating much revenue yet).  It is also unclear what the incentive for doing a swap is too, with the inability to predict or model exchange rate changes months into the future.

I also reached out to George Samman once more.  According to him:

It is more about the implied volatility which for bitcoin, is always higher than other asset classes and the reason I believe this is because bitcoin is still a giant unknown. Bitcoin continues to trade mainly on sentiment and technicals as well, and this in turn makes it by nature a more volatile asset.

I would also say to the disappearing volume on exchanges it has to do with a lack of trust, hoarding by deep pockets, and its been going off-exchange.  For example LocalBitcoins volume hit record highs in May, while volume at the biggest exchange and the one used by the most active traders use, Bitfinex, has declined steady all year long.12

Kraken, the San Francisco-based crypto currency exchange, is launching a new “DarkPool” option for volume traders who want to buy and sell coins in larger orders. Typically, large orders in the exchange swing the price of bitcoin dramatically, but with the new dark pool trading option, it lets people or institutions order in a way that the rest of the market does not see. Think of it as a level of privacy for people buying or selling bitcoin in bulk. The service will cost users an addition point-one-percent on orders.

Kraken is not the first exchange to bring a “dark pool” to market.  In 2013 Tradehill launched a service called “Prime” that purportedly acted as a “dark pool.”  In addition, one of the attractions to LocalBitcoins may be that it does not require traders to provide identification (via KYC); its volume could decline if it tried to comply with similar KYC/AML/BSA requirements that many other exchanges do.

Cross-border payments

Dourado’s explanation for how credit card processing work is not fully fleshed out.  For a more detailed explanation I recommend readers peruse two posts from Richard Brown found below in the notes.13 In short, Dourado’s explanation for the alleged value proposition between Bitcoin versus a credit card ignores the biggest difference: there is no native credit facility or lending ability on the Bitcoin network.

At best the comparison should be with debit cards.  In addition, in his example, not only is there unnecessary foreign exchange fees in moving into and out of bitcoin, but transactions do not occur instantaneously (even zero-confirmations take longer than a card swipe).  Furthermore, the current Bitcoin network is unable to handle everyone wanting to use bitcoin today (there is a continuous backlog of unconfirmed transactions, sometime measuring into the thousands).  One thing he could have mentioned is that that foreign exchange trades may offset merchant fees, but he did not (yet).

For instance, Dourado states:

You may use a payment processor such as BitPay to instantly convert the bitcoins you receive into dollars. I may use a wallet that instantly converts dollars to Bitcoin at the time I want to make a payment. We both have trust relationships with intermediaries, but because the transaction and settlement occurs on the blockchain, we no longer have to trust the same intermediary.

There is no reason to use Bitcoin itself to do this.  Since users on both ends of the transaction are not only identified but they also need to “trust” a trusted third party, they could just as easily use a different payment method.  And empirically they do, hence one of the reasons why JP Koning wrote the first post in the first place.  In practice, Bitcoin as a payment system is just an added friction: why go from USD->BTC->USD when a user can simply bypass this artificial friction and pay in USD?

Dourado does not provide a cost-benefit analysis nor does he explain why credit card companies work the way they do (see again Brown’s posts in the end notes).   Instead, he discusses the example of unbanked and underbanked, stating:

This is relevant when thinking about bringing the next few billion people online and into the global economy. These people will not have credit histories that are accessible to the same intermediaries that I am set up to use. They may have local intermediaries that they can use, or they may be willing to use Bitcoin directly. If that is the case, they will be able to enter into the stream of global commerce.

In my lengthy book review on The Age of Cryptocurrency I explained 3-4 reasons for why Bitcoin probably is not the savior of the unbanked and underbanked.

One of the reasons is volatility, another is compliance and customer acquisition costs.

One more is the fact that nearly all venture capital (VC) funded hosted “wallets” and exchanges now require not only Know-Your-Customer (KYC) but in order for any type of fiat conversion, bank accounts.  Thus there is a paradox: how can unbanked individuals connect a bank account they do not have to a platform that requires it?  This question is never answered in the book yet it represents the single most difficult aspect to the on-boarding experience today.

Thus contra, Dourado and others, Bitcoinland has recreated all of the same types of intermediaries as the traditional financial world, only with less oversight and immature financial controls.

In terms of “rebittance,” in practice, what ends up happening in these emerging markets is that local residents attempt to cash out into their local currency, irrespective of whatever cryptocurrency funds were originally sent with.14 It is highly recommended that readers peruse analysis below in the notes from Yakov Kofner who studies this at SaveOnSend — looking at actual data such as margins and fees15 And again, maybe this will slightly change through the efforts of Align Commerce, Coins.ph and BitX but it has not yet.

Continuing Dourado writes:

We will finally have a unified global financial system to which everyone will have access. Capital controls will become impossible, or nearly so.

Unlikely via Bitcoin, perhaps through other distributed ledger systems being developed (with mintettes).  The above statement may be the hopes and dreams of many Bitcoin investors, but recall the drama surrounding Coinbase this past February when the leaked pitch deck (pdf)  — which highlighted Bitcoin’s ability to bypass sanctions on Russia — ended up in the hands of regulators.  The head of compliance at Coinbase ended up leaving and the startup was on thin ice (maybe still is?).16

Settlement finality

Another quibble with Dourado’s piece is based on his statement:

So in order to do apples-to-apples comparisons, we might want to examine other systems of final settlement. One such system is cash. Cash of course has some limitations, chief among them that it is not possible to send cash online without an intermediary.

The problem with this is that cash in the real world is given exception to nemo dat and bitcoin is not.  I tried pointing this out to him on Twitter, to which he responded with one word: “Absurd.”  Nemo dat is the legal rule that states that Bob cannot purchase ownership of a possession from Alice if she herself does not have title to the possession.

And it is not absurd.

In fact, as described two months ago, when talking to attorneys such as Amor Sexton, Ryan Straus and George Fogg we learned that one of the problems facing bearer instruments like bitcoin is that many of these virtual assets do not have clean title — that they are encumbered.  What this means is that while the Bitcoin network itself may provide settlement with respect to the transfer of private key credentials, on the edges of the network in the social ‘wet code’ world, the title to these credentials could be non-final.

This means that because of how trusted third parties such as Xapo or Coinbase originally pooled and commingled (e.g., did not segregate) customer deposits, some customers may unknowingly end up with encumbered bitcoins.  Whether anyone litigates on this issue may be a matter of time as Mt. Gox may have practiced the same behavior with pooled deposits.

Ignoring this could impact the bitcoins you may have.  Did you mine the coins yourself or did you buy them through an OTC provider like Charlie Shrem?  There is currently no method of “cleansing” these virtual commodities from previous claims.  Thus, as described earlier in this post, while settlement finality is a potential benefit of distributed ledgers, it probably needs to be integrated within the current custodial framework in order to be effective. 17

Machine to machine

My last quibble regarding Dourado’s piece is where he states:

Direct settlement also means that machine-to-machine transactions will be possible without giving your toaster a line of credit or access to your full bank account. What new inventions will people create when stuff can earn and spend money?

The core innovation around Bitcoin are censorship-resistant cash and its decentralized ledger — thus trying to merge costly pseudonomity with the KYC of a traditional financial system and then innovate on top of that seems like a one step forward and then one step back.

Therefore it makes little sense for why Dourado, Antonis Polemitis, 21inc and others continue to bring up machine-to-machine as if it is the “killer app” for Bitcoin.  What is the need for proof-of-work in these cases?  I briefly looked at this in Appendix B: why can’t prepaid cards be used to pay for the same service?  If parties — or washing machines and toasters — are known, what benefit does this asset provide that cannot be done with other systems?  Why do you need to insert censorship-resistant virtual cash in a transaction that ultimately will need national currency on both sides of the transaction?

Furthermore, even if machine-to-machine transactions somehow did take off and the Bitcoin blockchain was used, it would quickly become bogged down due to block size issues.  For more on this point, it’s worth reviewing the two most recent posts from TradeBlock below in the notes.18

Conclusion

It is unlikely that many early adopters or those who believe static money supplies are a feature, will find any of the discussion above of merit.19  Yet, as Noah Smith pointed out again yesterday, bitcoin’s volatility may need to become “boring” (non-existent) if it ever were to become a viable medium-of-exchange.  However as described above, there are multiple external factors for why this may not occur including the fact that there is no current method to automatically, trustlessly rebase the purchasing power in Bitcoin.

Last fall Robert Sams published a short paper (pdf) proposing one solution, via a “stable coin” — an idea that has subsequently been explored by Ferdinando Ametrano20 and may eventually be emulated in projects like Augur and Spritzle.

Whether or not this feature is adopted by the Bitcoin community remains and open question.  What is probably not an open question is whether volatility will ever disappear for a perfectly inelastic money supply, particularly one without a type of rebasement mechanism.

[Acknowledgements: thanks to Raffael Danielli, Justin Dombrowski, Yakov Kofner and George Samman for their feedback.]

End notes:

  1. See What is the “real” price of bitcoin? and Too Many Bitcoins: Making Sense of Exaggerated Inventory Claims []
  2. I would like to thank Justin Dombrowski for bringing this point to my attention. []
  3. Readers may be interested in Low Volatility and The Shanghai Composite Are Killing Bitcoin by Arthur Hayes.  Note that you can have liquidity from underlying demand as a transactional cryptocurrency, but that does not seem possible to coordinate with a limited, decentralized money supply in the Bitcoin model. []
  4. The Goldman Sachs report used self-reported numbers from the exchanges themselves.  See 80% of bitcoin is exchanged for Chinese yuan from Quartz. []
  5. I would like to thank Justin Dombrowski for this insight. []
  6. See New CoinDesk Report Reveals Who Really Uses Bitcoin as well as the the leaked Coinbase pitch deck (pdf). []
  7. See The flow of funds on the Bitcoin network in 2015 and A gift card economy: breaking down BitPay’s numbers []
  8. See: Consensus-as-a-service as well as No, Bitcoin is not the future of securities settlement by Robert Sams and On the robustness of cryptobonds and crypto settlement by Izabella Kaminska []
  9. See also: Will colored coin extensibility throw a wrench into the automated information security costs of Bitcoin? and Can Bitcoin’s internal economy securely grow relative to its outputs? []
  10. See Too Many Bitcoins: Making Sense of Exaggerated Inventory Claims []
  11. See Daily FX volumes hold above $5 trillion in Feb-CLS from Reuters []
  12. George Samman suggested interested readers look at a presentation he made for Coinsetter last week, starting at slide 93. []
  13. A simple explanation of fees in the payment card industry and Why the payment card system works the way it does – and why Bitcoin isn’t going to replace it any time soon both from Richard Brown []
  14. See The Rise and Rise of Lipservice: Viral Western Union Ad Debunked []
  15. Western Union: permanent leader of international money transfer? and Does Bitcoin make sense for international money transfer? both from Yakov Kofner []
  16. In addition, while an organization like a government may not be able to totally eliminate Bitcoin itself, they could likely severely reduce its use by imposing such absurd punishments that most would fear to use it.  But that is a topic for another post. []
  17. See also: No, Bitcoin is not the future of securities settlement by Robert Sams []
  18. Bitcoin Network Capacity Analysis – Part 3: Miner Incentives and Bitcoin Network Capacity Analysis – Part 4: Simulating Practical Capacity from TradeBlock []
  19. This concept, of static money supplies, is not an unknown idea for central banks.  David Andolfatto, VP at the St. Louis Federal Reserve, pointed this out in his presentation last month. []
  20. Slides and video from Ametrano’s March 2015 presentation []

A pre-post-mortem on BitPay

Yesterday at the MoneyConf in Belfast, BitPay’s CEO Stephen Pair announced that they were pivoting away from payments and towards technological infrastructure for banks and enterprises.

This is an interesting announcement in that a year ago, almost to the day, I published an article, A Marginal Economy versus a Growth Economy, that mentioned how on-chain transaction volume was not following the growth in merchant adoption.  That it was relatively flat.  Reddit and parts of the Bitcoin community derided that analysis yet the data was correct.

In fact, on-chain data later showed that BitPay volume plateaued throughout last year, see The flow of funds on the Bitcoin network in 2015 and A gift card economy: breaking down BitPay’s numbers.

What kind of tech does BitPay currently offer the marketplace?

  • ChainDB, introduced in March, though it seems a bit late to the party already started by ErisDB (and from Ripple’s NuDB).
  • Copay is in a packed group of multisig offerings including GreenAddress, BitGo and CryptoCorp.
  • Insight was their first API / blockchain explorer but everything has moved over to Bitcore.
  • Bitcore competes with BlockCypher, Chain, Coinkite, Gem.co, Block.io and others.
  • (Their API also has some kind of payment channel which could compete with the Lightning Network)
  • Foxtrot seems to also compete with IPFS (and perhaps to some degree Filecoin and DNSChain from okTurtles).

Social media has recently been filled with other hype and rumors but no other big product lines have been announced (yet).

There are a couple open questions.  How will they scale and monetize to a new customer base after such a large pivot in an increasingly competitive fintech market?

For instance, they built their company around consumer payments, but they have let about 20 people go over since the Bitbowl, including the Bitbowl team in large part because consumers as an aggregate did not spend bitcoins (their developer evangelist just left recently too).

For example, in his interview with Business Insider, Pair stated that:

We keep adding merchants – we’re up to over 60,000 now — but they’re selling to the same pool of Bitcoin early adopters. At Bitpay we’ve never thought there’d be this overnight adoption where you get people using it this year or even next year. It’s going to take some time. In the industry there’s a realisation that yes it’s an incredible technology but it’s going to take a while for it to mature.

Again, based on demographic research from CoinDesk and others the typical “owner” of a bitcoin is a North American male in their early 30s that is not living hand-to-mouth.1 They likely have a low-time preference and long-term time horizon and thus are unlikely to spend bitcoins because they view it as an investment, not virtual cash.2  Another data point: in moving to Switzerland, Wences Casares noted that 96% of the customer deposits on Xapo do not move, that they are stagnant.

But Xapo is primarily storage right?  Why would customers frequently move their deposits in and out of bunkers?

transactions coinbase

Source: Coinbase

Above is the off-chain transaction chart over the past year at Coinbase.  Up until recently it has been relatively flat with around 3,500 – 4,000 transactions per day.  In October 2014, Brian Armstrong and Fred Ehrsam, co-founders of Coinbase, did a reddit AMA.  At the 31:56 minute mark (video), Fred discussed merchant flows:

One other thing I’ve had some people ask me IRL and I’ve seen on reddit occasionally too, is this concept of more merchants coming on board in bitcoin and that causing selling pressure, or the price to go down. [Coinbase is] one of the largest merchant processors, I really don’t think that is true.  Well one, the volumes that merchants are processing aren’t negligible but they’re not super high especially when compared to people who are kind of buying and selling bitcoin.  Like the trend is going in the right direction there but in absolute terms that’s still true.  So I think that is largely a myth.

Echoing Pair’s view, in a March 2015 interview with CoinDesk, Steve Beauregard, CEO of GoCoin, a payment processor stated:

“I believe merchants have been widely disappointed by the number of transactions they see in bitcoin,” Beauregard said.  He went on to state that “consumer adoption is the problem”, speaking out against the ‘if you build it they will come’ mentality of the bitcoin ecosystem in past years.

Thus it is unsurprising that a company, BitPay, that in public previously stated it would generate revenue via transaction and SaaS fees, was unable to in a market filled with stagnant coins.  Behind the scenes, as described later below, they were telling people (and investors) that they hoped to generate money via the market appreciation of bitcoins themselves.

Is it the only explanation?

Last month Moe Levin, former Director of European Business Development at BitPay, was interviewed by deBitcoin, below is one detailed exchange starting at 1:57m:

Q: There was a lot of stories in the press about BitPay laying off people, can you comment on that?

A: Yea, what happened was we had a high burn rate and the company necessarily needed to scale back a little bit on how many people we hired, how many people we had on board, how much we sponsored things.  I mean things were getting a little bit out of hand with sponsorships, football games and expansion — more care needed to be put on how and where we spent the money.

Q: Can you elaborate on the burn rate?  Tim Swanson wrote a piece on BitPay in April, published this piece about the economy, the BitPay economy. Posted this piece on the burn rate and actual figures, have you read that piece?  Can you comment on that?

A: Yes, it is especially hard for a company to build traction when they start off.  Any start up is difficult to build traction.  It’s doubly hard, the hardness is amplified when a company enters a market with competitors that have near unlimited resources because the other companies can either blow you out of the water or have better marketing strategies or they can do a ton of different things to make your startup more irrelevant.  Standard in any company but it is doubly difficult when you enter a market like that.  In the payments industry, forget about Bitcoin for a second, in the payments industry and the mobile commerce, ecommerce, company-to-company payments industry there are massive players with investments and venture backed companies in the billions.

Competing at that stage is tricky and it necessarily requires a burn rate that is much higher than the average startup because of how you need to compete in this space.  What is also important is that the regulation costs a lot of money for the startups in the Bitcoin economy.  It’s the perfect storm of how a startup will be hit with a ton of expenses early on and that can hurt the growth of a company.  Even though a lot of the money that went into it was growth capital it takes a while to get the balance right between spending and growing.

I do think this explains some of the pivot but not all of it.

According to AngelList, at the time of this writing there are 1,870 payments startups.  Some of these, as Levin stated, are well-funded.

While it likely will not win any friends on Reddit, I think BitPay’s effort to succeed in consumer payments was likely hindered due to the first factor, the fixed inelastic money supply.

As Robert Sams noted in May 2014:

There is a different reason for why we maybe should be concerned about the appreciation of the exchange rate because whenever you have an economy where the expected return on the medium of exchange is greater than the expected return of the underlying economy you get this scenario, kind of like what you have in Bitcoin.  Where there is underinvestment in the actual trade in goods and services.

For example, I don’t know exactly how much of bitcoin is being held as “savings” in cold storage wallets but the number is probably around $5 billion or more, many multiples greater than the amount of venture capital investment that has gone into the Bitcoin space.  Wouldn’t it be a lot better if we had an economy, where instead of people hoarding the bitcoin, were buying bitshares and bitbonds.  The savings were actually in investments that went into the economy to fund startups, to pay programmers, to build really cool stuff, instead of just sitting on coin.

I think one of the reasons why that organic endogenous growth and investment in the community isn’t there is because of this deflationary nature of bitcoin.  And instead what we get is our investment coming from the traditional analogue economy, of venture capitalists.  It’s like an economy where the investment is coming from some external country where Silicon Valley becomes like the Bitcoin equivalent of People’s Bank of China.  And I would much prefer to see more organic investment within the cryptocurrency space.  And I think the deflationary nature of bitcoin does discourage that.

Based on talks with several other companies in the same space, it is probably not the last announcement of a pivot out of consumer payments.

A next step

So hire experts in financial services right?  It might not be so easy.

Why not?

How will all the bitcoins sitting on BitPay’s books impact their ability to pivot?

The video above is a clip from an two week old interview with Jason Dreyzehner a UI/UX engineer at BitPay.

After watching that, is BitPay: 1) a payment processor 2) exchange 3) forex trading house 4) asset manager 5) all of the above?3

It sounded like they were all of the above.  But perhaps they will just raise another round (downround?), hope for the best and ignore these sunk costs.4

What about banks then?

This quote Pair provided Business Insider is probably not fully accurate:

Banks are desperate to figure out how to apply this technology to mainstream currencies and the likes of Citi, UBS and Santander are all looking at blockchain technology.

I’m not sure what banks Pair has been talking to but from my conversations they are not primarily looking at how to “apply this technology” for currencies.  Though perhaps my sample size is too small.

Rather, in my experience, financial institutions are looking at how to use some kind of distributed ledger to achieve a number of goals, namely in reducing cost centers and complexities within the back office and this is (so far) largely unrelated to currencies.

The entrepreneurs view

For perspective I reached out to Alex Waters, CEO of Coin.co, a NYC-based cryptocurrency payment processor.  According to him:

In light of recent regulations, and their impact – I see several bitcoin companies pivoting. Payment processing was already a tight margin business when it wasn’t considered an MSB. Now with the regulatory costs involved, it would be a challenging line of business for any startup.

ChainDB and Copay are outstanding, and Bitpay’s open source culture makes them a desirable place to work. The regulatory environment may be a blessing in disguise as it can free some companies from investor and branding pressure. Freeing them to pursue new models.

In addition, when asked how BitPay can pivot into the finance and enterprise sector with a team built around consumer payments, Waters noted that:

I think that’s really challenging. Not only is it a different development skillset to do SaaS, but the existing team may not want to work on that model.

For additional perspective I reached out to Steve Beauregard, CEO of GoCoin.  In his view:

I’ve been publicly speaking out for the last year about merchant adoption sharply our pacing consumer adoption.  Whereas BitPay is shifting their focus to helping banks settle transactions more quickly, GoCoin has decided to address the problem head-on. Clearly merchants see the value proposition, so the thesis behind our merger with Ziftr is to combine our technologies to provide consumers incentives in the ways they currently expect them.  The new merged GoCoin / Ziftr will provide merchants with a digital coupon platform where they can give coins to consumers as incentive to make product purchases.  Our wallet will be a hybrid in that it will store tokenized credit cards similar to ApplePay, yet also enable payments with multiple cryptocurrencies including Bitcoin, Litecoin, Dogecoin, tether and zifterCOIN.

While I agree the consumer adoption is not happening at the pace any of the early pioneers believed it would, but we are taking the dog to the fight so to speak to provide the tools to merchants to change the behavior to the safest, lowest cost payment alternative.

In addition I reached out to Nikos Benititis, CEO of CoinSimple, an Austin-based payment processor.  In his view:

Tim, your thoughts on the cost of regulation and market size already provide a reasonable framework for explaining the recent developments. What I would like to contribute to those is the issue with the “bifurcation” of the bitcoin startup scene.

The first batch of bitcoin startups, which includes BitPay, is quite different from the second batch. In the first batch, you had entrepreneurs who got support from bitcoin early adopters to launch businesses that helped the ecosystem. In the second batch, you have serial entrepreneurs, running companies like Xapo, Circle and 21e6, who got millions from Silicon Valley VCs. Startups from the first batch have to make tough choices, given that interest in bitcoin (see price) is not what it used to be, and that they have to get “traditional” funding to survive. If they get such funding, like BitPay did, they may have active investors questioning the direction of the company, looking at the market size etc. In other words, the price of bitcoin and the lack of crowdfunding does not allow startups from the first batch, to continue working on “ideological” agendas, like bitcoin merchant and user adoption. Startups of the first batch can continue working on what they started on only if the bitcoin price rebounds, or if large bitcoin holders support them. BitPay had to pivot in order to create a sustainable business because it could not afford to do otherwise.

CoinSimple, that provides a Blockchain.info-style merchant processing, because it never touches customer or merchant funds (unlike Coinbase, or BitPay), continues to try to contribute to wider Bitcoin merchant adoption. With a product that works, and we minimum overhead, we can afford to grow organically and contribute to the growth of the ecosystem.

Whatever the reasons for pivoting were, this is a very fluid market place as companies are still looking to find product-market fits.  The next post will look at what Noah Smith and JP Koning have been writing on as it relates to a medium-of-exchange.

Update: according to a new tweet from Stephen Pair: “@BitPay has not pivoted, never even considered it…every line of code we write is about extending our lead in payment processing”

[Acknowledgements: special thanks to Fabio Federici and Pete Rizzo for their feedback.]

End notes:

  1. See New CoinDesk Report Reveals Who Really Uses Bitcoin as well as the the leaked Coinbase pitch deck (pdf).  Regarding “owning” a bitcoin see Bitcoin Ownership and its Impact on Fungibility from CoinDesk []
  2. If they believe the future utility (value) of a bitcoin is greater than the value they would receive by using it today, it is rational to hold.  For more specifics see Chapter 12 in The Anatomy []
  3. Based on reliable contacts at large exchanges,  BitPay does in fact sell directly to other exchanges. []
  4. Future researchers may also be interested in valuations.  A number of VC-funded Bitcoin companies raised on strong user growth totals in the consumer market so in absence of this, it is unclear how BitPay would show a similar “rocketship: growth in enterprise.  How did and how will VCs judge a company that basically sells them on massive user growth that then almost completely evaporates? []

Needing a token to operate a distributed ledger is a red herring

Over the last few weeks a number of posts and interviews on social media have promoted the position that “you cannot separate bitcoin from the blockchain” and that only Bitcoin (and no other distributed or decentralized ledger) is the future of finance.

In prose form this includes Adam Ludwin, CEO of Chain (here), Martin Tiller (here) and many more on reddit.

Others include Jerry Brito, executive director at Coin Center, who recently tweeted:

jerry brito tweet

Source: Twitter

At the most recent Inside Bitcoins NYC event, Barry Silbert, co-founder of DCG, spoke about several myths surrounding Bitcoin (video):

[The second myth] is that the technology is great, but the currency is not necessary. […] The reason why Bitcoin blockchain is transformative is because it’s a secure ledger and you have the ability to process large amounts of transactions.

The only reason why it is secure and it has that transaction capacity is because you have thousands of miners around the world that have been provided a financial incentive to invest resources, capital to build the facilities that is what makes the ledger secure and gives the protocol the capacity to do transactions.

So if you eliminate the financial incentive which is the currency there is no incentive for miners to mine and thereby you don’t have a secure network and you don’t have the ability to process large amounts of transactions.

Why the “only-Bitcoin” narrative is (probably) incorrect for Financial Institutions

In the other corner, Robert Sams described in detail why Bitcoin will not be the future of securities settlement, Piotr Piasecki explored a couple different attack vectors on proof-of-work blockchains (as it relates to smart contracts) and even Ryan Selkis pointed out a number of problems with the Bitcoin-for-everything approach.

So why is the Bitcoin maximalism narrative at the very top probably incorrect for financial institutions?

Because these well-meaning enthusiasts may not be fully looking at what the exact business requirements are for these institutions.

  • What do financial institutions want?  Cryptographically verifiable settlement and clearing systems that are globally distributed for resiliency and compliant with various reporting requirements.
  • What don’t they need?  Censorship resistance-as-a-service and artificially expensive anti-Sybil mechanisms.

The two lists are not mutually exclusive.  I published a report (pdf) two months ago that covered this in more detail.

Bitcoin tries to be both a settlement network and a provider of a pseudonymous/anonymous censorship resistant virtual cash.  This comes with a very large trade-off in the form of cost: as the network funds mining operations to the tune of $300 million this year (at current market prices) for the service of staving off Sybil attacks.1 This cost scales in direct proportion with the token value (see Appendix B).

The financial institutions that I have spoken with (and perhaps my sample size is too small) are interested in operating a distributed ledger with known, legally accountable parties.  They do not need censorship resistant virtual cash or proof-of-work based systems.  They do not have a network-based Sybil problem.2

If you do not need censorship resistant as a feature, then you do not need proof-of-work

Recall that one of the design assumptions in the Bitcoin whitepaper is that the validators are unknown and untrusted.

In section 1, Nakamoto wrote:

What is needed is an electronic payment system based on cryptographic proof instead of trust, allowing any two willing parties to transact directly with each other without the need for a trusted third party.   Transactions that are computationally impractical to reverse would protect sellers from fraud, and routine escrow mechanisms could easily be implemented to protect buyers.  In this paper, we propose a solution to the double-spending problem using a peer-to-peer distributed timestamp server to generate computational proof of the chronological order of transactions.  The system   is   secure   as   long   as   honest   nodes   collectively   control   more   CPU   power   than   any cooperating group of attacker nodes.

And later in section 4:

To implement a distributed timestamp server on a peer-to-peer basis, we will need to use a proof- of-work system similar to Adam Back’s Hashcash [6], rather than newspaper or Usenet posts.

Financial institutions operate under completely different conditions.  They not only know the identities of their customers, staff and partners but their processing providers are also known, legally accountable entities.  There is no Sybil problem to solve for them on the network.  There is no need for proof-of-work or $300 million in annual mining costs.

If you don’t need proof-of-work, you don’t need necessarily a token to incentivize validation or secure the network

Instead, validation can be done by entities with contractual obligations that are legally enforced: known validators with real-world identities and reputations.

Permissioned distributed ledgers using this type of known validator, such as Hyperledger and Clearmatics (disclosure: I am an advisor to both), are not trying to be “cryptocurrencies” or even entrants in the virtual cash marketplace.

Nor are they trying to provide pseudonymous-based censorship resistant services.  Instead they are attempting to provide a solution for the financial institution requirements above.

But if Bitcoin has the largest user base of pseudonymous virtual cash, wouldn’t concepts like sidechains allow systems like Hyperledger to be run on a sidechain and therefore we should all focus on Bitcoin?

Again, permissioned ledger systems like Hyperledger are not a cyrptocurrency, so sidechains (as they are currently proposed) would probably not provide any benefit to them.  Bitcoin may – temporarily or permanently – have the largest mind share for cryptocurrency as whole and for censorship resistant services but this does not seem to really be a top priority for most financial institutions.

Thus, it would be comparable to saying why don’t we connect all Excel workbooks directly onto the Bitcoin blockchain?

goodyear-dirigible

Source: Gizmag

Or akin to the Wright brothers trying to sell a biplane to modern day international air carriers.  Just because you created the first proof-of-concept and own a lot of equity in the companies in the supply chain for Wright brothers wooden airplanes (because you know aeronautical vehicles is a growth industry), does not mean the first model will not be iterated on and evolved from.  Even modern day dirigibles provide different utility than large wide-body air cargo planes.

There is a case to be made that you only need a token as an incentive within proof-of-work-based (and proof-of-stake) cryptocurrency networks.  Yet as described elsewhere, there are other ways to build distributed networks and economic consensus mechanisms that do not need follow the Nakamoto design (see Vlad Zamfir’s forthcoming Reformalizing Consensus paper).

Thus, the authors cited at the beginning of this post are likely asking the wrong question.  What these writers seem to be collectively saying is: “Hey banks, you want a better settlement method?  Then you need Bitcoin.”  Instead they should be asking banks, “What problems do you have?  Would a censorship-resistant service like Bitcoin’s blockchain sustainably solve that problem?”

Financial institutions each face different problems and challenges but it is unlikely that  proof-of-work necessarily solves them.3  Nor is it the case that banks need yet another currency to manage and hedge.  Though to be even handed, perhaps other financial institutions like hedge funds will find it useful for speculation.

Blocks and miners

Not to pick on Barry Silbert (this is just an example), but his statement above is wrong: “you have the ability to process large amounts of transactions.”

Bitcoin, with the current 1MB block size, is in theory able to process about 7 transactions per second.  If some of the expansion proposals under discussion are enacted, then block sizes may increase to 20 MB in the coming year.  This, again in theory, would mean that the Bitcoin blockchain would be able to process about 140 transactions per second.

One bullish narrative has been that Bitcoin will one day be able to handle transaction processing rates on part with networks like Visa (which on average handles 2,000 – 3,000  transactions per second each day).4   For comparison, in 2013 PayPal had 128 million active accounts in 193 markets and 25 currencies around the world and processed more than 7.6 million payments every day.

Baring something like a full roll-out of the Lightning Network, is unlikely to occur without the use of trusted parties.

Thus it is unclear what metric Silbert is using when he references the “large amounts” being processed, because in practice the Bitcoin network only handles about 1.5 transactions per second on any given day, and most traffic is comprised of spam and long-chains transactions and not the actual commerce that Visa handles.

trade block 1trade block 2

Source: TradeBlock

Above are two charts from TradeBlock which recently published some analysis on block sizes and capacity.  Based on their analysis and following the current trend in block size usage, the 1 MB capacity will be reached in about 18 months, so only in December 2016 will 2.8 transactions per second be achieved.  Dave Hudson ran simulations last year and came to a similar conclusion.

Further, Visa’s network — although centralized — is actually very secure (with moats and all).  No one hacks Visa, they hack the edges, institutions like Target and Home Depot.  This is similar to Bitcoin, where it is cheaper to hack Bitstamp, Bitfinex, Mt. Gox and countless others (which have all been hacked over the past 18 months), than it is to do a Maginot Line attack via hash rate.

In fact, if we measure adoption and usage by actual end users (i.e., where most transactions actually take place), the adoption is not with Bitcoin’s blockchain, but instead with trusted third parties like Coinbase, Circle, Xapo and dozens of other hosted wallets and exchanges.  As I mentioned in my review of The Age of Cryptocurrency, one of the funnier comments I saw on reddit last month was someone saying, “You should try using Bitcoin instead of Coinbase.”

blockchain longtail

Source: the long tail usage of blockchains by Vitalik Buterin

Are permissioned distributed ledgers the solution for financial institutions?

Maybe, maybe not.  It depends on if they securely scale in a production environment..  It also depends on the specific business requirements.  It could turn out that distributed databases like Chubby or HyperDex are a better fit for some problems.

It is also hard to say that a large enterprise can axiomatically replace its existing systems with a new distributed ledger network and save X amount of money.  There are a variety of costs that have to be factored in: compliance costs, reconciliation costs, legal costs, IT costs, costs from capital tied up in slow settlement times, etc. 5  Add them all together and there is, in theory, room for large saving, but this is still unknown.  It cannot be derived a priori.

Another common claim is, “Bitcoin is a larger, better supported blockchain and therefore will win out since it has market makers and market support.”

But Bitcoin, as a censorship-resistance payment rail and virtual cash, is a solution for cypherpunks, not for financial institutions who again, have known counterparties.  A proof-of-work blockchain only matters for untrusted networks and pseudonymous validators.

It may seem repeitive, but if you are designing a semi-trusted/trusted networks, then the token itself is more akin to a receipt than an informational commodity.  Bitcoin, in its current form, likely needs a token because it needs to pay its pseudonymous validators for the censorship-resistance service.  If you operate a bank, with a state charter and KYC/AML requirements, this is probably not a must-have feature.

Either way, it is too easy to become caught up in this red herring and miss the utility of a distributed settlement system for the roller coaster ride surrounding the token.

But isn’t using known validation just centralization by any other name?

No, it could be institutionalized (which is different than centralization) in that the nodes are globally separated and controlled by different keypairs and organizations.6  In effect, distributed ledgers are a new, additional tool for financial controls — and an attempt to abuse the network would require additional compromises and collusion that the edges of a proof-of-work networks are also prone to.

Yet in the event an attack occurs on a permissioned ledger, the validators are contractually and legally accountable to a terms of service — pseudonymous validators are not and thus end users for something like Bitcoin have no recourse, legal or otherwise, and are left with options like begging mining pools on reddit.7

Conclusions

Bitcoin may be a solution to some market needs, but it is likely not the silver bullet that many of its promoters claim it is.  This is especially true for financial institutions, particularly once the costs of mining and censorship-resistance, is added into the mix.

There is room for both types of networks in this world, just like there is room for dirigibles and jumbo jet freighters.  Yet it is impossible to predict who will ultimately adopt one or the other or even both.8

But as shown in the picture below, the Bitcoin mining game (within a game) includes mining pools that are not always incentivized to include transactions.9  Which raises the question: how can you require them to since there is no terms of service?

blockchain block 1 tx

Source: Block 358739

Every day there is always one or two blocks (sometimes more) that include a lonesome transaction, the coinbase transaction. In fact, in the process of writing this post, F2Pool included no additional transactions in block 359422, this despite the fact that there are  unconfirmed transactions waiting for insertion onto the communal chain.

Mining pools have differing incentives as to whether or not to include actual transactions, to them the bulk — roughly 99.5% of their revenue still comes from block rewards so sometimes they find it is not worth processing low fee transactions and instead propagate smaller blocks so as to lower orphan races and instead work on the next hash; see for instance Chun Wang’s comment related to F2Pool and large block sizes posted last week.

I reached out to Robert Sams, CEO of Clearmatics, who has written on this topic in the past.  According to him:

To me the crux of the issue is that permissionless consensus cannot guarantee irreversibility, cannot even quantify the probability of a history-reversing attack (rests on economics, not tech).

It’s a curious design indeed where everyone on the Bitcoin network is now known and authenticated… except the transaction validators!

I also reached out to Dan O’Prey, CEO of Hyperledger.  According to him:

It all comes down to starting assumptions. If you want the network to be censor-resistant from even governmental attacks, you need validators to be as decentralised as possible, so you need to allow anyone to join and compensate them so they do, so you need to use proof of work to prevent Sybil attacks and have a token.

If you’re dealing with legal entities that governments could shut down then you don’t get past step one. If you’re dealing with a private network between multiple participants then you don’t need to incentivise validators – it’s just a cost of doing business, just as web servers are.

Fun fact: according to Blockr.io, there have been 85275 blocks with one transaction and 12438 blocks with 2 transactions (the bulk of which occurred in the first year and a half).10

Is that the type of game theoretic situation upon which to build a mission-critical, time sensitive settlement system for off-chain assets with real-world identities on top of?11 Maybe, maybe not.  Both types of networks have their trade-offs but focusing on a token is probably missing the bigger picture of meeting business requirements which vary from organization to organization.

[Acknowledgements: thanks to Pinar Emirdag, Todd McDonald, Dan O’Prey, Robert Sams and John Whelan for their feedback.]

Endnotes:

  1. This annualized number comes from the following calculation: money supply creation (1,312,500 bitcoins) multiplied by current market price (~$230). []
  2. Large institutions and enterprises may have issues with authentication and identification of customers/users but that is a separate operational security issue. []
  3. It is important to note that if the costs of mining somehow decreased then so too would the costs to successfully attack a proof-of-work network.  See The myth of a cheaper Bitcoin network: a note about transaction processing, currency conversion and Bitcoinland []
  4. Note: In the UK, Visa Europe currently settles over RTGS though Mastercard does not.  See: The UK Payments landscape []
  5. Thanks to Dan O’Prey for his thoughts on the matter. []
  6. It bears mentioning that having 15 banks in 15 different countries operating validators is more decentralized than a few mining pools in a couple of countries, although it is not a fully direct comparison. []
  7. In theory on-chain “identity” starts pseudonymously and later users can either fully identity themselves (via traditional KYC, or signing of coinbase transactions) or attempt to remain anonymous by not reusing addresses and through other operational security methods.  Miners themselves can be both known and unknown in theory and practice.  Other terminology refers to them as a dynamic- membership multi-party signature (DMMS). []
  8. Peter Todd has argued that financial institutions can take a hash from a permissioned ledger and insert it into a proof-of-work chain as a type of “audit in depth” strategy. []
  9. According to John Whelan who reviewed this post, “The science of incentives is far more complex than just ‘show me the money’.  Indeed, workplace incentive specialists have coined the term ‘total rewards of work’ that recognizes that there are many levers other than compensation that may be pulled to motivate employees to perform at their maximum potential (e.g., workplace rewards).  With distributed ledger systems there is a lot of room to gain a clearer understanding of the kinds of incentives that will motivate transaction validators or nodes that offer other services such as KYC/AML, etc.  It is definitely not a one-size-fits-all.” []
  10. For comparison, Litecoin has 245447 blocks with 1 transaction and 105765 blocks with two. []
  11. At an event in NYC last month Peter Todd opined that perhaps some firms will take this risk and will encode a series of if/then stipulations in the event that a history-reversing attack occurs. []

Distributed ledgers, blockchains and Bitcoin in the news

Below are several stories and articles from the past few weeks that either cited one of my papers or where I was quoted:

In a Forbes article today entitled “Five Top VCs Predict The Future” the following claim was made: Traditional banks will keep losing share to startups while bitcoin fades.  Two comments from Bill Gurley of Benchmark Partners and Rebecca Lynn of Canvas Venture Fund were mentioned.  However, given that many of the 5 year predictions cited in the rest of the article sound implausible, it is a bit curious that Bitcoin only made the list in a negative way.

Book review: The Age of Cryptocurrency

On my trip to Singapore two weeks ago I read through a new book The Age of Cryptocurrency, written by Michael Casey and Paul Vigna — two journalists with The Wall Street Journal.

Let’s start with the good.  I think Chapter 2 is probably the best chapter in the book and the information mid-chapter is some of the best historical look on the topic of previous electronic currency initiatives.  I also think their writing style is quite good.  Sentences and ideas flow without any sharp disconnects.  They also have a number of endnotes in the back for in-depth reading on certain sub-topics.

In this review I look at each chapter and provide some counterpoints to a number of the claims made.

Note: I manually typed the quotes from the book, all transcription errors are my own and should not reflect on the book itself.  See my other book reviews.

age of cryptocurrencyIntroduction

The book starts by discussing a company now called bitLanders which pays content creators in bitcoin.  The authors introduce us to Francesco Rulli who pays his bloggers in bitcoin and tries to forbid them from cashing out in fiat, so that they create a circular flow of income.1 One blogger they focus on is Parisa Ahmadi, a young Afghani woman who lacks access to the payment channels and platforms that we take for granted.  It is a nice feel good story that hits all the high notes.

Unfortunately the experience that individuals like Ahmadi, are not fully reflective of what takes place in practice (and this is not the fault of bitLanders).

For instance, the authors state on p. 2 that:

“Bitcoins are stored in digital bank accounts or “wallets” that can be set up at home by anyone with Internet access.  There is no trip to the bank to set up an account, no need for documentation or proof that you’re a man.”

This is untrue in practice.  Nearly all venture capital (VC) funded hosted “wallets” and exchanges now require not only Know-Your-Customer (KYC) but in order for any type of fiat conversion, bank accounts.  Thus there is a paradox: how can unbanked individuals connect a bank account they do not have to a platform that requires it?  This question is never answered in the book yet it represents the single most difficult aspect to the on-boarding experience today.

Starting on page 3, the authors use the term “digital currency” to refer to bitcoins, a practice done throughout the remainder of the book.  This contrasts with the term “virtual currency” which they only use 12 times — 11 of which are quotes from regulators.  The sole time “virtual currency” is not used by a regulator to describe bitcoins is from David Larimer from Invictus (Bitshares).  It is unclear if this was an oversight.

Is there a difference between a “digital currency” and “virtual currency”?  Yes.  And I have made the same mistake before.

Cryptocurrencies such as bitcoin are not digital currencies.  Digital currencies are legal tender, as of this writing, bitcoins are not.  This may seem like splitting hairs but the reason regulators use the term “virtual currency” still in 2015 is because no jurisdiction recognizes bitcoins as legal tender.

In contrast, there are already dozens of digital currencies — nearly every dollar that is spent on any given day in the US is electronic and digital and has been for over a decade.  This issue also runs into the discussion on nemo dat described a couple weeks ago.

On page 4 the authors very briefly describe the origination of currency exchange which dates back to the Medici family during the Florentine Renaissance.  Yet not once in the book is the term “bearer asset” mentioned.  Cryptocurrencies such as bitcoin are virtual bearer instruments and as shown in practice, a mega pain to safely secure.

500 years ago bearer assets were also just as difficult to secure and consequently individuals outsourced the security of it to what we now call banks.  And this same behavior has once again occurred as large quantities — perhaps the majority — of bitcoins now are stored in trusted third party depositories such as Coinbase and Xapo.

Why is this important?

Again recall that the term “trusted third party” was used 11 times (in the body, 13 times altogether) in the original Nakamoto whitepaper; whoever created Bitcoin was laser focused on building a mechanism to route around trusted third parties due to the additional “mediation and transaction costs” (section 1) these create.  Note: that later on page 29 they briefly mentioned legal tender laws and coins (as it related to the Roman Empire).

On page 8 the authors describe the current world as “tyranny of centralized trust” and on page 10 that “Bitcoin promises to take at least some of that power away from governments and hand it to the people.”

While that may be a popular narrative on social media, not everyone involved with Bitcoin (or the umbrella “blockchain” world) holds the same view.  Nor do the authors describe some kind of blue print for how this is done.  Recall that in order to obtain bitcoins in the first place a user can do one of three things:

  1. mine bitcoins
  2. purchase bitcoins from some kind of exchange
  3. receive them for payments (e.g., merchant activity)

In practice mining is out of the hands of “the people” due to economies of scale which have trended towards warehouse mining – it is unlikely that embedded ASICs such as from 21 inc, will change that dynamic much, if any.  Why?  Because for every device added to the network a corresponding amount of difficulty is also added, diluting the revenue to below dust levels.

Remember how Tom Sawyer convinced kids to whitewash a fence and they did so eagerly without question?  What if he asked you to mine bitcoins for him for free?  A trojan botnet?  While none of the products have been announced and changes could occur, from the press release that seems to be the underlying assumption of the 21.co business model.

In terms of the second point, nearly all VC funded exchanges require KYC and bank accounts.  The ironic aspect is that “unbanked” and “underbanked” individuals often lack the necessary “valid” credentials that can be used by cheaper automated KYC technology (from Jumio) and thus expensive manual processing is done, costs that must be borne by someone.  These same credential-less individuals typically lack a bank account (hence the name “unbanked”).

Lastly with the third point, while there are any number of merchants that now accept bitcoin, in practice very few actually do receive bitcoins on any given day.  Several weeks ago I broke down the numbers that BitPay reported and the verdict is payment processing is stagnant for now.

Why is this last point important to what the authors refer to as “the people”?

Ten days after Ripple Labs was fined by FinCEN for not appropriately enforcing AML/KYC regulations, Xapo  — a VC funded hosted wallet startup — moved off-shore, uprooting itself from Palo Alto to Switzerland.  While the stated reason is “privacy” concerns, it is likely due to regulatory concerns of a different nature.

In his interview with CoinDesk last week, Wences Casares, the CEO and founder of Xapo noted that:

Still, Casares indicated that Xapo’s customers are most often using its accounts primarily for storage and security. He noted that many of its clientele have “never made a bitcoin payment”, meaning its holdings are primarily long-term bets of high net-worth customers and family offices.

“Ninety-six percent of the coins that we hold in custody are in the hands of people who are keeping those coins as an investment,” Casares continued.

96% of the coins held in custody by Xapo are inert.  According to a dated presentation, the same phenomenon takes place with Coinbase users too.

Perhaps this behavior will change in the future, though, if not it seems unclear how this particular “to the people” narrative can take place when few large holders of a static money supply are willing to part with their virtual collectibles.  But this dovetails into differences of opinion on rebasing money supplies and that is a topic for a different post.

On page 11 the authors describe five stages of psychologically accepting Bitcoin.  In stage one they note that:

Stage One: Disdain.  Not even denial, but disdain.  Here’s this thing, it’s supposed to be money, but it doesn’t have any of the characteristics of money with which we’re familiar.

I think this is unnecessarily biased.  While I cannot speak for other “skeptics,” I actually started out very enthusiastic — I even mined for over a year — and never went through this strange five step process.  Replace the word “Bitcoin” with any particular exciting technology or philosophy from the past 200 years and the five stage process seems half-baked at best.

On page 13 they state:

“Public anxiety over such risks could prompt an excessive response from regulators, strangling the project in its infancy.”

Similarly on page 118 regarding the proposed New York BitLicense:

“It seemed farm more draconian than expected and prompted an immediate backlash from a suddenly well-organized bitcoin community.”

This is a fairly alarmist statement.  It could be argued that due to its anarchic code-as-law coupled with its intended decentralized topology, that it could not be strangled.  If a certain amount of block creating processors (miners) was co-opted by organizations like a government, then a fork would likely occur and participants with differing politics would likely diverge.

A KYC chain versus an anarchic chain (which is what we see in practice with altchains such as Monero and Dash).  Similarly, since there are no real self-regulating organizations (SRO) or efforts to expunge the numerous bad actors in the ecosystem, what did the enthusiasts and authors expect would occur when regulators are faced with complaints?

With that said — and I am likely in a small minority here — I do not think the responses thus far from US regulators (among many others) has been anywhere near “excessive,” but that’s my subjective view.  Excessive to me would be explicitly outlawing usage, ownership and mining of cryptocurrencies.  Instead what has occurred is numerous fact finding missions, hearings and even appearances by regulators at events.

On page 13 the authors state that:

“Cryptocurrency’s rapid development is in some ways a quirk of history: launched in the throes of the 2008 financial crisis, bitcoin offered an alternative to a system — the existing financial system — that was blowing itself up and threatening to take a few billion people down with it.”

This is retcon.  Satoshi Nakamoto, if he is to be believed, stated that he began coding the project in mid-2007.  It is more of a coincidence than anything else that this project was completed around the same time that global stock indices were at their lowest in decades.

Chapter 1

On page 21 the authors state that:

“Bitcoin seeks to address this challenge by offering users a system of trust based not on human being but on the inviolable laws of mathematics.”

While the first part is true, it is a bit cliche to throw in the “maths” reason.  There are numerous projects in the financial world alone that are run by programs that use math.  In fact, all computer programs and networks use some type of math at their foundation, yet no one claims that the NYSE, pace-makers, traffic intersections or airplanes are run by “math-based logic” (or on page 66, “”inviolable-algorithm-based system”).

A more accurate description is that Bitcoin’s monetary system is rule-based, using a static perfectly inelastic supply in contrast to either the dynamic or discretionary world humans live in.  Whether this is desirable or not is a different topic.

On page 26 they describe the Chartalist school of thought, the view that money is political, that:

“looks past the thing of currency and focuses instead on the credit and trust relationships between the individual and society at large that currency embodies” […] “currency is merely the token or symbol around which this complex system is arranged.”

This is in contrast to the ‘metallist’ mindset of some others in the Bitcoin community, such as Wences Casares and Jon Matonis (perhaps there is a distinct third group for “barterists”?).

I thought this section was well-written and balanced (e.g., appropriate citation of David Graeber on page 28; and description of what “seigniorage” is on page 30 and again on page 133).

On page 27 the authors write:

Yet many other cryptocurrency believers, including a cross section of techies and businessmen who see a chance to disrupt the bank centric payments system are de facto charatalists.  They describe bitcoin not as a currency but as a payments protocol.

Perhaps this is true.  Yet from the original Nakamoto whitepaper, perhaps he too was a chartalist?

Stating in section 1:

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as trusted third parties to process electronic payments. While the system works well enough for most transactions, it still suffers from the inherent weaknesses of the trust based model. Completely non-reversible transactions are not really possible, since financial institutions cannot avoid mediating disputes. The cost of mediation increases transaction costs, limiting the minimum practical transaction size and cutting off the possibility for small casual transactions, and there is a broader cost in the loss of ability to make non-reversible payments for non-reversible services. With the possibility of reversal, the need for trust spreads. Merchants must be wary of their customers, hassling them for more information than they would otherwise need. A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties can be avoided in person by using physical currency, but no mechanism exists to make payments over a communications channel without a trusted party.

A payments rail, a currency, perhaps both?

Fun fact: the word “payment” appears 12 times in the whole white paper, just one time less than the word “trust” appears.

On page 29 they cite the Code of Hammurabi.  I too think this is a good reference, having made a similar reference to the Code in Chapter 2 of my book last year.

On page 31 they write:

“Today, China grapples with competition to its sovereign currency, the yuan, due both to its citizens’ demand for foreign national currencies such as the dollar and to a fledgling but potentially important threat from private, digital currencies such as bitcoin.”

That is a bit of a stretch.  While Chinese policy makers do likely sweat over the creative ways residents breach and maneuver around capital controls, it is highly unlikely that bitcoin is even on the radar as a high level “threat.”  There is no bitcoin merchant economy in China.

The vast majority of activity continues to be related to mining and trading on exchanges, most of which is inflated by internal market making bots (e.g., the top three exchanges each run bots that dramatically inflate the volume via tape painting).  And due to how WeChat and other social media apps in China frictionlessly connect residents with their mainland bank accounts, it is unlikely that bitcoin will make inroads in the near future.

On page 36 they write:

“By 1973, once every country had taken its currency off the dollar peg, the pact was dead, a radical change.”

In point of fact, there are 23 countries that still peg their currency to the US dollar.  Post-1973 saw a number of flexible and managed exchange rate regimes as well as notable events such as the Plaza Accord and Asian Financial Crisis (that impacted the local pegs).

On page 39 they write:

“By that score, bitcoin has something to offer: a remarkable capacity to facilitate low-cost, near-instant transfer of value anywhere in the world.”

The point of contention here is the “low-cost” — something that the authors never really discuss the logistics of.  They are aware of “seigniorage” and inflationary “block rewards” yet they do not describe the actual costs of maintaining the network which in the long run, the marginal costs equal the marginal value (MC=MV).

This is an issue that I tried to bring up with them at the Google Author Talk last month (I asked them both questions during the Q&A):

The problem for Vigna’s view, (starting around 59m) is that if the value of a bitcoin fell to $30, not only would the network collectively “be cheaper” to maintain, but also to attack.

On paper, the cost to successfully attack the network today by obtaining more than 50% of the hashrate at this $30 price point would be $2,250 per hour (roughly 0.5 x MC) or roughly an order of magnitude less than it does at today’s market price (although in practice it is a lot less due to centralization).

Recall that the security of bitcoin was purposefully designed around proportionalism, that in the long run it costs a bitcoin to secure a bitcoin.  We will talk about fees later at the end of next chapter.

Chapter 2

On page 43, in the note at the bottom related to Ray Dillinger’s characterization that bitcoin is “highly inflationary” — Dillinger is correct in the short run.  The money supply will increase by 11% alone this year.  And while in the long run the network is deflationary (via block reward halving), the fact that the credentials to the bearer assets (bitcoins) are lost and destroyed each year results in a non-negligible amount of deflation.

For instance, in chapter 12 I noted some research: in terms of losing bitcoins, the chart below illustrates what the money supply looks like with an annual loss of 5% (blue), 1% (red) and 0.1% (green) of all mined bitcoins.

lost coins

Source: Kay Hamacher and Stefan Katzenbeisser

In December 2011, German researchers Kay Hamacher and Stefan Katzenbeisser presented research about the impact of losing the private key to a bitcoin. The chart above shows the asymptote of the money supply (Y-axis) over time (X-axis).

According to Hamacher:

So to get rid of inflation, they designed the protocol that over time, there is this creation of new bitcoins – that this goes up and saturates at some level which is 21 million bitcoins in the end.

But that is rather a naïve picture. Probably you have as bad luck I have, I have had several hard drive crashes in my lifetime, and what happens when your wallet where your bitcoins are stored and your private key vanish? Then your bitcoins are probably still in the system so to speak, so they are somewhat identifiable in all the transactions but they are not accessible so they are of no economic value anymore. You cannot exchange them because you cannot access them. Or think more in the future, someone dies but his family doesn’t know the password – no economic value in those bitcoins anymore. They cannot be used for any exchange anymore. And that is the amount of bitcoins when just a fraction per year vanish for different fractions. So the blue curve is 5% of all the bitcoins per year vanish by whatever means there could be other mechanisms.

It is unclear exactly how many bitcoins can be categorized in such a manner today or what the decay rate is.

On page 45 the authors write:

Some immediately homed in on a criticism of bitcoin that would become common: the energy it would take to harvest “bitbux” would cost more than they were worth, not to mention be environmentally disastrous.

While I am unaware of anyone who states that it would cost more than what they’re worth, as stated in Appendix B and in Chapter 3 (among many other places), the network was intentionally designed to be expensive, otherwise it would be “cheap to attack.”  And those costs scale in proportion to the token value.

As noted a few weeks ago:

For instance, last year O’Dwyer and Malone found that Bitcoin mining consumes roughly the same amount of energy as Ireland does annually.  It is likely that their estimate was too high and based on Dave Hudson’s calculations closer to 10% of Ireland’s energy consumption.23 Furthermore, it has likely declined since their study because, as previously explored in Appendix B, this scales in proportion with the value of the token which has declined over the past year.

The previous post looked at bitcoin payments processed by BitPay and found that as an aggregate the above-board activity on the Bitcoin network was likely around $350 million a year.  Ireland’s nominal GDP is expected to reach around $252 billion this year.  Thus, once Hudson’s estimates are integrated into it, above-board commercial bitcoin activity appears to be about two orders of magnitude less than what Ireland produces for the same amount of energy.

Or in other words, the original responses to Nakamoto six and a half years ago empirically was correct.  It is expensive and resource intensive to maintain and it was designed to be so, otherwise it would be easy to attack, censor and modify the history of votes.

Starting on page 56 they describe Mondex, Secure Electronic Transaction (SET), Electronic Monetary System, Citi’s e-cash model and a variety of other digital dollar systems that were developed during the 1990s.  Very interesting from a historical perspective and it would be curious to know what more of these developers now think of cryptocurrency systems.  My own view, is that the middle half of Chapter 2 is the best part of the book: very well researched and well distilled.

On page 64 they write:

[T]hat Nakamoto launched his project with a reminder that his new currency would require no government, no banks and no financial intermediaries, “no trusted third party.”

In theory this may be true, but in practice, the Bitcoin network does not natively provide any of the services banks do beyond a lock box.  There is a difference between money and the cornucopia of financial instruments that now exist and are natively unavailable to Bitcoin users without the use of intermediaries (such as lending).

On page 66 they write:

He knew that the ever-thinning supply of bitcoins would eventually require an alternative carrot to keep miners engaged, so he incorporated a system of modest transaction fees to compensate them for the resources they contributed.  These fees would kick in as time went on and as the payoff for miners decreased.

That’s the theory and the popular narrative.

However, what does it look like in practice?

Above is a chart visualizing fees to miners denominated in USD from January 2009 to May 17, 2015.  Perhaps the fees will indeed increase to replace block rewards, or conversely, maybe as VC funding declines in the coming years, the companies that are willing and able to pay fees for each transaction declines.

On page 67, the authors introduce us to Laszlo Hanyecz, a computer programmer in Florida who according to the brief history of Bitcoin lore, purchased two Papa John’s pizzas for 10,000 bitcoins on May 22, 2010 (almost five years ago to the day).

He is said to have sold 40,000 bitcoins in this manner and generated all of the bitcoins through mining.  He claims to be the first person to do GPU mining, ramping up to “over 800 times” of a CPU; and during this time “he was getting about half of all the bitcoins mined.”  According to him, he originally used a Nvidia 9800 GTX+ and later switched to 2 AMD Radeon 5970s.  It is unclear how long he mined or when he stopped.

In looking at the index of his server, there are indeed relevant OpenCL software files.  If this is true, then he beat ArtForz to GPU mining by at least two months.

solar pizza

Source: Laszlo Hanyecz personal server

On page 77 they write:

Anybody can go on the Web, download the code for no cost, and start running it as a miner.

While technically this is true, that you can indeed download the Satoshi Bitcoin core client for free, restated in 2015 it is not viable for hoi polloi.  In practice you will not generate any bitcoins solo-mining on a desktop machine unless you do pooled mining circa 2011.

Today, even pooled mining with the best Xeon processors will be unprofitable.  Instead, the only way to generate enough funds to cover both the capital expenditures and operating expenditures is through the purchase of single-use hardware known as an ASIC miner, which is a depreciating capital good.

Mining has been beyond the breakeven reach of most non-savvy home users for two years now, not to mention those who live in developing countries with poor electrical infrastructure or uncompetitive energy rates.  It is unlikely that embedded mining devices will change that equation due to the fact that every additional device increases the difficultly level whilst the device hashrate remains static.

This ties in with what the authors also wrote on page 77:

You don’t buy bitcoin’s software as you would other products, which means you’re not just a customer.  What’s more, there’s no owner of the software — unlike, say, PayPal, which is part of eBay.

This is a bit misleading.  In order to use the Bitcoin network, users must obtain bitcoins somehow.  And in practice that usually occurs through trusted third parties such as Coinbase or Xapo which need to identify you via KYC/AML processes.

So while in 2009 their quote could have been true, in practice today that is largely untrue for most new participants — someone probably owns the software and your personal data.  In fact, a germane quote on reddit last week stated, “Why don’t you try using Bitcoin instead of Coinbase.”

Furthermore, the lack of “ownership” of Bitcoin is dual-edged as there are a number of public goods problems with maintaining development that will be discussed later.

On page 87 they describe Blockchain.info as a “high-profile wallet and analytics firm.”

I will come back to “wallets” later.  Note: most of these “wallets” are likely throwaway, temp wallets used to move funds to obfuscate provenance through the use of Shared Coin (one of the ways Blockchain.info generates revenue is by operating a mixer).

Overall Chapter 3 was also fairly informative.  The one additional quibble I have is that Austin and Beccy Craig (the story at the end) were really only able to travel the globe and live off bitcoins for 101 days because they had a big cushion: they had held a fundraiser that raised $72,995 of additional capital.  That is enough money to feed and house a family in a big city for a whole year, let alone go globe trotting for a few months.

Chapter 4

On page 99 they describe seven different entities that have access to credit card information when you pay for a coffee at Starbucks manually.  Yet they do not describe the various entities that end up with the personal information when signing up for services such as Coinbase, ChangeTip, Circle and Xapo or what these depository institutions ultimately do with the data (see also Richard Brown’s description of the payment card system).

When describing cash back rewards that card issuers provide to customers, on page 100 they write:

Still it’s an illusion to think you are not paying for any of this.  The costs are folded into various bank charges: card issuance fees, ATM fees, checking fees, and, of course, the interest charged on the millions of customers who don’t pay their balances in full each month.

Again, to be even handed they should also point out all the fees that Coinbase charges, Bitcoin ATMs charge and so forth.  Do any of these companies provide interest-bearing accounts or cash-back rewards?

On page 100 they also stated that:

Add in the cost of fraud, and you can see how this “sand in the cogs” of the global payment system represents a hindrance to growth, efficiency, and progress.

That seems a bit biased here.  And my statement is not defending incumbents: global payment systems are decentralized yet many provide fraud protection and insurance — the very same services that Bitcoin companies are now trying to provide (such as FDIC insurance on fiat deposits) which are also not free.

On page 100 they also write:

We need these middlemen because the world economy still depends on a system in which it is impossible to digitally send money from one person to another without turning to an independent third party to verify the identity of the customer and confirm his or her right to call on the funds in the account.

Again, in practice, this is now true for Bitcoin too because of how most adoption continues to take place on the edges in trusted third parties such as Coinbase and Circle.

On page 101 they write:

In letting the existing system develop, we’ve allowed Visa and MasterCard to form a de facto duopoly, which gives them and their banking partners power to manipulate the market, says Gil Luria, an analyst covering payment systems at Wedbush Securities.  Those card-network firms “not only get to extract very significant fees for themselves but have also created a marketplace in which banks can charge their own excessive fees,” he says.

Why is it wrong to charge fees for a service?  What is excessive?  I am certainly not defending incumbents or regulatory favoritism but it is unclear how Bitcoin institutions in practice — not theory — actually are any different.

And, the cost per transaction for Bitcoin is actually quite high (see chart below) relative to these other systems due to the fact that Bitcoin also tries to be a seigniorage system, something that neither Visa or MasterCard do.

cost per transaction

Source: Markos05

On page 102 when talking about MasterCard they state:

But as we’ve seen, that cumbersome system, as it is currently designed, is tightly interwoven into the traditional banking system, which always demands a cut.

The whole page actually is a series of apples-and-oranges comparisons.  Aside from settlement, the Bitcoin network does not provide any of the services that they are comparing it to.  There is nothing in the current network that provides credit/lending services whereas the existing “cumbersome” system was not intentionally designed to be cumbersome, but rather is intertwined and evolved over decades so that customers can have access to a variety of otherwise siloed services.

Again, this is not to say the situation cannot be improved but as it currently exists, Bitcoin does not provide a solution to this “cumbersome” system because it doesn’t provide similar services.

On page 102 and 103 they write about payment processors such as BitPay and Coinbase:

These firms touted a new model to break the paradigm of merchants’ dependence on the bank-centric payment system described above.  These services charged monthly fees that amounted to significantly lower transaction costs for merchants than those charged in credit-card transactions and delivered swift, efficient payments online or on-site.

Except this is not really true.  The only reason that both BitPay and Coinbase are charging less than other payment processors is that VC funding is subsidizing it.  These companies still have to pay for customer service support and fraud protection because customer behavior in aggregate is the same.  And as we have seen with BitPay numbers, it is likely that BitPay’s business model is a losing proposition and unsustainable.

On page 103 they mention some adoption metrics:

The good news is found in the steady expansion in the adoption of digital wallets, the software needed to send and receive bitcoins, with Blockchain and Coinbase, the two biggest providers of those, on track to top 2 million unique users each at the time of the writing.

This is at least the third time they talk about wallets this way and is important because it is misleading, I will discuss in-depth later.

Continuing they write that:

Blockchain cofounder Peter Smith says that a surprisingly large majority of its accounts — “many more than you would think,” he says cryptically — are characterized as “active.”

This is just untrue and should have been pressed by the authors.  Spokesman from Blockchain.info continue to publish highly inflated numbers.  For instance in late February 2015, Blockchain.info claimed that “over $270 million in bitcoin transactions occurred via its wallets over the past seven days.”

This is factually untrue.  As I mentioned three months ago:

Organ of Corti pointed out that the 7 day average was indeed ~720,000 bitcoins in total output volume (thus making) the weekly volume would be about “5e06 btc for the network.”

Is it valid to multiply the total output volume by USD (or euros or yen)?  No.

Why not?  Because most of this activity is probably a combination of wallet shuffling, laundering and mixing of coins (e.g., use of SharedSend and burner wallets) or any number of superfluous activity.  It was not $270 million of economic trade.

Blockchain.info’s press release seems to be implying that economic trade is taking place, in which all transactions are (probably) transactions to new individuals when in reality it could simply be a lot of “change” address movement.  And more to the point, the actual internal volume looks roughly the same as has been the past few months (why issue a press release now?).

Continuing on page 103 they write:

“For the first eight months months of 2014, around $50 million per day was passing thought the bitcoin network (some of which was just “change” that bitcoin transactions create as an accounting measure)…”

There is a small typo above (in bold) but the important part is the estimate of volume.  There is no public research showing a detailed break down of average volume of economic activity.  Based on a working paper I published four months ago, it is fairly clear that this figure is probably in the low millions USD at most.  Perhaps this will change in the future.

On page 106 they write about Circle and Xapo:

For now, these firms make no charge to cover costs of insurance and security, betting that enough customers will be drawn to them and pay fees elsewhere — for buying and selling bitcoins, for example — or that their growing popularity will allow them to develop profitable merchant-payment services as well.  But over all, these undertaking must add costs back into the bitcoin economy, not to mention a certain dependence on “trusted third parties.”  It’s one of many areas of bitcoin development — another is regulation — where some businessmen are advocating a pragmatic approach to bolstering public confidence, one that would necessitate compromises on some of the philosophical principles behind a model of decentralization.  Naturally, this doesn’t sit well with bitcoin purists.

While Paul Vigna may not have written this, he did say something very similar at the Google Author Talk event (above in the video).

The problem with this view is that it is a red herring: this has nothing to do with purism or non-purism.

The problem is that Bitcoin’s designer attempted to create a ‘permissionless’ system to accommodate pseudonymous actors.  The entire cost structure and threat model are tied to this.  If actors are no longer pseudonymous, then there is no need to have this cost structure, or to use proof-of-work at all.  In fact, I would argue that if KYC/KYM (Know Your Miner) are required then a user might just as well use a database or permissioned system.  And that is okay, there are businesses that will be built around that.

This again has nothing to do with purism and everything to do with the costs of creating a reliable record of truth on a public network involving unknown, untrusted actors.  If any of those variables changes — such as adding real-world identity, then from a cost perspective it makes little sense to continue using the modified network due to the intentionally expensive proof-of-work.

On page 107 they talk about bitcoin price volatility discussing the movements of gasoline.  The problem with this analogy is that no one is trying to use gasoline as money.  In practice consumers prefer purchasing power stability and there is no mechanism within the Bitcoin network that can provide this.

For instance:

volatility 1volatility 2volatility 3The three slides above are from a recent presentation from Robert Sams.  Sams previously wrote a short paper on “Seigniorage Shares” — an endogenous way to rebase for purchasing power stability within a cryptocurrency.

Bitcoin’s money supply is perfectly inelastic therefore the only way to reflect changes in demand is through changes in price.  And anytime there are future expectations of increased or decreased utility, this is reflected in prices via volatility.

Oddly however, on page 110, they write:

A case can be made that bitcoin’s volatility is unavoidable for the time being.

Yet they do not provide any evidence — aside from feel good “Honey Badger” statements — for how bitcoin will somehow stabilize.  This is something the journalists should have drilled down on, talking to commodity traders or some experts on fuel hedging strategies (which is something airline companies spend a great deal of time and resources with).

Instead they cite Bobby Lee, CEO of BTC China and Gil Luria once again.  Lee states that “Once its prices has risen far enough and bitcoin has proven itself as a store of value, then people will start to use it as a currency.”

This is a collective action problem.  Because all participants each have different time preferences and horizons — and are decentralized — this type of activity is actually impossible to coordinate, just ask Josh Garza and the $20 Paycoin floor.  This also reminds me of one of my favorite comments on reddit: “Bitcoin will stabilize in price then go to the moon.”

The writers then note that, “Gil Luria, the Wedbush analyst, even argues that volatility is a good thing, on the grounds that it draws profit-seeking traders into the marketplace.”

But just because you have profit-seeking traders in the market place does not mean volatility disappears.

trading view

Credit: George Samman

For instance, in the chart above we can see how bitcoin trades relative to commodities over the past year:

  • Yellow is DBC
  • Red is OIL
  • Bars are DXY which is a dollar index
  • And candlesticks are BTCUSD
DBC is a commodities index and the top 10 Holdings (85.39% of Total Assets):
  • Brent Crude Futr May12 N/A 13.83
  • Gasoline Rbob Fut Dec12 N/A 13.71
  • Wti Crude Future Jul12 N/A 13.56
  • Heating Oil Futr Jun12 N/A 13.20
  • Gold 100 Oz Futr Dec 12 N/A 7.49
  • Sugar #11(World) Jul12 N/A 5.50
  • Corn Future Dec12 N/A 5.01
  • Lme Copper Future Mar13 N/A 4.55
  • Soybean Future Nov12 N/A 4.38
  • Lme Zinc Future Jul12

It bears mentioning that Ferdinando Ametrano has also described this issue in depth most recently in a presentation starting on slide 15.

Continuing on page 111, the writers note that:

Over time, the expansion of these desks, and the development of more and more sophisticated trading tools, delivered so much liquidity that exchange rates became relatively stable.  Luria is imagining a similar trajectory for bitcoin.  He says bitcoiners should be “embracing volatility,” since it will help “create the payment network infrastructure and monetary base” that bitcoin will need in the future.

There are two problems with Luria’s argument:

1) As noted above, this does not happen with any other commodity and historically nothing with a perfectly inelastic supply

2) Empirically, as described by Wences Casares above, nearly all the bitcoins held at Xapo (and likely other “hosted wallets”) are being held as investments.  This reduces liquidity which translates into volatility due to once again the inability to slowly adjust the supply relative to the shifts in demand.  This ties into a number of issues discussed in, What is the “real price” of bitcoin? that are worth revisiting.

Also on page 111, they write that “the exchange rate itself doesn’t matter.”

Actually it does.  It directly impacts two things:

1) outside perception on the health of Bitcoin and therefore investor interest (just talk to Buttercoin);

2) on a ten-minute basis it impacts the bottom line of miners.  If prices decline, so to is the incentive to generate proof-of-work.  Bankruptcy, as CoinTerra faces, is a real phenomenon and if prices decline very quickly then the security of the network can also be reduced due to less proof-of-work being generated

Continuing on page 111:

It’s expected that the mirror version of this will in time be set up for consumers to convert their dollars into bitcoins, which will then immediately be sent to the merchant.  Eventually, we could all be blind to these bitcoin conversions happening in the middle of all our transactions.

It’s unfortunate that they do not explain how this will be done without a trusted third party, or why this process is needed.  What is the advantage of going from USD-> paying a conversion fee -> BTC -> conversion fee -> back into USD?  Why not just spend USD and cut out the Bitcoin middleman?

Lastly on page 111:

Still, someone will have to absorb the exchange-rate risk, if not the payment processors, then the investors with which they trade.

The problem with this is that its generally not in the mandate or scope of most VC firms to purchase commodities or currencies directly.  In fact, they may even need some kind of license to do so depending on the jurisdiction (because it is a foreign exchange play).  Yet expecting the payment processors to shoulder the volatility is probably a losing proposition: in the event of a protracted bear market how many bitcoins at BitPay — underwater or not — will need to be liquidated to pay for operating costs?4

On page 112 they write:

‘Bitcoin has features from all of them, but none in entirety.  So, while it might seem unsatisfying, our best answer to the question of whether cryptocurrency can challenge the Visa and MasterCard duopoly is, “maybe, maybe not.”

On the face of it, it is a safe answer.  But upon deeper inspection we can probably say, maybe not.  Why?  Because for Bitcoin, once again, there is no native method for issuing credit (which is what Visa/MasterCard do with what are essentially micro-loans).

For example, in order to natively add some kind of lending facility within the Bitcoin network a new “identity” system would need to be built and integrated (to enable credit checks) — yet by including real-world “identity” it would remove the pseudonymity of Bitcoin while simultaneously maintaining the same costly proof-of-work Sybil protection.  This is again, an unnecessary cost structure entirely and positions Bitcoin as a jack-of-all-trades-but-master-of-none.  Why?  Again recall that the cost structure is built around Dynamic Membership Multi-Party Signature (DMMS); if the signing validators are static and known you might as well use a database or permissioned ledgers.

Or as Robert Sams recently explained, if censorship resistance is co-opted then the reason for proof-of-work falls to the wayside:

Now, I am sure that the advocates of putting property titles on the bitcoin blockchain will object at this point. They will say that through meta protocols and multi-key signatures, third party authentication of transaction parties can be built-in, and we can create a registered asset system on top of bitcoin. This is true. But what’s the point of doing it that way? In one fell swoop a setup like that completely nullifies the censorship resistance offered by the bitcoin protocol, which is the whole raison d’etre of proof-of-work in the first place! These designs create a centralised transaction censoring system that imports the enormous costs of a decentralised one built for censorship-resistance, the worst of both worlds.

If you are prepared to use trusted third parties for authentication of the counterparts to a transaction, I can see no compelling reason for not also requiring identity authentication of the transaction validators as well. By doing that, you can ditch the gross inefficiencies of proof-of-work and use a consensus algorithm of the one-node-one-vote variety instead that is not only thousands of times more efficient, but also places a governance structure over the validators that is far more resistant to attackers than proof-of-work can ever be.

On page 113, they write:

“the government might be able to take money out of your local bank account, but it couldn’t touch your bitcoin.  The Cyprus crisis sparked a stampede of money into bitcoin, which was now seen as a safe haven from the generalized threat of government confiscation everywhere.”

In theory this may be true, but in practice, it is likely that a significant minority — if not majority — of bitcoins are now held in custody at depository institutions such as Xapo, Coinbase and Circle.  And these are not off-limits to social engineering.  For instance, last week an international joint-task force confiscated $80,000 in bitcoins from dark web operators.  The largest known seizure in history were 144,000 bitcoins from Ross Ulbricht (Dread Pirate Roberts) laptop.

Similarly, while it probably is beyond the scope of their book, it would have been interesting to see a survey from Casey and Vigna covering the speculators during this early 2013 time frame.  Were the majority of people buying bitcoins during the “Cyprus event” actually worried about confiscation or is this just something that is assumed?  Fun fact: the largest transaction to BitPay of all time was on March 25, 2013 during the Cyprus event, amounting to 28,790 bitcoins.

On page 114, the writers for the first time (unless I missed it elsewhere), use the term “virtual currency.”  Actually, they quote FinCEN director Jennifer Calvery who says that FincCEN, “recognizes the innovation virtual currencies provide , and the benefits they might offer society.”

Again recall that most fiat currencies today are already digitized in some format — and they are legal tender.  In contrast, cryptocurrencies such as bitcoin are not legal tender and are thus more accurately classified as virtual currencies.  Perhaps that will change in the future.

On page 118 they note that, “More and more people opened wallets (more than 5 million as of this writing).”

I will get to this later.  Note that on p. 123 they say Coupa Cafe has a “digital wallet” a term used throughout the entire book.

Chapter 5

On page 124:

“Bitcoins exist only insofar as they assign value to a bitcoin address, a mini, one-off account with which people and firms send and receive the currency to and from other people’s firms’ addresses.”

This is actually a pretty concise description of best-practices.  In reality however, many individuals and organizations (such as exchanges and payment processors) reuse addresses.

Continuing on page 124:

“This is an important distinction because it means there’s no actual currency file or document that can be copied or lost.”

This is untrue.  In terms of security, the hardest and most expensive part in practice is securing the credentials — the private key that controls the UTXOs.  As Stefan Thomas, Jason Whelan (p. 139) and countless other people on /r/sorryforyourloss have discovered, this can be permanently lost.  Bearer assets are a pain to secure, hence the re-sprouting of trusted third parties in Bitcoinland.

One small nitpick in the note at the bottom of page 125, “Sometimes the structure of the bitcoin address network is such that the wallet often can’t send the right amount in one go…” — note that this ‘change‘ is intentional (and very inconvenient to the average user).

Another nitpick on page 128:

Each mining node or computer gathers this information and reduces it into an encrypted alphanumeric string of characters known as a hash.

There is actually no encryption used in Bitcoin, rather there are some cryptographic primitives that are used such as key signing but this is not technically called encryption (the two are different).

On page 130, I thought it was good that they explained where the term nonce was first used — from Lewis Carroll who created the word “frabjous” and described it as a nonce word.

On page 132, in describing proof-of-work:

While that seems like a mammoth task, these are high-powered computers; it’s not nearly as taxing as the nonce-creating game and can be done relatively quickly and easily.

They are correct in that something as simple as a Pi computer can and is used as the actual transaction validating machine.  Yet, at one point in 2009, this bifurcation did not exist: a full-node was both a miner and a hasher.  Today that is not the case and we technically have about a dozen or so actual miners on the network, the rest of the machines in “farms” just hash midstates.

On page 132, regarding payment processors accepting zero-confirmation transactions:

They do this because non-confirmations — or the double-spending actions that lead to them — are very rare.

True they are very rare today in part because there are very few incentives to actually try and double-spend.  Perhaps that will change in the future with new incentives to say, double-spend watermarked coins from NASDAQ.

And if payment processors are accepting zero confirmations, why bother using proof-of-work and confirmations at all?  Just because a UTXO is broadcast does not mean it will not be double-spent let alone confirmed and packaged into a block.  See also replace-by-fee proposal.

Small note on page 132:

“the bitcoin protocol won’t let it use those bitcoins in a payment until a total of ninety-nine additional blocks have been built on top its block.”

Sometimes it depends on the client and may be up to 120 blocks altogether, not just 100.

On page 133 they write:

“Anyone can become a miner and is free to use whatever computing equipment he or she can come up with to participate.”

This may have been the case in 2009 but not true today.  In order to reduce payout variance, the means of production as it were, have gravitated towards large pools of capital in the form of hashing farms.  See also: The Gambler’s Guide to Bitcoin Mining.

On page 135 they write:

“Some cryptocurrency designers have created nonprofit foundations and charged them with distributing the coins based on certain criteria — to eligible charities, for example. But that requires the involvement of an identifiable and trusted founder to create the foundation.”

The FinCEN enforcement action and fine on Ripple Labs could put a kibosh on this in the future.  Why?  If organizations that hand out or sell coins are deemed under the purview of the Bank Secrecy Act (BSA) it is clear that most, if not all, crowdfunding or initial coin offerings (ICO) are violating this by not implementing KYC/AML requirements on participants or filing SARs.

On page 136 they write:

“Both seigniorage and transaction fees represent a transfer of value to those running the network. Still, in the grand scheme of things, these costs are far lower than anything found in the old system.”

This is untrue and an inaccurate comparison.  We know that at the current bitcoin price of $240 it costs roughly $315 million to operate the network for the entire year.  If bitcoin-based consumer spending patterns hold up and reflect last years trends seen by BitPay, then roughly $350 million will be spent through payment processors, nearly half of which includes mining payouts.

Or in other words, for roughly every dollar spent on commerce another dollar is spent securing it.  This is massive oversecurity relative to the commerce involve.  Neither Saudi Arabia or even North Korea spend half of, let alone 100% of their GDP on military expenditures (yet).

Chapter 6

Small nitpick on page 140, Butterfly Labs is based in Leawood, Kansas not Missouri (Leawood is on the west side of the dividing line).

I think the story of Jason Whelan is illuminating and could help serve as a warning guide to anyone wanting to splurge on mining hardware.

For instance on page 141:

“And right from the start Whelan face the mathematical reality that his static hashrate was shrinking as a proportion of the ever-expanding network, whose computing power was by then almost doubling every month.”

Not only was this well-written but it does summarize the problem most new miners have when they plan out their capital expenditures.  It is impossible to know what the network difficulty will be in 3 months yet what is known is that even if you are willing to tweak the hardware and risk burning out some part of your board, your hashrate could be diluted by faster more efficient machines.  And Whelan found out the hard way that he might as well bought and held onto bitcoins than mine.  In fact, Whelan did just about everything the wrong way, including buying hashing contracts with cloud miners from “PBCMining.com” (a non-functioning url).

On page 144 the authors discussed the mining farms managed by now-defunct CoinTerra:

With three in-built high-powered fans running at top speed to cool the rig while its internal chi races through calculations, each unit consumes two kilowatts per hour, enough power to run an ordinary laptop for a month. That makes for 20 kWh per tower, about ten times the electricity used for the same space by the neighboring server of more orthodox e-commerce firms.

As noted in Chapter 2 above, this electricity has to be “wasted.”  Bitcoin was designed to be “inefficient” otherwise it would be easy to attack and censor.  And in the future, it cannot become more “efficient” — there is no free lunch when it comes to protecting it.  It also bears mentioning that CoinTerra was sued by its utility company in part for the $12,000 a day in electrical costs that were not being paid for.

On page 145 they wrote that as of June 2014:

“By that time, the network, which was then producing 88,000 trillion hashes every second, had a computing power six thousand times the combined power of the world’s top five hundred supercomputers.”

This is not a fair comparison.  ASIC miners can do one sole function, they are unable to do anything aside from reorganize a few fields (such as date and nonce) with the aim of generating a new number below a target number.  They cannot run MS Office, Mozilla Firefox and more sobering: they cannot even run a Bitcoin client (the Pi computer run by the pool runs the client).

In contrast, in order to be recognized as a Top 500 computer, only general purpose machines capable of running LINXPACK are considered eligible.  The entire comparison is apples-to-oranges.

On page 147 the authors described a study from Guy Lane who used inaccurate energy consumption data from Blockchain.info.

And then they noted that:

“So although the total consumption is significantly higher than the seven-thousand-home estimate, we’re a long way from bitcoin’s adding an entire country’s worth of power consumption to the world.”

This is not quite true.  As noted above in the notes of Chapter 2 above, based on Dave Hudson’s calculations the current Bitcoin network consumes the equivalent of about 10% of Ireland’s annual energy usage yet produces two orders of magnitude less economic activity.  If the price of bitcoin increases so to does the amount of energy miners are willing to expend to chase after the seigniorage.  See also Appendix B.

On page 148 they write that:

For one, power consumption must be measured against the value of validating transactions in a payment system, a social service that gold mining has never provided.  Second, the costs must be weighed against the high energy costs of the alternative, traditional payment system, with its bank branches, armored cars, and security systems. And finally, there’s the overriding incentive for efficiency that the profit motive delivers to innovators, which is why we’ve seen such giant reductions in power consumption for the new mining machines. If power costs make mining unprofitable, it will stop.

First of all, validation is cheap and easy, as noted above it is typically done with something like a Pi computer.  Second, they could have looked into how much real commerce is taking place on the chain relative to the costs of securing it so the “social service” argument probably falls flat at this time.

Thirdly, the above “armored cars and security systems” is not an apples-to-apples comparison.  Bitcoin does not provide any banking service beyond a lock box, it does not provide for home mortgages, small business loans or mezzanine financing.  The costs for maintaining those services in the traditional world do not equate to MC=MV as described at the end of Chapter 1 notes.

Fourthly, they ignore the Red Queen effect.  If a new hashing machine is invented and consumes half as much energy as before then the farm owner will just double the amount of machines and the net effect is the same as before.  This happens in practice, not just in theory, hence the reason why electrical consumption has gone up in aggregate and not down.

On page 149 they write:

“But the genius of the consensus-building in the bitcoin system means such forks shouldn’t be allowed to go on for long. That’s because the mining community works on the assumption that the longest chain is the one that constitutes consensus.”

That’s not quite accurate.  Each miner has different incentives.  And, as shown empirically with other altcoins, forks can reoccur frequently without incentives that align.  For now, some incentives apparently do.  But that does not mean that in the future, if say watermarked coins become more common place, that there will not be more frequent forks as certain miners attempt to double-spend or censor such metacoins.

Ironically on page 151 the authors describe the fork situation of March 2013 and describe the fix in which a few core developers convince Mark Karpeles (who ran Mt. Gox) to unilaterally adopt one specific fork.  This is not trustless.

On page 151 they write:

“That’s come to be known as a 51 percent attack.  Nakamoto’s original paper stated that the bitcoin mining network could be guaranteed to treat everyone’s transactions fairly and honestly so long as no single miner or mining group owned more than 50 percent of the hashing power.”

And continuing on page 153:

“So, the open-source development community is now looking for added protections against selfish mining and 51 percent attacks.”

While they do a good job explaining the issue, they don’t really discuss how it is resolved.  And it cannot be without gatekeepers or trusted hardware.

For instance, three weeks ago there was a good reddit thread discussing one of the problems of Andreas Antonopolous’  slippery slope view that you could just kick the attackers off the network.  First, there is no quick method for doing so; second, by blacklisting them you introduce a new problem of having the ability to censor miners which would be self-defeating for such a network as it introduces a form of trust into an expensive cost structure of trust minimization.

On page 152 they cite a Coinometrics number:

“in the summer of 2014 the cost of the mining equipment and electricity required for a 51 percent attack stood at $913 million.”

This is a measurement of maximum costs based on hashrate brute force — a Maginot Line attack.  In practice it is cheaper to do via out of band attacks (e.g., rubber hose cryptanalysis).  There are many other, cheaper ways, to attack the P2P network itself (such as Eclipse attacks).

On page 154 when discussing wealth disparity in Bitcoin they write:

“First, some perspective.  As a wealth-gap measure, this is a lousy one.  For one, addresses are not wallets.  The total number of wallets cannot be known, but they are by definition considerably fewer than the address tally, even though many people hold more than one.”

Finally.  So the past several chapters I have mentioned I will discuss wallets at some length.  Again, the authors for some reason uncritically cite the “wallet numbers” from Blockchain.info, Coinbase and others as actual digital wallets.

Yet here they explain that these metrics are bupkis.  And they are.  It costs nothing to generate a wallet and there are scripts you can run to auto generate them.  In fact, Zipzap and many others used to give every new user a Blockchain.info wallet por gratis.

And this is problematic because press releases from Xapo and Blockchain.info continually cite a number that is wholly inaccurate and distorting.

For instance Wences Casares said in a presentation a couple months ago that there were 7 million users.  Where did that number come from?  Are these on-chain privkey holders?  Why are journalists not questioning these claims?  See also: A brief history of Bitcoin “wallet” growth.

On page 154 they write:

“These elites have an outsize impact on the bitcoin economy. They have a great interest in seeing the currency succeed and are both willing and able to make payments that others might not, simply to encourage adoption.”

Perhaps this is true, but until there is a systematic study of the conspicuous consumption that takes place, it could also be the case that some of these same individuals just have an interest in seeing the price of bitcoin rise and not necessarily be widely adopted.  The two are not mutually exclusive.

On page 155 and 156 they describe the bitsat project, to launch a full node into space which is aimed “at making the mining network less concentrated.”

Unfortunately these types of full nodes are not block makers.  Thus they do not actually make the network less concentrated, but only add more propagating nodes.  The two are not the same.

On page 156 they describe some of the altcoin projects:

“They claim to take the good aspects of bitcoin’s decentralized structure but to get ride of its negative elements, such as the hashing-power arms race, the excessive use of electricity, and the concentration of industrialized mining power.”

I am well aware of the dozens various coin projects out there due to work with a digital asset exchange over the past year.  Yet fundamentally all of the proof-of-work based coins end up along the same trend line, if they become popular and reach a certain level of “market cap” (an inaccurate term) specialized chips are designed to hash it.

And the term “excessive” energy related to proof-of-work is a bit of a non-starter.  Ignoring proof-of-stake systems, if it becomes less energy intensive to hash via POW, then it also becomes cheaper to attack.  Either miners will add more equipment or the price has dropped for the asset and it is therefore cheaper to attack.

On page 157 regarding Litecoin they write that:

“Miners still have an incentive to chase coin rewards, but the arms race and the electricity usage aren’t as intense.”

That’s untrue.  Scrypt (which is used instead of Hashcash) is just as energy intensive.  Miners will deploy and utilize energy in the same patterns, directly in proportion to the token price.  The difference is memory usage (Litecoin was designed to be more memory intensive) but that is unrelated to electrical consumption.

Continuing:

“Litecoin’s main weakness is the corollary of its strength: because it’s cheaper to mine litecoins and because scrypt-based rigs can be used to mine other scrypt-based altcoins such as dogecoin, miners are less heavily invested in permanently working its blockchain.”

This is untrue.  Again, Litecoin miners will in general only mine up to the point where it costs a litecoin to make a litecoin.  Obviously there are exceptions to it, but in percentage terms the energy usage is the same.

Continuing:

“Some also worry that scrypt-based mining is more insecure, with a less rigorous proof of work, in theory allowing false transactions to get through with incorrect confirmations.”

This is not true.  The two difference in security are the difficulty rating and block intervals.  The higher the difficulty rating, the more energy is being used to bury blocks and in theory, the more secure the blocks are from reversal.

The question is then, is 2.5 minutes of proof-of-work as secure as burying blocks every 10 minutes?  Jonathan Levin, among others, has written about this before.

cthuluSmall nitpick on page 157, fairly certain that nextcoin should be referred to as NXT.

On page 158 they write:

If bitcoin is to scale up, it must be upgraded sot hat nodes, currently limited to one megabyte of data per ten-minute block, are free to process a much larger set of information.  That’s not technically difficult; but it would require miners to hash much larger blocks of transactions without big improvements in their compensation.  Developers are currently exploring a transaction-fee model that would provide fairer compensation for miners if the amount of data becomes excessive.

This is not quite right.  There is a difference between block makers (pools) and hashers (mining farms).  The costs for larger blocks would impact block makers not hashers, as they would need to upgrade their network facilities and local hard drive.  This may seem trivial and unimportant, but Jonathan Levin’s research, as well as others suggest that block sizes does in fact impact orphan rates.5

It also impacts the amount of decentralization within the network as larger blocks become more expensive to propagate you will likely have fewer nodes.  This has been the topic of immense debate over the past several weeks on social media.

Also on page 158 they write:

The laboratory used by cryptocurrency developers, by contrast, is potentially as big as the world itself, the breadth of humanity that their projects seek to encompass. No company rulebook or top-down set of managerial instructions keeps people’s choice in line with a common corporate objective. Guiding people to optimal behavior in cryptocurrencies is entirely up to how the software is designed to affect human thinking, how effectively its incentive systems encourage that desired behavior

This is wishful thinking and probably unrealistic considering that Bitcoin development permanently suffers from the tragedy of the commons.  There is no CEO which is both good and bad.

For example, directions for where development goes is largely based on two things:

  1. how many upvotes your comment has on reddit (or how many retweets it gets on Twitter)
  2. your status is largely a function of how many times Satoshi Nakamoto responded to you in email or on the Bitcointalk forum creating a permanent clique of “early adopters” whose opinions are the only valid ones (see False narratives)

This is no way to build a financial product.  Yet this type of lobbying is effectively how the community believes it will usurp well-capitalized private entities in the payments space.

Several months ago a user, BitttBurger, made a similar observation:

I’ve said it before and I will say it again. There is a reason why Developers should not be in control of product development priorities, naming, feature lists, or planning for a product. That is the job of the sales, marketing, and product development teams who actually interface with the customer. They are the ones who do the research and know what’s needed for a product. They are the ones who are supposed to decide what things are called, what features come next, and how quickly shit gets out the door.

Bitcoin has none of that. You’ve got a Financial product, being created for a financial market, by a bunch of developers with no experience in finance, and (more importantly) absolutely no way for the market to have any input or control over what gets done, or what it’s called. That is crazy to me.

Luke is a perfect example of why you don’t give developers control over anything other than the structure of the code.

They are not supposed to be making product development decisions. They are not supposed to be naming anything. And they definitely are not supposed to be deciding “what comes next” or how quickly things get done. In any other company, this process would be considered suicide.

Yet for some reason this is considered to be a feature rather than a bug (e.g., “what is your Web of Trust (WoT) number?”).

On page 159 they write:

“The vital thing to remember is that the collective brainpower applied to all the challenges facing bitcoin and other cryptocurrencies is enormous.  Under the open-source, decentralized model, these technologies are not hindered by the same constraints that bureaucracies and stodgy corporations face.”

So, what is the Terms of Service for Bitcoin?  What is the customer support line?  There isn’t one.  Caveat emptor is pretty much the marketing slogan and that is perfectly fine for some participants yet expecting global adoption without a “stodgy” “bureaucracy” that helps coordinate customer service seems a bit of a stretch.

And just because there is some avid interest from a number of skilled programmers around the world does not mean public goods problems surrounding development will be resolved.

For reference: there were over 5000 co-authors on a recent physics paper but that doesn’t mean their collective brain power will quickly resolve all the open questions and unsolved problems in physics.

Chapter 7:

Small nitpick on page 160:

“Bitcoin was born out of a crypto-anarchist vision of a decentralized government-free society, a sort of encrypted, networked utopia.”

As noted above, there is actually no encryption used in Bitcoin.

On page 162 they write:

“Before we get too carried away, understand this is still early days.”

That may be the case.  Perhaps decentralized cryptocurrencies like Bitcoin are not actually the internet in the early 1990s like many investors claim but rather the internet in the 1980s when there were almost no real use-cases and it is difficult to use.  Or 1970s.  The problem is no one can actually know the answer ahead of time.

And when you try to get put some milestone down on the ground, the most ardent of enthusiasts move the goal posts — no comparisons with existing tech companies are allowed unless it is to the benefit of Bitcoin somehow.  I saw this a lot last summer when I discussed the traction that M-Pesa and Venmo had.

A more recent example is “rebittance” (a portmanteau of “bitcoin” and “remittance”).  A couple weeks ago Yakov Kofner, founder of Save On Send, published a really good piece comparing money transmitter operators with bitcoin-related companies noting that there currently is not much meat to the hype.  The reaction on reddit was unsurprisingly fist-shaking Bitcoin rules, everyone else drools.

yakov breakfast

With Yakov Kofner (CEO Save On Send)

When I was in NYC last week I had a chance to meet with him twice.  It turns out that he is actually quite interested in Bitcoin and even scoped out a project with a VC-funded Bitcoin company last year for a consumer remittances product.

But they decided not to build and release it for a few reasons:

  1.  in practice, many consumers are not sensitive enough to a few percentage savings because of brand trust/loyalty/habit;
  2.  lacking smartphones and reliable internet infrastructure, the cash-in, cash-out aspect is still the main friction facing most remittance corridors in developing countries, bitcoin does not solve that;
  3.  it boils down to an execution race and it will be hard to compete against incumbents let alone well-funded MTO startups (like TransferWise).

That’s not to say these rebittance products are not good and will not find success in niches.

For instance, I also spoke with Marwan Forzley (below), CEO of Align Commerce last week.  Based on our conversation, in terms of volume his B2B product appears to have more traction than BitPay and it’s less than a year old.

What is one of the reasons why?  Because the cryptocurrency aspect is fully abstracted away from customers.

marwan p2p

Raja Ramachandran (R3CEV), Dan O’Prey (Hyperledger), Daniel Feichtinger (Hyperledger), Marwan Forzley (Align Commerce)

In addition, both BitX and Coins.ph — based on my conversations in Singapore two weeks ago with their teams — seem to be gaining traction in a couple corridors in part because they are focusing on solving actual problems (automating the cash-in/cash-out process) and abstracting away the tech so that the average user is oblivious of what is going on behind the scenes.

singapore ron

Markus Gnirck (StartupBootCamp), Antony Lewis (itBit) and Ron Hose (Coins.ph) at the DBS Hackathon event

On page 162 and 163 the authors write about the Bay Area including 20Mission and Digital Tangible.

There is a joke in this space that every year in cryptoland is accelerated like dog years.  While 20Mission, the communal housing venue, still exists, the co-working space shut down late last year.  Similarly, Digital Tangible has rebranded as Serica and broadened from just precious metals and into securities.  In addition, Dan Held (page 164) left Blockchain.info and is now at ChangeTip.

On page 164 they write:

“But people attending would go on to become big names in the bitcoin world: Among them were Brian Armstrong and Fred Ehrsam, the founders of Coinbase, which is second only to Blockchain as a leader in digital-wallet services and one of the biggest processors of bitcoin payments for businesses.”

10 pages before this they said how useless digital wallet metrics are.  It would have been nice to press both Armstrong and Ehrsam to find out what their actual KYC’ed active users to see if the numbers are any different than the dated presentation.

On page 165 they write:

“It’s a very specific type of brain that’s obsessed with bitcoin,” says Adam Draper, the fourth-generation venture capitalist…”

I hear this often but what does that mean?  Is investing genetic?  If so, surely there are more studies on it?

For instance, later on page 176 they write:

“The youngest Draper, who tells visitors to his personal web site that his life’s ambition is to assist int he creation of an iron-man suit, has clearly inherited his family’s entrepreneurial drive.”

Perhaps Adam Draper is indeed both a bonafide investor and entrepreneur, but it does not seem to be the case that either can be or is necessarily inheritable.

On page 167:

“The only option was to “turn into a fractional-reserve bank,” he said jokingly, referring tot he bank model that allows banks to lend out deposits while holding a fraction of those funds in reserve.  “They call it a Ponzi scheme unless you have a banking license.”

Why is this statement not challenged?  I am not defending rehypothecation or the current banking model, but fractional reserve banking as it is employed in the US is not a Ponzi scheme.

Also on page 167 they write:

“First, he had trouble with his payments processor, Dwolla which he later sued for $2 million over what Tradehill claimed were undue chargebacks.”

A snarky thing would be to say he should have used bitcoin, no chargebacks.  But the issue here, one that the authors should have pressed is that Tradehill, like Coinbase and Xapo, are effectively behaving like banks.  It’s unclear why this irony is not discussed once in the book.

For instance, several pages later on page 170 they once again talk about wallets:

The word wallet is thrown around a lot in bitcoin circles, and it’s an evocative description, but it’s just a user application that allows you to send and receive bitcoins over the bitcoin network. You can download software to create your own wallet — if you really want to be your own bank — but most people go through a wallet provider such as Coinbase or Blockchain, which melded them into user-friendly Web sites and smart phone apps.

I am not sure if it is intentional but the authors clearly understand that holding a private key is the equivalent of being a bank.  But rather than say Coinbase is a bank (because they too control private keys), they call them a wallet provider.  I have no inside track into how regulators view this but the euphemism of “wallet provider” is thin gruel.

On the other hand Blockchain.info does not hold custody of keys but instead provide a user interface — at no point do they touch a privkey (though that does not mean they could not via a man-in-the-middle-attack or scripting errors like the one last December).

On page 171 they talk about Nathan Lands:

The thirty-year-old high school dropout is the cofounder of QuickCoin, the maker of a wallet that’s aimed directly at finding the fastest easiest route to mass adoption.  The idea, which he dreamed up with fellow bitcoiner Marshall Hayner one night over a dinner at Ramen Underground, is to give nontechnical bitcoin newcomers access to an easy-to-use mobile wallet viat familiar tools of social media.

Unfortunately this is not how it happened.  More in a moment.

Continuing the authors write:

“His successes allowed Lands to raise $10 million for one company, Gamestreamer.”

Actually it was Gamify he raised money for (part of the confusion may be due to how it is phrased on his LinkedIn profile).

Next the authors state:

“He started buying coins online, where her ran into his eventual business partner, Hayner (with whom he later had a falling-out, and whose stake he bought).”

One of the biggest problems I had with this book is that the authors take claims at face value.  To be fair, I probably did a bit too much myself with GCON.

On this point, I checked with Marshall Hayner who noted that this narrative was untrue:  “Nathan never bought my stake, nor was I notified of any such exchange.”

While the co-founder dispute deserves its own article or two, the rough timeline is that in late 2013 Hayner created QuickCoin and then several months later on brought Lands on to be the CEO.  After a soft launch in May 2014 (which my wife and I attended, see below) Lands maneuvered and got the other employees to first reduce the equity that Hayner had and then fired him so they could open up the cap table to other investors.

quickcoin

QuickCoin launch party with Marshall Hayner, Jackson Palmer (Dogecoin), and my wife

With Hayner out, QuickCoin quickly faded due to the fact that the team had no ties to the local cryptocurrency community.  Hayner went on to join Stellar and is now the co-founder of Trees.  QuickCoin folded by the end of the year and Lands started Blockai.

On page 174 they discuss VCs involved in funding Bitcoin-related startups:

Jerry Yang, who created the first successful search engine, Yahoo, put money from his AME Ventures into a $30 million funding round for processor BitPay and into one of two $20 million rounds raised by depository and wallet provider Xapo, which offers insurance to depositors and call itself a “bitcoin vault.”

While they likely couldn’t have put it in this section, I think it would have been good for the authors to discuss the debate surrounding what hosted wallets actually are because regulators and courts may not agree with the marketing-speak of these startups.6

On page 177 they write about Boost VC which is run by Adam Draper:

“He’d moved first and emerged as the leader in the filed, which meant his start-ups could draw in money from the bigger guys when it came time for larger funding rounds.”

It would be interesting to see the clusters of what VCs do and do not co-invest with others.  Perhaps in a few years we can look back and see that indeed, Boost VC did lead the pack.

However while there are numerous incubated startups that went on to close seed rounds (Blockcypher, Align Commerce, Hedgy, Bitpagos) as of this writing there is only one incubated company in Boost that has closed a Series A round and that is Mirror (Coinbase, which did receive funding from Adam Draper, was not in Boost).  Maybe this is not a good measure for success, perhaps this will change in the future and maybe more have done so privately.

On page 179-180 the discussion as to what Plug and Play Tech Center does and its history was well written.

On page 184 they write:

With every facet of our economy now dependent on the kinds of software developed and funded in the Bay Area, and with the Valley’s well-heeled communities becoming a vital fishing ground for political donations and patronage, we’re witnessing a migration of the political and economic power base away from Wall Street to this region.

I have heard variations of this for the past couple of years.  Most recently I heard a VC claim that Andreessen Horrowitz (a16z) was the White House of the West Coast and that bankers in New York do not understand this tech.  Perhaps it is and perhaps bankers do not understand what a blockchain is.

Either way we should be able to see the consequences to this empirically at some point.  Where is the evidence presented by the authors?

incumbents

Source: finviz

Fast forwarding several chapters, on page 287 they write:

“Visa, MasterCard, and Western Union combined – to name just three players whose businesses could be significantly reformed — had twenty-seven thousand employees in 2013.”

Perhaps these figures will dramatically change soon, however, the above image are the market caps over the past 5 years of four incumbents: JP Morgan (the largest bank in the US), MasterCard and Visa (the largest card payment providers) and Western Union, the world’s largest money transfer operator.

Will their labor force dramatically change because of cryptocurrencies?  That is an open question.  Although it is unclear why the labor force at these companies would necessarily shrink because of the existence of Bitcoin rather than expand in the event that these companies integrated parts of the tech (e.g., a distributed ledger) thereby reducing costs and increasing new types of services.

On page 185 they write:

“Those unimaginable possibilities exist with bitcoin, Dixon says, because “extensible software platforms that allow anyone to build on top of them are incredibly powerful and have all these unexpected uses. The stuff about fixing the existing payment system is interesting, but what’s superexciting is that you have this new platform on which you can move money and property and potentially build new areas of businesses.”

Maybe this is true.  It is unclear from these statements as to what Chris Dixon views as broken about the current payment system.  Perhaps it is “broken” in that not everyone on the planet has access to secure, near-instant methods of global value transer.  However it is worth noting that cryptocurrencies are not the only competitors in the payments space.

According to AngelList as of this writing:

Chapter 8

This chapter discussed “The Unbanked” and how Bitcoin supposedly can be a solution to banking these individuals.

On page 188 they discuss a startup called 37coins:

“It uses people in the region lucky enough to afford Android smartphones as “gateways” to transmit the messages.  In return, these gateways receive a small fee, which provides the corollary benefit of giving locals the opportunity to create a little business for themselves moving traffic.”

This is a pretty neat idea, both HelloBit and Abra are doing something a little similar.  The question however is, why bitcoin?  Why do users need to go out of fiat, into bitcoin and back out to fiat?  If the end goal is to provide users in developing countries a method to transmit value, why is this extra friction part of the game plan?

Last month I heard of another supposed cryptocurrency “killer app”: smart metering prepaid via bitcoin and how it is supposed to be amazing for the unbanked.  The unbanked, they are going to pay for smart metering with money they don’t have for cars they don’t own.

There seems to be a disconnect when it comes to financial inclusion as it is sometimes superficially treated in the cryptocurrency world.  Many Bitleaders and enthusiasts seem to want to pat themselves on the back for a job that has not been accomplished.  How can the cryptocurrency community bring the potential back down to real world situations without overinflating, overhyping or over promising?

If Mercedes or Yamaha held a press conference to talk about the “under-cared” or “under-motorcycled” they would likely face a backlash on social media.  Bitcoin the bearer instrument, is treated like a luxury good and expecting under-electrified, under-plumbed, under-interneted people living in subsistence to buy and use it today without the ability to secure the privkey without a trusted third party, seems far fetched (“the under bitcoined!”).  Is there a blue print to help all individuals globally move up Maslow’s Hierarchy of Financial Wants & Needs?

On page 189 they write:

“But in the developing world, where the costs of an ineffectual financial system and the burdens of transferring funds are all too clear, cryptocurrencies have a much more compelling pitch to make.”

The problem is actually at the institutional level, institutions which do not disappear because of the Bitcoin blockchain.  Nor does Bitcoin solve the identity issue: users still need real-world identity for credit ratings so they can take out loans and obtain investment to build companies.

For instance on page 190 the authors mention the costs of transferring funds to and from Argentina, the Philippines, India and Pakistan.  One of the reasons for the high costs is due to institutional problems which is not solved by Bitcoin.

In fact, the authors write:

“Banks won’t service these people for various reasons. It’s partly because the poor don’t offer as fat profits as the rich, and it’s partly because they live in places where there isn’t the infrastructure and security needed for banks to build physical branches. But mostly it’s because of weak legal institutions and underdeveloped titling laws.”

This is true, but Bitcoin does not solve this.  If local courts or governments do not recognize the land titles that are hashed on the blockchain it does the local residents no good to use Proof of Existence or BlockSign.

They do not clarify this problem through the rest of the chapter.  In fact the opposite takes place, as they double down on the reddit narrative:

“Bitcoin, as we know, doesn’t care who you are. It doesn’t care how much money you are willing to save, send, or spend. You, your identity and your credit history are irrelevant. […] If you are living on $50 a week, the $5 you will save will matter a great deal.”

This helps nobody. The people labeled as “unbanked” want to have access to capital markets and need a credit history so they can borrow money to create a companies and build homes.  Bitcoin as it currently exists, does not solve those problems.

Furthermore, how do these people get bitcoins in the first place?  That challenge is not discussed in the chapter.  Nor is the volatility issue, one swift movement that can wipe out the savings of someone living in subsistence, broached.  Again, what part of the network does lending on-chain?

On page 192 they write:

“They lack access to banks not because they are uneducated, but because of the persistent structural and systemic obstacles confronting people of limited means there: undeveloped systems of documentation and property titling, excessive bureaucracy, cultural snobbery, and corruption. The banking system makes demands that poor people simply can’t meet.”

This is very true.  The Singapore conference I attended two weeks ago is just one of many conferences held throughout this year that talked about financial inclusion.  Yet Bitcoin does not solve any of these problems.  You do not need a proof-of-work blockchain to solve these issues.  Perhaps new database or permissioned ledgers can help, but these are social engineering challenges — wet code — that technology qua technology does not necessarily resolve.

Also on page 192 they write:

“People who have suffered waves of financial crises are used to volatility. People who have spent years trusting expensive middlemen and flipping back and forth between dollars and their home currency are probably more likely to understand bitcoin’s advantages and weather its flaws.”

This is probably wishful thinking too.  Residents of Argentina and Ukraine may be used to volatility but it does not mean it is something they want to adopt.  Why would they want to trade one volatile asset for another?  Perhaps they will but the authors do not provide any data for actual usage or adoption in these countries, or explain why the residents prefer bitcoin instead of something more global and stable such as the US dollar.

On page 193 they write that:

“In many cases, these countries virtually skip over legacy technology, going straight to high-tech fiber-optic cables.”

While there is indeed a number of legacy systems used on any given day in the US, it is not like Bitcoin itself is shiny new tech.  While the libraries and BIPS may be new, the components within the consensus critical tech almost all dates back to the 20th century.

For instance, according to Gwern Branwen, the key moving parts that Bitcoin uses:

  1. 2001: SHA-256 finalized
  2. 1999-present: Byzantine fault tolerance (PBFT etc.)
  3. 1999-present: P2P networks (excluding early networks like Usenet or FidoNet; MojoNation & BitTorrent, Napster, Gnutella, eDonkey, Freenet, etc.)
  4. 1998: Wei Dai, B-money5
  5. 19986: Nick Szabo, Bit Gold
  6. 1997: HashCash
  7. 1992-1993: Proof-of-work for spam7
  8. 1991: cryptographic timestamps
  9. 1980: public key cryptography8
  10. 1979: Hash tree

That’s not to say that Bitcoin is bad, old or that other systems are not old or bad but rather the term “legacy” is pretty relative and undefined in that passage.

On page 194 they discuss China and bitcoin:

“With bitcoin, the theory goes, people could bypass that unjust banking system and get their money out of China at low cost.”

This is bad legal advice, just look at the problems this caused Coinbase with regulators a couple months ago.  And while you could probably do it low-scale, it then competes with laundering via art sales and Macau junkets and thus expecting this to be the killer use-case for adoption in China is fairly naive.

On page 195 they write:

“Bitcoin in China is purely a speculator’s game, a way to gamble on its price, either through one of a number of mainland exchanges or by mining it. It is popular — Chinese trading volumes outstrip those seen anywhere else in the world.”

Two months ago Goldman Sachs published a widely circulated report which stated that “80% of bitcoin volume is now exchanged into and out of Chinese yuan.”

This is untrue though as it is solely based on self-reporting metrics from all of the exchanges (via Bitcoinity).  As mentioned in chapter 1 notes above, the top 3 exchanges in China run market-making bots which dramatically inflate trading volume by 50-70% each day.  While they likely still process a number of legitimate trades, it cannot be said that 80% of bitcoin volume is traded into and out of RMB.  The authors of both the report and the book should have investigated this in more depth.

On page 196 they write:

“This service, as well as e-marketplace Alibaba’s competing Alipay offering, is helping turn China into the world’s most dynamic e-commerce economy. How is bitcoin to compete with that?”

Great question and the answer is it probably won’t.  See Understanding value transfers to and from China.

Next on page 196 they write:

“But what about the potential to get around the controls the government puts on cross-border fund transfers?”

By-passing capital controls was discussed two pages before and will likely cause problems for any VC or PE-backed firm in China, the US and other jurisdictions.  I am not defending the current policies just being practical: if you are reading their book and plan to do this type of business, be sure to talk to a legal professional first.

On page 197 they discuss a scenario for bitcoin adoption in China: bank crisis.  The problem with this is that in the history of banking crisis’ thus far, savers typically flock to other assets, such as US dollars or euros.  The authors do not explain why this would change.

Now obviously it could or in the words of the authors, the Chinese “may warm to bitcoin.”  But this is just idle speculation — where are the surveys or research that clarify this position?  Why is it that many killer use-cases for bitcoin typically assumes an economy or two crashes first?

On page 198 they write:

“The West Indies even band together to form one international cricket team when they play England, Australia, and other members of the Commonwealth. What they don’t have, however, is a common currency that could improve interisland commerce.”

More idle speculation.  Bitcoin will probably not be used as a common currency because policy makers typically want to have discretion via elastic money supplies.  In addition, one of the problems that a “common currency” could have is what has plagued the eurozone: differing financial conditions in each country motivate policy makers in each country to lobby for specific monetary agendas (e.g., tightening, loosening).

Bitcoin in its current form, cannot be rebased to reflect the changes that policy makers could like to make.  While many Bitcoin enthusiasts like this, unless the authors of the book have evidence to the contrary, it is unlikely that the policy makers in the West Indies find this desirable.

On page 199 they write:

“A Caribbean dollar remains a pipe dream.”

It is unclear why having a unified global or regional currency is a goal for the authors?  Furthermore, there is continued regional integration to remove some frictions, for instance, the ECACH (Eastern Caribbean Automated Clearing House) has been launched and is now live in all 8 member countries.

On page 203 they spoke to Patrick Byrne from Overstock.com about ways Bitcoin supposedly saves merchants money.

They note that:

“A few weeks later, Byrne announced he would not only be paying bitcoin-accepting vendors one week early, but that he’d also pay his employee bonuses in bitcoin.”

Except so far this whole effort has been a flop for Overstock.com.  According to Overstock, in 2014 approximately 11,100 customers paid with bitcoin at both its US and international websites.  Altogether this represented roughly $3 million in sales which when coupled with low margin products (based on the top 10 list of things sold on Overstock) is an initiative that Stone Street Advisors labeled “distracting” (see slides 21, 32, 33, 37, 58).

This continues onto page 204:

“As a group of businesses in one region begins adopting the currency, it will become more appealing to others with whom they do business. Once such a network of intertwined businesses builds up, no one wants to be excluded from it. Or so the theory goes.”

Byrne then goes on to describe network effects and fax machines, suggesting that this is what will happen with bitcoin.

In other words, a circular flow of income.  The challenge however goes back to the fact that the time preferences of individuals is different and has not lended towards the theory of spending.  As a whole, very few people spend and suppliers typically cash out to reduce their exposure to volatility.  Perhaps this will change, but there is no evidence that it has so far.

On page 206 they talk to Rulli from Film Annex (who was introduced in the introduction):

With bitcoin, “you can clearly break down the value of every single stroke on the keyboard, he says.

And you cannot with fiat?

Continuing the authors talk about Rulli:

He wanted the exchange to be solely in bitcoin for other digital currencies, with no option to buy rupees or dollars: “The belief I have is that if you lock these people into this new economy, they will make that new economy as efficient as possible.”

What about volatility?  Why are marginalized people being expected to hold onto an asset that fluctuates in value by more than 10% each month?  Rulli has a desire to turn the Film Annex Web site “into its own self enclosed bitcoin economy.”  There is a term for this: autarky or closed economy.

Continuing Rulli states:

“If you start giving people opportunities to get out of the economy, they will just cut it down, whereas if the only way for you to enrich yourself is by trading bitcoins for litecoins and dogecoins, you are going to become an expert in that… you will become the best trader in Pakistan.”

This seems to be a questionable strategy: are these users on bitLanders supposed to be artisans or day traders?  Why are marginalized people expected to compete with world-class professional traders?

On page 210 the second time the term “virtual currency” is mentioned, this time by the Argentinian central bank.

On page 213 they write:

“With bitcoin, it is possible to sen money via a mobile phone, directly between two parties, to bypass that entire cumbersome, expensive system for international transfers.”

What an updated version to the book should include is an actual study for the roundtrip costs of doing international payments and remittances.  This is not to defend the incumbents, but rebittance companies and enthusiasts on reddit grossly overstate the savings in many corridors.7 And it still does not do away with the required cash-in / cash-out steps that people in these countries still want and need.

On page 216 they write about the research of Hernando de Soto who discusses the impediments of economic development including the need to document ownership of property.  Unfortunately Bitcoin does not currently solve this because ultimately the recognition of a hash of a document on a blockchain comes down to recognition from the same institutions that some of these developing countries lack.

Continuing on page 217 they write that:

“Well, the blockchain, if taken to the extent that a new wave of bitcoin innovators believe possible, could replace many of those institutions with a decentralized authority for proving people’s legal obligations and status. In doing so, it could dramatically widen the net of inclusion.”

How?  How is this done?  Without recognized title transfers, hashing documents onto a chain does not help these people.  This is an institutional issue, not one of technology.  Human corruption does not disappear because of the existence of Bitcoin.

Chapter 9

On page 219 they write:

“Like everything else in the cryptocurrency world, the goal is to decentralize, to take power out of the hands of the middleman.”

By recreating the same middleman, depository institutions, yet without robust financial controls.

On page 220 and 221 they mention “basic encryption process” and “standard encryption models” — I believe that it is more accurately stated as cryptographic processes and cryptographic models.

On page 222 they define “Bitcoin 2.0” / “Blockchain 2.0” and put SatoshiDice into that bucket.  Ignoring the labels for a moment, I don’t think SatoshiDice or any of the other on-chain casino games are “2.0” — they use the network without coloring any asset.

One quibble with Mike Hearn’s explanation on page 223 is when he says, “But bitcoin has no intermediaries.”  This is only true if you control and secure the privkey by yourself.  In practice, many “users” do not.

On page 225 they write:

“Yet they are run by Wall Street banks and are written and litigated by high-powered lawyers pulling down six- or seven-figure retainers.”

Is it a crime to be able to charge what the market bears for a service?  Perhaps some of this technology will eventually reduce the need for certain legal services, but it is unclear what the pay rate of attorneys in NYC has in relation with Bitcoin.

Also on page 225 a small typo: “International Derivatives and Swaps Association (ISDA)” — need to flip Derivatives and Swaps.

On page 226, 227, 229 and 244: nextcoin should be called NXT.

On page 227 they write:

“Theses are tradable for bitcoins and other cryptocurrencies on special altcoin exchanges such as Cryptsy, where their value is expected to rise and fall according to the success or failure of the protocol to which they belong.”

There is a disconnect between the utility of a chain and the speculative activity around the token.  For instance, most day traders likely do not care about the actual decentralization of a network, for if they did, it would be reflected in prices of each chain.  There are technically more miners (block makers) on dozens of alternative proof-of-work chains than there in either bitcoin or litecoin yet market prices are (currently) not higher for more decentralized chains.

On page 228 they write that:

“Under their model, the underlying bitcoin transactions are usually of small value — as low as a “Satoshi” (BTC0.00000001).  That’s because the bitcoin value is essentially irrelevant versus the more important purpose of conveying the decentralized application’s critical metadata across the network, even though some value exchange is needed to make the communication of information happen.”

Actually in practice the limit for watermarked coins typically resides around 0.0001 BTC.  If it goes beneath 546 satoshi, then it is considered dust and not included into a block.  Watermarked coins also make the network top heavy and probably insecure.8

On page 209, the third time “virtual currency” is used and comes from Daniel Larimer, but without quotes.

On page 230 they discuss an idea from Daniel Larimer to do blockchain-based voting.  While it sounds neat in theory, in practice it still would require identity which again, Bitcoin doesn’t solve.  Also, it is unclear from the example in the book as to why it is any more effective/superior than an E2E system such as Helios.

On page 238 they write:

“It gets back to the seigniorage problem we discussed in chapter 5 and which Nakamoto chose to tackle through the competition for bitcoins.”

I am not sure I would classify it as a problem per se, it is by design one method for rewarding security and distributing tokens.  There may be other ways to do it in a decentralized manner but that is beyond the scope of this review.

On page 239 they discuss MaidSafe and describe the “ecological disaster” that awaits data-center-based storage.  This seems a bit alarmist because just in terms of physics, centralized warehouses of storage space and compute will be more efficient than a decentralized topology (and faster too).  This is discussed in Chapter 3 (under “Another facsimile”).

Continuing they quote the following statement from David Irvine, founder of MaidSafe: “Data centers, he says, are an enormous waste of electricity because they store vast amounts of underutilized computing power in huge warehouse that need air-condition and expensive maintenance.”

Or in other words: #bitcoin

On page 242 they mention Realcoin whose name has since been changed to Tether.  It is worth pointing out that Tether does not reduce counterparty risk, users are still reliant on the exchange (in this case Bitfinex) from not being hacked or shut down via social engineering.

On page 244, again to illustrate how fast this space moves, Swarm has now pivoted from offering cryptocurrency-denominated investment vehicles into voting applications and Open-Transactions has hit a bit of a rough patch, its CTO, Chris Odom stepped down in March and the project has not had any public announcements since then.

Chapter 10

If you missed it, the last few weeks on social media have involved a large debate around blockchain stability with respect to increasing block sizes.

During one specific exchange, several developers debated as to “who was in charge,” with Mike Hearn insisting that Satoshi left Gavin in charge and Greg Maxwell stating that this is incorrect.

gavin mike hearn

Source: Reddit

This ties in with the beginning of page 247, the authors write about Gavin Andresen:

“A week earlier he had cleared out his office at the home he shares with his wife, Michele – a geology professor at the University of Massachusetts — and two kids. He’d decided that a man essentially if not titularly in charge of running an $8 billion economy needed something more than a home office.”

Who is in charge of Bitcoin?  Enthusiasts on reddit and at conferences claim no one is.  The Bitcoin Foundation claims five people are (those with commit access).  Occasionally mainstream media sites claim the Bitcoin CEO or CFO is fired/jailed/dead/bankrupt.

The truth of the matter is that it is the miners who decide what code to update and use and for some reason they are pretty quiet during all of this hub bub.  Beyond that, there is a public goods problem and as shown in the image above, it devolves into various parties lobbying for one particular view over another.

The authors wrote about this on page 247:

“The foundation pays him to coordinate the input of the hundreds of far-flung techies who tinker away at the open-licensed software. Right now, the bitcoin community needed answers and in the absence of a CEO, a CTO, or any central authority to turn to, Andresen was their best hope.”

It is unclear how this will evolve but is a ripe topic of study.  Perhaps the second edition will include other thoughts on how this role has changed over time.

On page 251 they write:

“Probably ten thousand of the best developers in the world are working on this project,” says Chris Dixon, a partner at venture capital firm Andreessen Horowitz.

How does he know this?  There are not 10,000 users making changes to Bitcoin core libraries on github or 10,000 subscribers to the bitcoin development mailing list or IRC rooms.  I doubt that if you added up all of the employees of every venture-backed company in the overall Bitcoin world, that the amount would equate to 2,000 let alone 10,000 developers.  Perhaps it will by the end of this year but this number seems to be a bit of an exaggeration.

Continuing Dixon states:

“You read these criticisms that ‘bitcoin has this flaw and bitcoin has that flaw,’ and we’re like ‘Well, great. Bitcoin has ten thousand people working hard on that.”

This is not true.  There is a public goods problem and coordination problem.  Each developer and clique of developers has their own priorities and potential agenda for what to build and deploy.  It cannot be said that they’re all working towards one specific area.  How many are working on the Lightning Network?  Or on transaction malleability (which is still not “fixed”)?  How many are working on these CVE?

On page 254 they discuss Paul Baran’s paper “On Distributed Communications Networks,” the image of which has been used over the years and I actually used for my paper last month.

On page 255 the fourth usage of “virtual currency” appears regarding once more, FinCEN director Jennifer Shasky.  Followed by page 256 with another use of “virtual currency.”  On page 257 Benjamin Lawsky was quoted using “virtual currency.”  Page 259 the term “virtual currency” appears when the European Banking Authority is quoted.  Page 260 and 261 sees “virtual currency” being used in relation with NYDFS and Lawsky once more.  On page 264 another use of “virtual currency” is used and this time in relation with Canadian regulations from June 2014.

On page 265 they mention “After the People’s Bank of China’s antibitcoin directives…”

I am not sure the directives were necessarily anti-bitcoin per se.  Rather they prohibited financial institutions like banks and payment processors from directly handling cryptocurrencies such as bitcoins.  The regulatory framework is still quite nebulous but again, going back to “excessive” in the introduction above, it is unclear why this is deemed “anti-bitcoin” when mining and trading activity is still allowed to take place.  Inconsistent and unhelpful, yes.  Anti?  Maybe, maybe not.

Also on page 265 they mention Temasek Holdings, a sovereign wealth fund in Singapore that allegedly has bitcoins in its portfolio.  When I was visiting there, I spoke with a managing director from Temasek two weeks ago and he said they are not invested in any Bitcoin companies and the lunchroom experiment with bitcoins has ended.

On page 268 the authors discuss “wallets” once more this time in relation with Mt.Gox:

“All the bitcoins were controlled by the exchange in its own wallets” and “Reuters reported that only Karpeles knew the passwords to the Mt. Gox wallets and that he refused a 2012 request from employees to expand access in the event that he became incapacitated.”

Chapter 11

On page 275 the authors use a good nonce, “übercentralization.”

On page 277 they write:

“While no self-respecting bitcoiner would ever describe Google or Facebook as decentralized institutions, not with their corporate-controlled servers and vast databases of customers’ personal information, these giant Internet firms of our day got there by encouraging peer-to-peer and middleman-free activities.”

In the notes on the margin I wrote “huh?”  And I am still confused because each of these companies attempts to build a moat around their property.

Google has tried like 47 different ways to create a social network even going so far as to cutting off its nose (Google Reader, RIP) to spite its face all with the goal of keeping traffic, clicks and eyeballs on platforms it owns.  And this is understandable.  Similarly Coinbase and other “universal hosted wallets” are also trying to build a walled garden of apps with the aim of stickiness — finding something that will keep users on their platform.

On page 277 they also wrote that:

“Perhaps these trends can continue to coexist if the decentralizing movements remains limited to areas of the economy that don’t bleed into the larger sectors that Big Business dominates.”

What about Big Bitcoin?   The joke is that there are 300,027 advocacy groups in Bitcoinland: 300,000 privkey holders who invested in bitcoin and 27 actual organizations that actively promote Bitcoin.  There is probably only one quasi self-regulating organization (SRO), DATA.  And the advocacy groups are well funded by VC-backed companies and investors, just look at CoinCenter’s rolodex.

On page 280 they write:

“Embracing a cryptoccurency-like view of finance, it has started an investment program that allows people invest directly in the company, buying notes backed by specific hard assets, such as individual stores, trucks, even mattress pads. No investment bank is involved, no intermediary. Investors are simply lending U-Haul money, peer-to-peer, and in return getting a promissory note with fixed interested payments, underwritten by the company’s assets.”

This sounds a lot like a security as defined by the Howey test.  Again, before participating in such an activity be sure to talk with a legal professional.9

On page 281 they use the term “virtual currencies” for the 11th time, this time in reference to MasterCard’s lobbying efforts in DC for Congress.

On page 283 a small typo, “But here’s the rub: because they are tapped” — (should be trapped).

On page 283 they write:

“By comparison, bitcoin processors such as BitPay, Coinbase, and GoCoin say they’ve been profitable more or less from day one, given their low overheads and the comparatively tiny fees charged by miners on the blockchain.”

This is probably false.  I would challenge this view, and that none of them are currently breaking even on merchant processing fees alone.

In fact, they likely have the same user acquisition costs and compliance costs as all payment processors do.

For instance, in October 2014, Brian Armstrong and Fred Ehrsam, co-founders of Coinbase, did a reddit AMA.  At the 21:12 minute mark (video):

Q: Is Coinbase profitable or not, if not, when?

A: It’s happened to be profitable at times, at the moment it’s not; we’re not burning too much cash.  I think that the basic idea here is to grow and by us growing we help the entire ecosystem grow — without dying.  So not at the moment but not far.

It’s pretty clear from BitPay’s numbers that unless they’ve been operating a high volume exchange, they are likely unprofitable.

Why?  Because, in part of the high burn rate.  What does this mean?

Last week Moe Levin, former Director of European Business Development at BitPay, was interviewed by deBitcoin, below is one detailed exchange starting at 1:57m:

Q: There was a lot of stories in the press about BitPay laying off people, can you comment on that?

A: Yea, what happened was we had a high burn rate and the company necessarily needed to scale back a little bit on how many people we hired, how many people we had on board, how much we sponsored things.  I mean things were getting a little bit out of hand with sponsorships, football games and expansion — more care needed to be put on how and where we spent the money.

Q: Can you elaborate on the burn rate?  Tim Swanson wrote a piece on BitPay in April, published this piece about the economy, the BitPay economy. Posted this piece on the burn rate and actual figures, have you read that piece?  Can you comment on that?

A: Yes, it is especially hard for a company to build traction when they start off.  Any start up is difficult to build traction.  It’s doubly hard, the hardness is amplified when a company enters a market with competitors that have near unlimited resources because the other companies can either blow you out of the water or have better marketing strategies or they can do a ton of different things to make your startup more irrelevant.  Standard in any company but it is doubly difficult when you enter a market like that.  In the payments industry, forget about Bitcoin for a second, in the payments industry and the mobile commerce, ecommerce, company-to-company payments industry there are massive players with investments and venture backed companies in the billions.  Competing at that stage is tricky and it necessarily requires a burn rate that is much higher than the average startup because of how you need to compete in this space.  What is also important is that the regulation costs a lot of money for the startups in the Bitcoin economy.  It’s the perfect storm of how a startup will be hit with a ton of expenses early on and that can hurt the growth of a company.  Even though a lot of the money that went into it was growth capital it takes a while to get the balance right between spending and growing.

On page 284 they write:

“That leads us to one important question: What happens to banks as credit providers if that age arrives? Any threat to this role could be a negotiating chip for banks in their marketing battle with the new technology.”

This is a good question and it dovetails with the “Fedcoin” discussion over the past 6 months.10

On page 285 they write:

“With paper money they can purchase arms, launch wars, raise debt to finance those conflicts, and then demand tax payments in that same currency to repay those debts.”

This is a common misconception, one involving lots of passionate Youtube videos, that before central banks were established or fiat currencies were issued, that there was no war or “less war.”

On page 309 they quote Roger Ver at a Bitcoin conference saying:

“they’ll no longer be able to fund these giant war machines that are killing people around the world. So I see bitcoin as a lever that I can use to move the world in a more peaceful direction.”

Cryptocurrencies such as Bitcoin will not end wars for the same reason that precious metals did not prevent wars: the privkey has no control over the “wet code” on the edges.  Wars have occurred since time immemorial due to conflicts between humans and will likely continue to occur into the future (I am sure this statement will be misconstrued on reddit to say that I am in support of genocide and war).

On page 286 they write:

“Gil Luria, an analyst at Wedbush Securities who has done some of the most in-depth analysis of cryptocurrency’s potential, argues that 21 percent of U.S. GDP is based in “trust” industries, those that perform middlemen tasks that blockchain can digitize and automate.”

In looking at the endnote citation (pdf) it is clear that Luria and his team is incorrect in just about all of the analysis that month as they rely on unfounded assumptions to both adoption and the price of bitcoin.  That’s not to say some type of black swan events cannot or will not occur, but probably not for the reasons laid out by the Wedbush team.  The metrics and probabilities are entirely arbitrary.

For instance, the Wedbush analysts state:

“Our conversation with bitcoin traders (and  Wall Street traders trading bitcoin lead us to believe they see opportunity in a market that has frequent disruptive news flow  and large movements that reflect that news flow.”

Who are these traders?  Are they disinterested and objective parties?

For instance, a year ago (in February 2014), Founders Grid asked 50 Bitcoin “experts” what their bitcoin price predictions were over the next year.  The end result — all but a couple were completely, very wrong (see this spreadsheet for a line-by-line itemization).

Later, in May 2014, CoinTelegraph asked (video) more than 30 Bitcoin “experts” as to what their bitcoin predictions were for the end of 2014.  Once again, all but a couple were completely, very wrong.

Or in short, no one has a very good track record of predicting either prices or adoption.  Thus it is unclear from their statements why a cryptocurrency such as Bitcoin will automatically begin performing the tasks that comprise 21% of US economic output based on “trust.”

On page 288 they write:

“So expect a backlash once banks start shutting back-office administrative centers in midtown Manhattan or London’s Canary Wharf when their merchant customers start booking more customer sales via cryptocurrency systems to avoid the 3 percent transaction fees.”

I think there is a lot of conflation here.

  1.  back-offices could be reformed with the integration of distributed ledgers, but probably not cryptocurrency systems (why would a trusted network need proof-of-work?).
  2.  the empirical data thus far suggests that it doesn’t matter how many merchants adopt cryptocurrencies as payments, what matters is consumer adoption — and thus far the former out paces the latter by several an enormous margin.
  3.  that 3% is broken down and paid to a variety of other participants not just Visa or MasterCard.
  4.  the US economy (like that of Europe and many other regions) is consumer driven — supply does not necessarily create its own demand.

There is one more point, but first the authors quote Chris Dixon from Andreessen Horowitz, “On the one hand you have the bank person who loses their job, and everyone feels bad about that person, and on the other hand, everyone else saves three percent, which economically can have a huge impact because it means small businesses widen their profit margins.”

This myth of “3%” savings is probably just a myth.  At the end of the day Coinbase, BitPay and other payment processors will likely absorb the same cost structures as existing payment processors in terms of user acquisition, customer support, insurance, compliance and so forth.  While the overhead may be lean, non-negligible operating costs still exist.

There are two reasons for why it could be temporarily cheaper to use Coinbase:

1) VC funding and exchange activity subsidizes the “loss-leader” of payment processing;

2) because Coinbase outsources the actual transaction verification to a third party (miners), they are dependent on fees to miners staying low or non-existent.  At some point the fees will have to increase and those fees will then either need to be absorbed by Coinbase or passed on to customers.

On page 290 they quote Larry Summers:

“So it seems to me that the people who confidently reject all the innovation here [in blockchain-based payment and monetary systems] are on the wrong side of history.”

Who are these people?  Even Jeffrey Robinson finds parts of the overall tech of interest.  I see this claim often on social media but it seems like a strawman.  Skepticism about extraordinary claims that lack extraordinary proof does not seem unwarranted or unjustified.

On page 292 they write:

“But, to borrow an idea from an editor of ours, such utopian projects often end up like Ultimate Frisbee competitions, which by design have no referees — only “observers” who arbitrate calls — and where disputes over rule violations often devolve into shouting matches that are won by whichever player yells the loudest, takes the most uncompromising stance, and persuades the observer.”

This is the exact description of how Bitcoin development works via reddit, Twitter, Bitcoin Talk, the Bitcoin Dev mailing list, IRC and so forth.  This is not a rational way to build a financial product.  Increasing block sizes that impact a multi-billion dollar asset class should not be determined by how many Likes you get on Facebook or how often you get to sit on panels at conferences.

Final chapter (conclusion):

On page 292 they write:

“Nobody’s fully studied how much business merchants are doing with bitcoin and cryptocurrencies, but actual and anecdotal reports tend to peg it at a low number, about 1 percent of total sales for the few that accept them.”

My one quibble is that they as journalists were in a position to ask payment processors for these numbers.

Fortunately we have a transparent, public record that serves as Plan B: reused addresses on the Bitcoin blockchain.

Evolution Market v Bitpay BtcAs described in detail a couple weeks ago, the chart above is a log scale measuring the amount of bitcoins that both BitPay (in green) and Evolution (in red) received starting January 16, 2014.

The drop off at the end in March 2015 is related to the exit scam that Evolution underwent (and the drop off for BitPay is related to a limitation in WalletExplorer’s data).

As we can see here, based on the clusters labeled by WalletExplorer, on any given day BitPay processes about 1,200 bitcoins (the actual number is probably about 10% higher).

coinbase transactions

Source: Coinbase

The chart above are self-reported transaction numbers from Coinbase.  While it is unclear what each transaction can or do represent, in aggregate it appears to be relatively flat over the past year.11 Perhaps that will change in the future.

On page 295 they write:

“Volatility in bitcoin’s price will also eventually decline as more traders enter the market and exchanges become more sophisticated.”

As Christopher Hitchens once remarked, that which can be asserted without evidence, can be dismissed without evidence.  Those making a positive claim (that volatility will decline) are the party that needs to prove this and they do not in this book.  Perhaps volatility will somehow disappear, but not for the non-technical reasons they describe.

At the bottom of page 295 they write:

“Even so, we will go out on a limb here and argue that encryption-based, decentralized digital currencies do have a future.”

Again, there is no encryption in cryptocurrencies, only cryptographic primitives.  Also, as described in the introductory notes above, virtual currencies are not synonymous with digital currencies.

Also on page 295 they write:

“Far more important, it solves some big problems that are impossible to address within the underlying payment infrastructure.”

Yes, there are indeed problems with identity and fraud but it is unclear from this book what Bitcoin actually solves.  No one “double-spends” per se on the Visa network.  At the time of this writing no one has, publicly, hacked the Visa Network (which has 42 firewalls and a moat).  The vulnerabilities and hacks that take place are almost always at the edges, in retailers such as Home Depot and Target (which is unfortunately named).

This is not to say that payment rails and access to them cannot be improved or made more accessible, but that case is not made in this book.

On page 296 they write:

“Imagine how much wider the use of cyptocurrency would be if a major retailer such as Walmart switched to a blockchain-based payment network in order to cut tens of billions of dollars in transaction costs off the $350 billion it sends annually to tens of thousands of suppliers worldwide.”

Again this is conflating several things.  Walmart does not need a proof-of-work blockchain when it sends value to trusted third parties.  All the participants are doxxed and KCY’ed.  Nor does it need to convert fiat -> into a cryptocurrency -> into fiat to pay retailers.  Instead, Walmart in theory, could use some type of distributed ledger system like SKUChain to track the provenance of items, but again, proof-of-work used by Bitcoin are unneeded for this utility because parties are known.

Also, while the authors recognize that bitcoins currently represent a small fraction of payments processed by most retailers, one of the reasons for why they may not have seen a dramatic improvement in their bottom line because people — as shown with the Wence Casares citation above (assuming the 96% figure is accurate) — do not typically purchase bitcoins in order to spend them but rather invest and permanently hold them.  Perhaps that may change in the future.

On page 297 they write:

“But now bitcoin offers an alternative, one that is significantly more useful than gold.”

That’s an unfounded claim.  The two have different sets of utility and different trade-offs We know precious metals have some use-value beyond ornamentation, what are the industrial usages of bitcoin?

In terms of security vulnerabilities there are trade-offs of owning either one.  While gold can be confiscated and stolen, to some degree the same challenge holds true with cryptocurrencies due to its bearer nature (over a million bitcoins have been lost, stolen, seized and destroyed).12 One advantage that bitcoin seems to have is cheaper transportation costs but that is largely dependent on subsidized transaction fees (through block rewards) and the lack of incentives to attack high-value transactions thus far.

On page 300 they write:

“As you’ll know from having read this book, a bitcoin-dominant world would have far more sweeping implications: for one, both banks and governments would have less power.”

That was not proven in this book.  In fact, the typical scenarios involved the success of trusted third parties like Coinbase and Xapo, which are banks by any other name.  And it is unclear why governments would have less power.  Maybe they will but that was not fleshed out.

On page 301 they write:

“In that case, cryptocurrency protocols and blockchain-based systems for confirming transactions would replace the cumbersome payment system that’s currently run by banks, credit-card companies, payment processors and foreign-exchange traders.”

The authors use the word cumbersome too liberally.  To a consumer and even a merchant, the average swipeable (nonce!) credit card and debit card transaction is abstracted away and invisible.

In place of these institutions reviled by the authors are, in practice, the very same entities: banks (Coinbase, Xapo), credit-card companies (Snapcard, Freshpay), payment processors (BitPay, GoCoin) and foreign-exchange traders (a hundred different cryptocurrency exchanges).  Perhaps this will change in the future or maybe not.

On page 305 they write about a “Digital dollar.”  Stating:

“Central banks could, for example, set negative interest rates on bank deposits, since savers would no longer be able to flee into cash and avoid the penalty.”

This is an interesting thought experiment, one raised by Miles Kimball several months ago and one that intersects with what Richard Brown and Robert Sams have discussed in relation to a Fedcoin.

On page 306 they write about currency reserves:

“We doubt officials in Paris or Beijing are conceiving of such things  right now, but if cryptocurrency technology lives up to its potential, they may have to think about it.”

This is wishful thinking at best.  As described in Chapter 13, most proponents of a “Bitcoin reserve currency” are missing some fundamental understanding of what a reserve currency is or how a currency becomes one.

Because there is an enormous amount of confusion in the Bitcoin community as to what reserve currencies are and how they are used, it is recommended that readers peruse what Patrick Chovanec wrote several years ago – perhaps the most concise explanation – as it relates to China (RMB), the United Kingdom (the pound) and the United States (the dollar):

There are four main factors that set the Pound and the Dollar apart as viable and attractive reserve currencies. Each was necessary. They were liquid. They were available. And they were perceived as safe. I’m going to run through each of these conditions in turn. I will consider how they applied to the Pound and the Dollar, and to what extent they are satisfied by China’s Renminbi.

(1) Necessity. The fundamental purpose of a reserve currency is to settle external obligations. The greater quantity and variety of obligations a particular currency can settle, the more useful it is as a reserve currency. The currency of a country that produces little of note and lacks funds to lend or invest is not nearly as useful as one whose home economy produces many goods and services desired around the world, serves as an important source of capital, and has many commercial partners who also find its currency relevant to meeting their own obligations. This idea — that the dominant reserve currency derives its status from its connection with the dominant national economy in an interconnected world – is what underlies Roubini’s reasoning that the Renminbi may be next in line to replace the Dollar.

But this conclusion misses something important. A reserve currency must not only be capable of settling obligations in connection with a heavy-weight economy. It must be required to. Because if you can settle those obligations, as sizeable and important as they may be, using your own currency — or the currency of another leading economy — there is no reason to hold that country’s currency as a reserve. That is precisely the case today with China.

It is unclear how or why some Bitcoin advocates can suggest that bitcoins will ever be used as a reserve currency when there is no demand for the currency to meet external trading obligations let alone in the magnitude that these other currencies do (RMB, USD, GBP).

On page 307 they write:

Under this imagined Bretton Woods II, perhaps the IMF would create its own cryptocurrency, with nodes for managing the blockchain situated in proportionate numbers within all the member countries, where none could ever have veto power, to avoid a state-run 51 percent attack.

Proof-of-work mining on a trusted network is entirely unnecessary yet this type of scenario is propagated by a number of people in the Bitcoin space including Adam Ludwin (CEO of Chain.com) and Antonis Polemitis (investor at Ledra Capital).

Two months ago on a panel at the Stanford Blockchain event, Ludwin predicted that in the future governments would subsidize mining.  Again, the sole purpose of mining on a proof-of-work blockchain is because the actors cannot trust one another.  Yet on a government-run network, there are no unverified actors (Polemitis has proposed a similar proof-of-work solution for Fedcoin).

Again, there is no reason for the Fed, or any bank for that matter, to use a Bitcoin-like system because all parties are known.  Proof-of-work is only useful and necessary when actors are unknown and untrusted.  The incentive and cost structure for maintaining a proof-of-work network is entirely unnecessary for financial services institutions.

Furthermore, maintaining anonymous validators while simultaneously requiring KYC/AML on end users is a bit nonsensical (which is what the Bitcoin community has done actually).  Not only do you have the cost structures of both worlds but you have none of the benefits.  If validators are known, then they can be held legally responsible for say, double spending or censoring transactions.

Robert Sams recently noted the absurdity of this hydra, why permissionless systems are a poor method for managing off-chain assets:

The financial system and its regulators go to great lengths to ensure that something called settlement finality takes place. There is a point in time in which a trade brings about the transfer of ownership–definitively. At some point settlement instructions are irrevocable and transactions are irreversible. This is a core design principle of the financial system because ambiguity about settlement finality is a systemic risk. Imagine if the line items of financial institution’s balance sheet were only probabilistic. You own … of … with 97.5% probability. That is, effectively, what a proof-of-work based distributed ledger gives you. Except that you don’t know what the probabilities are because the attack vectors are based not on provable results from computers science but economic models. Do you want to build a settlement system on that edifice?

Though as shown by the NASDAQ annoucement, this will likely not stop people from trial by fire.

Concluding remarks

Bertha Benz, wife of Karl Benz, is perhaps best known for her August 1886 jaunt through present day Baden-Württemberg in which she became the first person to travel “cross-country” in an automobile — a distance of 106 kilometers.

It is unclear what will become of Bitcoin or cryptocurrencies, but if the enthusiasm of the 19th century German countryside echoed similar excitement as reddit sock puppets do about magic internet money, they must have been very disappointed by the long adoption process for horseless carriages to overtake horses as the primary mode of transportation.

For instance, despite depictions of a widely motorized Wehrmacht, during World War II the Teutonic Heer army depended largely on horses to move its divisions across the battlefields of Europe: 80% of its entire transportation was equestrian.  Or maybe as the popular narrative states: cryptocurrencies are like social networks and one or two will be adopted quickly, by everyone.

So is this book the equivalent to a premature The Age of Automobile?  Or The New Age of Trusted Third Parties?

Its strength is in simplicity and concision.  Yet it sacrifices some technical accuracy to achieve this. While it may appear that I hated the book or that each page was riddled with errors, it bears mentioning that there were many things they did a good job with in a fast-moving fluid industry.  They probably got more right than wrong and if someone is wholly unfamiliar with the topic this book would probably serve as a decent primer.

Furthermore, a number of the incredulous comments that are discussed above relate more towards the people they interviewed than the authors themselves and you cannot really blame them if the interviewees are speaking on topics they are not experts on (such as volatility).  It is also worth pointing out that this book appears to have been completed around sometime last August and the space has evolved a bit since then and of which we have the benefit of hindsight to utilize.

You cannot please everyone 

For me, I would have preferred more data.  VC funding is not necessarily a good metric for productive working capital (see the Cleantech boom and bust).  Furthermore, VCs can and often are wrong on their bets (hence the reason not all of them outperform the market).13 Notable venture-backed flops: Fab, Clinkle, DigiCash, Pets.com and Beenz.  I think we all miss the heady days of Cracked.com.

Only two charts related to Bitcoin were used: 1) historical prices, 2) historical network hashrate.  In terms of balance, they only cited one actual “skeptic” and that was Mark Williams’ testimony — not from him personally.  For comparison, it had a different look and feel than Robinson’s “BitCon” (here’s my mini review).

Both Michael and Paul were gracious to sign my book and answer my questions at Google and I think they genuinely mean well with their investigatory endeavor.  Furthermore, the decentralized/distributed ledger tent is big enough for a wide-array of views and disagreement.

While I am unaware of any future editions, I look forward to reading their articles that tackle some of the challenges I proposed above.  Or as is often unironically stated on reddit: you just strengthened (sic) my argument.

See my other book reviews.

Endnotes:

  1. Note: I contacted Rulli who mentioned that the project has been ongoing for about 10 years — they have been distributing value since 2005 and adopted bitcoin due to what he calls a “better payment solution.”  They have 500,000 registered users and all compete for the same pot of bitcoins each month. []
  2. See also Megawatts Of Mining by Dave Hudson []
  3. Additional calculations from Dave Hudson:
    – Current Bitcoin network capacity: approximately 320 PH/s (320 x 10^15)
    – Best case power efficiency (shipping today): approximately 0.5 J/GH (0.5 x 10^-9 J/H)
    Likely power efficiency: approximately 1.0 J/GH (1 x 10^-9 J/H) = 2 x best case
    – Best case power usage (sustained): 320 x 10^15 x 0.5 x 10^-9 = 160 x 10^6 W = 160 MW
    Likely power efficiency: 160 x 2 = 320 MW
    – Best case power usage per day: 160 x 24 = 3840 MWh = 3.84 GWh
    Likely power usage per day: 320 x 24 = 7680 MWh = 7.68 GWh
    – Best case power usage per year: 3.84 x 365 = 1401.6 GWh = 1.4 TWh
    Likely power usage per year: 7.68 x 365 = 2803.2 GWh = 2.8 TWh
    The best case example would represent the entire Bitcoin network using the best possible hardware and doesn’t account for any cooling or any other computers used in the Bitcoin network. As such it represents an impossible best version of a network of this size. The likely example is probably closer as there is older hardware still in use and most data centers need cooling of some sort.
    The US Energy Information Administration estimated the US power generation capacity for 2012 at 1051 GW so the 320 MW number would represent 0.03% of the total electricity supply for the US. Assuming that we take the 320 MW figure then that would put Bitcoin at about 10% of Ireland’s electricity supply. []
  4. See: How do Bitcoin payment processors work? []
  5. See What is the blockchain hard fork “missile crisis?” []
  6. See Distributed Oversight: Custodians and Intermediaries []
  7. See also: The Rise and Rise of Lipservice: Viral Western Union Ad Debunked []
  8. See Can Bitcoin’s internal economy securely grow relative to its outputs? and Will colored coin extensibility throw a wrench into the automated information security costs of Bitcoin? []
  9. See Mitigating the Legal Risks of Issuing Securities on a Cryptoledger []
  10. See Fedcoin by JP Koning, Fedcoin: On the Desirability of a Government Cryptocurrency by David Andolfatto, A Central Bank “cryptocurrency”? An interesting idea, but maybe not for the reason we think by Richard Brown and Which Fedcoin? by Robert Sams []
  11. See Slicing Data []
  12. Tabulating publicly reported bitcoins that were lost, stolen, seized, scammed and accidentally destroyed between August 2010 and March 2014 amounts to 966,531 bitcoins. See p. 196 in The Anatomy of a Money-like Informational Commodity by Tim Swanson. See also: Bitcoin Self-Defense, Part I: Wallet Protection by Vitalik Buterin []
  13. See Venture Capitalists Get Paid Well to Lose Money from Harvard Business Review and Ouch: Ten-year venture returns still lag the broader markets from Pando Daily []

What’s happening in the Singapore fintech arena?

About a week ago I attended two back-to-back events: the Sim Kee Boon Institute’s conference and the DBS blockchain hackathon.

SKBI, where I am a visiting research fellow, is a seven year old institute which is part of Singapore Management University, one of the youngest universities in Singapore. This was its fifth annual event to cover digital banking and its scope has expanded to impact investing and financial inclusion.

While both events took place over the entire week, the conference was a two and a half day event that included panelists, moderators and audience members from around the globe including parts of Europe, both Americas and all across Asia.

The first full day included several keynotes from industry gurus including Piyush Gupta, the CEO of DBS bank, one of the largest banks in Southeast Asia and others such as Omidyar Network, a investment fund focused on social impact investing primarily in developing countries. The second day was entirely conducted in Chinese and among others included speakers from SF Express and VCredit.

Prior to the event a private roundtable took place over a three hour period and included members from policy making and research bodies.  Both Chris Skinner and myself independently gave presentations covering the future of fintech (incidentally a few of our slides were even similar). Some of the feedback and comments discussed the sustainability, or rather the unsustainability of several P2P lending projects such as those in the UK and in China.  For example, some of the problems in this segment include a lack of credit ratings, financial controls and arbitrary quotas (e.g., incentives to approve loans in order to hit specific arbitrary numbers).

The following day, on the first day of the public conference, Professor Rui Meng from CEIBS explained how there are now 1,700 P2P lending platforms in China and that there were at least 7 reasons for why this number has rapidly increased over the past five years including financial “repression” (the dearth of financial instruments by which investors can diversify into).

rui meng

Professor Rui Meng

For some more stats related to China see: Understanding value transfers to and from China.

What was the overall takeaway of the conference?

My thoughts echo Todd McDonald’s, based on my two trips to Singapore over the past 6 months its policy makers seem to be positioning the country (via Smart Nation) as a testbed for a variety of innovations in the overall “fintech” arena. The Minister of Water Resources & Smart Nation, Vivian Balakrishnan, even gave a roughly 3 minute overview of what blockchains are to the conference dinner after the first day of the event.

Conversations on and off chain throughout the remainder of the week seemed to support the notion that key decision makers at institutions across the country were increasingly interested in potential use-cases that blockchains (or derivations thereof) could solve especially those surrounding trade finance and identity/authentication. And this makes sense.  Singapore became a wealthy developed country in part because of its ports (recall that it sits the cross roads of both regional and international maritime trade prior to even the British colonial era).

Trade finance – smart contracts

One of the conversations I had with a banking administrator was that if you took a port manager or bank manager from the late 19th century and brought them to the present day they would likely not see too many differences in how the trade finance system worked in terms of letters of credit and bill of lading. It still involves a number of frictions (manual, heavily trust-based interactions) that are over a century year old, if not longer, yet are a multi-trillion dollar segment that the revolutions in digitization and automation seem to have forgotten.

It’s a chicken-and-egg problem, a little like fax machines and airports (I am trying not to use the overused cliche phrase “network effect”).  A fax machine which cannot connect to other machines is about as useful as a paper weight and a solitary airport that has no connecting flights is effectively a parking lot.

Can distributed ledgers (or whatever we end up calling non-Nakamoto blockchains) reduce the costs and provide transparency to this seemingly anachronistic trade finance system?  Can smart contracts be used to act as custodians of collateral or property titles in the movement of goods?  Or is this all just wishful thinking? There are two startups that have a “trade piece” related to this, including Mountain View-based PurchaseChain (part of the SKUChain project). Readers: if you are working on a replicated ledger project in this area, Singapore is definitely the place to go to test its utility.

Perhaps the second most widely discussed area that came up in conversations with members of the Singapore financial industry was that of identity and authentication. Like the rest of the world, each local bank has its own KYC/AML procedures that creates frictions when transferring value and adds to the already expensive customer acquisition and on-boarding costs.  For instance, one stat that stood out was that the costs for customer on-boarding at a traditional bank branch can reach upwards of $1,500 or more (once marketing is factored in).

Customer-Acquisition-True-Costs

Credit: Amar Banwait and Optirate

Ideally, so the conversations went, something akin to SingPass or Estonia’s e-identity initiative is an idea that seems to be worth its weight in gold as it could not only lower the costs but also the potential fraud and identity theft that currently takes place (among other benefits).

While it is just my opinion, I found the two most interesting presentations to be from the Fidor bank team (Frank Schwab and Matthias Kröner)  and Daniel Epstein from the Unreasonable Group.

I moderated a panel that included Chris Skinner, Frank Schwab, David Shin (from Paywise) and Todd McDonald (from R3).  The videos are supposed to be uploaded soon.

I also enjoyed hanging out with Albert Chu, who was a moderator and also a SKBI visiting research fellow.  His diverse experience in investing, advising and mentoring.  His views are grounded and did not involve the evangelical hype of the typical Silicon Valley investor.  Anju Patwardhan from Standard Chartered also had many interesting comments and insights throughout the event involving financial inclusion, P2P lending and trade finance.  I would like to also thank professor David Lee for his time, effort and enthusiasm as well as Ernie Teo and Priscilla Cheng from the SKBI team for hosting me.  More photos on Twitter #SKBI.

Some other coverage of the conference:

skbi dinner

SKBI Conference participants

IMG_20150506_113700

Panel 1 on Day 1 of SKBI conference

Hackathon

Between Friday and Saturday, 18 teams comprised of 3-4 people each (hailing from a variety of countries) participated in the DBS hackathon, competing for $33,000 SGD in prize money as well as a spot at the DBS / Startupbootcamp (SBC) accelerator.

I took a number of photos with commentary that were posted on Twitter #dbshackathon.

Both CoinGecko and Bitcoin Magazine posted an overview with a few of the teams from the event including the winners and David Moskowitz has a short reddit thread on it as well.

The hackathon itself was fairly straight forward.  Held on the third floor of Block 79 called BASH (where the Startupbootcamp facility is), 18 teams initially worked in one large room and there are several adjoining rooms that were also used as meeting spaces.  Throughout the day a group of mentors (of which I was one of) spoke with and provided assistance and consultation to the teams.  Some of the mentors (and later judges) helped a few of the teams walk through the ideation phase.  The self-organized teams themselves were fairly diverse, comprised of individuals whose skillset typically involved a engineering background but also business development.

In addition to creating a three-minute presentation, there were a number of criteria the projects would be judged on including a technical code review.  While some participants arrived earlier in the week and had a chance to brainstorm, the teams themselves only had two days to bring it all together and pitch the product to six judges.  DBS was the main sponsor of the event and more than 10 individuals from the bank were on-hand throughout the event to provide feedback as to how the ideas could be used in a fintech context.  In addition to the three winners covered in the two articles above, three additional startups that participated in the event were recently accepted into SBC for their new batch.

Aside from the top 3 projects, I thought the 4th place was especially of interest.  DBB is similar to Hyperledger and Stellar but is unique in that users individually run their own ledger and validating node yet there is no global consensus or state.  One of its creators is Pavel Kravchenko who is currently chief cryptographer at Tembusu and previously worked at Stellar.

The atmosphere was friendly, informative and competitive.  Some of the teams were laser focused at winning the competition while others were more relaxed, preferring to focus on team building and becoming more proficient with the tech.  A few had not worked with a decentralized ledger before and Blockstrap was on-site to help provide support for everyone.  Overall it was probably a helpful event for both startups and banks as it led to a cross pollination of ideas and professions.

It was good catching up with the active startup scene there:  Anson Zeall from CoinPip; David Moskowitz from CoinRepublic (who led the tech auditing team for the hackathon); Yusho Liu from CoinHako (which got 3rd place), Antony Lewis (and his baby son) from itBit; TM Lee and Bobby Ong from CoinGecko, Pavel Kravchenko and Andras Kristoff from Tembusu (Pavel independently worked on a new project and got 4th place); Adam Giles and Mark Smalley from Blockstrap; Marcus Swanepoel from BitX; Taulant Ramabaja (founder of Pactum but who flew in and was part of the 1st place team); Ayoub Naciri from Artabit; Virgil Griffith (independent); Lilia Vershinina from Kraken; Markus Gnirck from StartupBootcamp; and Ron Hose from Coins.ph.

They all have, as my British friends say, heaps of passion and it appears as if Singapore is positioning itself to be an important integral role in the future of fintech innovation.

Special thanks to Mikkel Larsen and Cade Tan from DBS for organizing the event and taking the time to discuss their views on trends in this space.

IMG_20150509_191339

Blockstrap and team NuBank (which won 2nd place at the DBS hackathon)

IMG_20150509_150534

Antony Lewis (itBit), Taulant Ramabaja (Pactum) and a future stuntman

IMG_20150505_200041

Ernie Teo (SKBI), Todd McDonald (R3CEV) and Albert Chu at the Economic Society of Singapore’s annual dinner

dbs hackathon day 1

DBS Hackathon Day 1

Cryptocurrency KYSF: Know Your Source of Funds

Last week a reporter from CoinDesk asked me a few questions related to the chart (below) discussed in the flow of funds on the Bitcoin network in 2015.

bitcoinland april 2015Below are my answers, a few of which may be of particular interest in light of the FinCEN enforcement action related to Ripple.  For instance, are cryptocurrency payment processors — which typically claim exemption from money service business (MSB) requirements — required to comply with KYC (know your customer) and also submit SARs?  Will VC funded cryptocurrency mining pools and farms be required to do KYM (know your miner) and AML to establish source of funds?  See also: Lowell Ness’s discussion (video) at 20Mission last summer covering MSB/MTL and altcoins.

————–

Q: Are the size of the circles you’ve used in the diagram proportional or arbitrary?

Mostly arbitrary.  They needed to be big enough to where you can see the words, but there is some proportional aspect too.  For instance, in terms of on-chain transactions we know gambling transactions as a whole are likely the largest component of transaction volume.  And based on clusters identified by companies such as Coinalytics, darknet markets as an aggregate likely do more transactions than payment processors do.  While exchanges as a whole also process large amounts of transactions, because it occurs off-chain it is unclear what their real volume is.

Q: Are non-KYC exchanges simply matching darknet sellers (and ‘tainted coins’) with buyers, or are they buying btc from the dark markets themselves?

Mostly the former rather than the latter.  Until we find out more information about who operates the non-KYC exchanges, it is not fully clear what the motives would be for buying BTC from darknet markets.  For instance, there was an “old” joke: the reason BTC-e never gets hacked is that hackers would no longer have a place to launder funds through.  Yet several weeks ago BTC-e allegedly prevented funds from the Evolution hack to be withdrawn from BTC-e for a short period of time before re-enabling withdrawals.  The details of how this was resolved are still unclear.  Similarly, in practice “virgin” coins (newly mined coins) can be sold at a premium on sites like Localbitcoins.com as they lack any history of illicit activity.  Incidentally, according to an ongoing lawsuit from Syscoin, Localbitcoins is allegedly where Alex Green/Ryan Kennedy was selling bitcoins he purportedly stole from the MintPal theft (using the name “LemonadeDev”).

Q: Are ransomware victims only buying btc from non-KYC exchanges?

It may have been a little unclear from the chart but ransomware victims also purchase coins from KYC exchanges too.  Which bucket has more volume is unknown at this time.  Incidentally, according to a recent interview with the BBC, a security expert at IBM thinks that the criminals behind ransomware products like Cryptolocker sell their bitcoins quickly in order to reduce their exposure to price volatility.  To do so, to move into and out of fiat they will use “mules,” individuals that clean the cash and charge a fee of around 20%.  This ties in to your previous question about tainted coins and non-KYC exchanges.

Q: Were there any surprises for you here when compiling the diagram, or did it confirm what you had already found through previous posts?

There weren’t any real big surprises, but what probably stood out most is where the “fiat leakage” occurs — where people take bitcoins out of circulation and purchase them with dollars or euros.  The fact that this is still occurring ties back into the question that Rick Falkvinge raised 18 months ago: since we know that above-board trade is relatively subdued compared with illicit trade — if the non-KYC on and off ramps were shut down, what impact would that have on the overall Bitcoin economy?

Q: You mention the non-KYC and KYC worlds, how separate are the two now? Will they drift further as we see more regulation in the sector?

I think they are both intertwined and perhaps symbiotic for at least three reasons: 1) due to how KYM (know your miner) is not 100% mandatory globally, non-KYC’ed entities create continuous non-negligible demand for a product. 2) The prevalence of “temporary” wallets.  I labeled them “burner” wallets on the chart but in many cases if a user has limited operational security (e.g., does not use Tor and a VPN) therefore they do not have much added privacy and are thus not actually “burner” but rather “temporary.”  Either way, the flow through these wallets, such as Blockchain.info (whose users are not KYC’ed) back into the KYC economy create demand for above-board services.  The third area are non-KYC’ed bitcoins that go to merchants who unknowingly act like “mules,” sometimes exchanging above-board products for bitcoins that had previously circulated through illicit markets.  Last December Carl Mullan published a paper that describes several of the methods this is done (see p. 32).

Whether or not this bifurcation will continue is an open question.  One theory articulated by Jon Matonis and others is that continual adoption and implementation of KYC/AML policies by startups will create “white listed” coins and “black listed” coins and that “black listed” coins will trade at a premium over “white listed” coins.  To understand why this might occur, you have to consider the universal principle of nemo dat quod non habet (one cannot give what they do not have).  Several attorneys, including George Fogg, have indicated that bitcoins are treated as general intangibles under the Uniform Commercial Code.  If bitcoins are general intangibles, not currency (legal tender), negotiable instruments, or security entitlements, they it is not at all clear that bitcoins would have an exemption from nemo dat quod non habet.   In other words, bitcoins would transfer subject to, rather than free and clear of, associated claims and security interests and, as a result, would not be fungible (capable of mutual substitution).  Whether or not that means certain bitcoins will be treated like a hot potato is also an open question.  However, if all on-ramp and off-ramps for all services become KYC/AML compliant, we may be able to answer the question raised by Rick Falkvinge above as to how much of the economy is driven by illicit trade.

Q: With regards to you using word ‘scam’, do you expect a backlash?

Not really.  I don’t think scammers deserve a free pass and I don’t think I am the only one describing their aggregate impact.  On any given week, both Bitcoin media outlets and mainstream news organizations cover this type of activity, there is even a subreddit, sorryforyourloss, that sometimes covers it.  In addition, searching the word “scam” in the CoinDesk search bar found 176 results.  In January you guys reported on academic research that found at least 42 scams involving bitcoin and a number of your reporters have likewise covered the demise of Moolah, Neo & Bee and most recently PayCoin.

Q: How much of the data was available to you publicly?

The blockchain data resides on thousands of nodes.  The labels of clusters started with WalletExplorer (which is public) but the graphs and further analysis comes through Coinalytics which has its own proprietary methods.  There are a few other companies that are also involved in this space including Chainalysis, who also begins by using the public blockchain.  Blockchain.info publishes two charts on its “My Wallet” activity which give some indication of how much activity is occurring by their users.  As far as fiat leakage, mining and activity on exchanges, a lot of this comes from social media, chat groups and anecdotes from reliable sources.

The Future of Fintech: Crystal balls and tasseography

Yesterday I gave a new presentation at a roundtable talk at the Sim Kee Boon Institute at Singapore Management University.

Additional notes, references and citations are in the comments of each slide.

I would like to thank Arthur Breitman, Andrew Geyl (Organ of Corti), Yakov Kofner, Raja Ramachandran and John Whelan for their feedback and comments on several slides.

What has been the reaction to permissioned distributed ledgers?

About 3 weeks ago I published the “Consensus as a service” report.  What has the fallout been over it?

The specific, public comments broadly fall into 3 groups:

  • those that think Bitcoin is the only blockchain that can and does matter and everything else is a worthless unholy “Frankenstein” ledger
  • those that think cryptocurrency systems as a whole are superior to non-cryptocurrency distributed ledger networks
  • those, like Nick Williamson, who are open to building technology for specific customers and use-cases

As of this writing, the majority of views on /r/bitcoin and Twitter seem to take the maximalist, one-size-fits-all approach: that Bitcoin is the only way, the truth and the light.

In contrast, the target audience for the report are decision makers and developers within the financial services industry.  These individuals, based on months of conversations, are more interested in permissioned ledgers for their business needs because all of the parties involved in the transactions are known, have real-world reputations to maintain, have responsibilities which are expressed in a terms-of-service that is contractually binding and are ultimately legally accountable for actions (or inaction).

Cryptocurrency networks like Bitcoin, a public good that purposefully lacks a terms of service or accountable validators, were specifically designed not to interface with these organizations and institutions — and intentionally created an expensive method to route around all entities (via proof-of-work).  Thus in practice, it makes some sense that financial institutions may not be interested in Bitcoin as-is.

This may be a problem to maximalists, who have come to create and control a narrative in which Bitcoin can and will disrupt anything and everything that deals with finance and have invested accordingly.  Perhaps it will, but then again, maybe it will not.

While there were a number of interesting comments elsewhere, I think the most objective was — independently — an interview earlier this week in Institutional Investor with Blythe Masters (formerly JPMorgan, now over at DAH):

Q: Everyone talks about the enormous potential of alternative currencies and their underlying technology.  But the whold world of Bitcoin and other currencies was set up to resist centralization and intermediation.  It didn’t want to be part of the organized financial industry; it was openly scornful of it, and there’s still a strong libertarian, antibank strain to much of the sector today. Do you think these worlds want to be bridged?

Blythe Masters: I would say that your general characterization of some in the space is correct. But if you had a really good idea about how to build a better tire for an automobile, you would probably be really interested in talking to the auto companies because they are the people that ultimately are going to make use of your technology. You could think that maybe, because of the power of your tire, there might emerge a whole new brand of auto companies that supplant the General Motors of the world because the incumbents never really got the whole concept of what a good tire should be all about. But I’m not sure that would be a good move.

Why do I think this tire analogy is apt?

Because each month at conferences, Bitprophets claim that financial institutions in New York, London and other global centers where capital resides, will fall to the wayside very soon.

Perhaps this prophecy will come true, but it is unlikely for the reason Masters points out: most of the funded Bitcoin companies thus far seem to act like tire companies.

A few entrepreneurs are hoping that newer, different car companies will not only adopt their tires but simultaneously replace older car companies that already provide the same product lines.  While these startups are likely capable of providing utility and usefulness to someone, this overall narrative is probably wishful thinking.  Why would Toyota or General Motors disappear and be completely replaced by new automobile companies in the coming years because someone created a new tire?  Perhaps these existing car manufacturers will indeed disappear due to changes in consumer preferences or safety concerns but probably not because of a new tire.

Furthermore, characterizing the 8 different projects discussed in the report as Frankenstein ledgers is funny as those writing the comments seem to have forgotten how tech iteration works.

For instance, according to Gwern Branwen, the key moving parts that Bitcoin uses are actually a bit old:

  1. 2001: SHA-256 finalized
  2. 1999-present: Byzantine fault tolerance (PBFT etc.)
  3. 1999-present: P2P networks (excluding early networks like Usenet or FidoNet; MojoNation & BitTorrent, Napster, Gnutella, eDonkey, Freenet, etc.)
  4. 1998: Wei Dai, B-money5
  5. 19986: Nick Szabo, Bit Gold
  6. 1997: HashCash
  7. 1992-1993: Proof-of-work for spam7
  8. 1991: cryptographic timestamps
  9. 1980: public key cryptography8
  10. 1979: Hash tree

Would projects like git, which use a few of these parts, be considered “Frankenchains”?

The reaction that a few have had the past couple of weeks makes one wonder as to how they would initially react if alternative airplanes, automobiles and boats were invented: “But a monoplane cannot work as it is missing essential features from the original biplane!”

Taking a step back, calling one of the 8 projects in the report “Frankenledgers” would be like calling:

  • non-Mercedes vehicles, Frankencars
  • non-Wright Brothers heavier-than-air contraptions, Frankeplanes
  • any non-Unix operating system, FrankenOSes (which is ironic since Unix was itself a FrankenOS relative to Multics)
  • any non-Motorola cell phone, Frankenphones

Maybe none of the projects in the report will ultimately succeed.  Maybe in five or six years they fail to gain traction.  Maybe future ledgers and projects add additional “moving parts” to whatever they ultimately call their chain.

Yet we cannot command customer-driven technology to follow one specific narrative anymore than the previous pioneers of technology.  Just ask Alfred Nobel or other inventors over the past few centuries.  Furthermore, building ever larger quantities of a product without figuring out if there is a product-market fit seems to be how the Bitcoin community has attempted to operate over the past several years.  Perhaps this “marketing myopia” will pay-off, maybe the Kevin Costner syndrome (build it and hope they come) will be avoided.  Or maybe not.

Owning coins without disclosing they do

“It’s about the coin, you cannot downplay the coin!” was another common response.

To me the question of coins or no-coins is a red herring.  Perhaps organizations find them useful or maybe not.  Ultimately however, the target market for the report were organizations who need products that:

1) Create additional financial controls (removing the ability for one administrator to abuse the system because the information and state is distributed and shared)

2) Provide additional transparency for their risk management and capital management teams (such as reducing duplicative effort in Transaction Reporting)

Or in short, this variation of shared, replicated ledgers helps financial institutions to securely reduce costs.  That may sound mundane and unsexy, but reducing IT costs at some banks can mean tens of millions in savings.  As a result, some financial institutions (and likely other industries), are looking to take parts of the toolkit, portions of the 10 moving parts above and develop a new developer stack, just as LAMP did 15 years ago.1

How do validators fit in with this again?

The tl;dr of the report is that permissioned ledgers use known validators whereas permissionless ledgers intentionally use pseudonymous validators.  They each have different cost structures and are targeting two different groups of customers.

Why are known validators important?  Because in the event a chain forks, is censored or transactions are double-spent, there is no legal way to hold pseudonymous validators accountable because there is no terms of service or contractual obligation.  Or more to the point, as a public good, who is responsible for when a block reorg take place?  Apparently no one is.  This is problematic for financial institutions that want to be able to reliably transfer large amounts of value.

If pseudonymous validating nodes and mining pools are required to doxx themselves (or the current euphemism, “trusted transparency”), they lose the advantage of being censorship resistant.  Users might just as well use a permissioned ledger.

Why?

In the event such a fork, censored transaction or double-spending occurs with permissioned ledgers, the validator can be held legally accountable because they are known.  Proof-of-work is no longer needed and entities that are doing the validating are held accountable to specific TOS/EULA.

The main reason that block reorgs do not occur more frequently, like what happened in March 2013, is that it is just not worth the effort right now relative to the amount of value being transacted on the Bitcoin network.  Yet if there were billions or trillions USD in financial instruments like derivatives moving across the network, there would be an more incentives to attack and reverse transactions (this is one of the problems with watermarked coins as they create a disproportional reward delta).  No financial institution is going to put this type of value on a permissionless chain if they cannot claim damages in the event of censorship or reversal.

bitcoin is not useful

Source: Matt Corallo

“But you cannot have a secure ledger without coins,” is a common response.  Isn’t owning bitcoins the most important part of this equation?

Under Meher Roy’s classification chart, this is only true if hyperbitcoinization takes place, which it probably will not (recall: that which can be asserted without evidence, can be dismissed without evidence).

Then why is this continually promoted?  Probably because the company they work for or their personal portfolio includes bitcoins as part of their retirement plan and hope the demand for bitcoins by financial institutions and other organizations launches the price to the moon.  This is not to say that Bitcoin is bad or worthless as a network (or as an asset, it may even have another black swan or two upwards), but neither the UTXO or network (as-is) is a solution to a problem most banks have.

Maybe as Matt Corallo (who shared the picture above) is right: perhaps in the long-run historians will look back at these permissioned, distributed ledgers and declare them non-blockchains.  Maybe they will be called something else?  However, as it stands right now, even with cryptocurrencies, Bitcoin is not the only way to skin a cat.  The wheels (or tires) comprising Bitcoin and its nascent ecosystem can and will be interchanged and removed due to their open source nature and differing business requirements for each organization.

Keeping fees or be altruistic?

Are there any recent examples of doxxing of validators?  Yesterday a bitcoin user (someone who controls a privkey) made a mistake and accidentally sent 85 bitcoins to a miner in the form of a fee.  At ~$228 per BTC (at the time it was sent) this amounted to a $19,380 fee.  After several hours of debugging and troubleshooting, the problem was identified and fixed.

Along the way, the block maker (the pool) was also identified and notified, in this case it was Bitmain (which operates AntPool) based in China who said they would return the fee.

tx fees in USDThe chart above covers the time frame over the past two years, between April 2013 – April 2015.  It visualizes the fees paid to miners denominated in USD.

As we can see, in addition to the large fee yesterday, there are several outliers that have occurred.  One that is publicly known took place on August 28, 2013 when someone sent a 200 bitcoin fee that was collected by ASICMiner.  At the time the market value was $117.59 per BTC, which meant this was a $23,518 fee.  It is unclear who originally sent the fee.

This raises a couple of questions.

The network was originally designed in such a way that validators (block makers) were pseudonymous and identification by outside participants was unintended and difficult to do.  If users can now contact validators, known actors, why not just use a distributed ledger system that already identifies validators from the get go?  What use is proof-of-work at all?

Yet a trend that has actually occurred over the past four years is self-identification.

For instance, I reached out to Andrew Geyl from Organ of Corti and he provided two lists.

Below is a list of the first time a pool publicly claimed a block:

Pool  |  Height
1:  Slush  97838
2:  bitcoinPool 110156
3:  DeepBit 110322
4:  Eligius 120630
5:  BTC Guild 122608
6:  MTRed 123034
7:  EclipseMC 129314
8:  Polmine 131299
9:  Triplemining 134362
10: BitMinter 134500

And a list of the first time a pool signed a coinbase transaction:

Pool  |  Height
1:  Eligius 130635
2:  BitMinter 152246
3:  BTC Guild 152700
4:  Nmcbit.com 153343
5:   YourBTC 154967
6:   simplecoin.us 158291
7:   Ass Penny pool 161432
8:   btcserv.net 163672
9:   Slush 163970
10:  BitLC 166462

A little history: Slush began publicly operating at the end of November 2010.  Eligius was announced on April 27, 2011.  DeepBit publicly launched on February 26, 2011 and at one point was the most popular pool, reaching for a short period in July 2011, more than 50% of the network hashrate.

Why did they begin to identify themselves and sign coinbase transactions?  Geyl thinks they initially did so to help with miner book keeping and that community pressure towards transparency did not happen until later.  And as shown by the roughly ~20% of unknown block creators on any given day, if a block maker wants to remain unknown, it is not hard to do so.

The other question this raises is that of terms of service.  As noted above, since the Bitcoin network is a public good (no one owns it) there is no terms of service or end-user license agreement.  Coupled with a bearer instrument and pseudonomity it is unclear why pools should feel obligated to refund a fee; Bitmain did not steal it and in fact, did nothing wrong.  The user on the other hand made a mistake with a bearer instrument.

This type of altruism actually could set a nebulous precedent: once block rewards are reduced and fees begin to represent a larger percentage of miner revenue, it will no longer be an “easy” decision to “refund” the user.  If Bitmain did not send a “refund” it would serve as a powerful warning to future users to try and not make mistakes.

In addition, why do elements in the community think that 85 BTC is considered refundable but are unconcerned with any fee sent above 0.0001 BTC (0.0001 BTC is considered the “default” fee to miners)?  This seems arbitrary.

And this is a problem with public goods, there are few mechanisms besides social pressure and arbitrary decision making to ration resources.  As described by David Evans, since miners are the sole labor force, they create the economic outputs (BTC) and security it is unclear why they are under any expectation to return fees.

This is probably not the last time this will occur.

Conclusion

Public goods are hard to fund as they typically fall victim to tragedy of the commons.  And development, maintenance and security of Bitcoin is no exception.

While it did end up dominating the embedded systems space, despite similar rhetoric 20 years ago by passionate FOSS developers, Microsoft was not killed by Linux.2  Prophetic claims that desktop Linux would bankrupt incumbents and a GNU (and GPL “maximalism”) world order would take over the software industry never materialized: the fact of the matter is desktop Linux became a niche with no more than 1% of marketshare.  Incidentally, some vocal promoters insisted each year, that 200X would be the year of mass adoption for desktop Linux (it even saw a funding boom-bust such as the VA Linux IPO).3

Instead, many of the ideas and libraries were forked and integrated by enterprises such as IBM into other organizations and institutions, such as banks.  The only multi-billion dollar open source company that arose from this time period was Red Hat, yet even the inroads it made with Linux and FOSS is arguably overshadowed by the biggest kernel user: Android, another corporate sponsored “distro.”45

While past performance does not guarantee future results, IBM is once again back and has been looking into blockchain tech (through ADEPT), many of the major tech companies that arose in the ’90s (such as Amazon and Google) have payment solutions and customer usage of Bitcoin — like desktop Linux before it, despite enormous awareness and interest — still remains very niche, perhaps roughly 300,000 that actually control a privkey.

Maybe this will change over time.  Or maybe the buzz with this hot space will cool down in a few years and all the Young Turks will find something new to work on, leaving Bitcoin to fend for itself like Gnu Privacy Guard and many other forgotten public goods.6  Maybe they will move on to permissioned distributed ledgers which have known use-cases and customers, or maybe onto something else entirely.

Update: be sure to see some critical feedback from Peter Todd

End notes:

  1. According to L.M. Goodman, who created Tezos, a better example would be HTTP, not LAMP: “The value of distributed ledgers is in protocols and networks, not software or “stacks”.” []
  2. Linux certainly did change the infrastructure landscape.  Embedded Linux now pretty much dominates inside many devices (e.g. routers, switches), while it also dominates much of the Internet server ecosystem. The key to both of these was that it solved very specific commercial problems; the adoption was frictionless.  In embedded systems Linux was up against quite expensive proprietary RTOS and embedded OS designs.  The smaller ones were not as feature rich, while the larger ones could not compete in markets where gross margins became very tight. In the server space commercial Unix and Windows servers had expensive OS software and Linux could run on smaller, resource constrained, systems very effectively.  Early adopters could often get their hands on hardware but not the software and startups could readily tweak the software for special purposes. Now Linux dominates these spaces because it is actually really efficient for building things like network servers (they can run better on Linux in many cases).  Thanks to Dave Hudson for this insight. []
  3. Mike Hearn made a similar observation a year ago during a presentation: Mike Hearn, Bitcoin Core Developer NBC2014 from Bitcoin Congress.  See also: What Killed the Linux Desktop by Miguel de Icaza, Linus Torvalds on the Linux desktop’s popularity problems from ZDNet, Desktop Linux: The Dream Is Dead from PCWorld and Windows’ Endgame. Desktop Linux’s Failure from ZDNet []
  4. Google has purposefully avoided using almost all other Linux software and particularly GPL’d software. The entire application framework for Android is different than other distributions like Fedora. They only adopted the kernel possibly because of onerous GPL requirements. []
  5. Incidentally parts of Mac OS X are based off of FreeBSD. []
  6. I would like to thank Christopher Allen for this analogy. []

The flow of funds on the Bitcoin network in 2015

Over the past several months, there has been a number of useful, simplified flow charts that show the general demand and supply for bitcoins.

chain participants

Source: Chain

The diagram above was created this past fall by Adam Ludwin, co-founder of Chain.com.  Subsequently, there have been a variety of similar charts from others describing the flows in an easy-to-understand way.  I think these are helpful and look forward to seeing more.

However, based on blockchain data, what do the specific flows look like?

After consulting with a number of industry experts, I constructed a rough, but more granular flow of funds based on actual user behavior.  This is not to say that these trends or activities will stay the same, but rather this is a visual aid to better understanding where the supply and demand of both “coins” and fiat are within the current ecosystem.

bitcoinland april 2015

Bitcoinland flow chart

The legend

  • The term “BTC” is in reference to unspent transaction outputs (UTXO), because “coins” do not actually exist1
  • The orange buckets and arrows involve mining farms, manufacturers and pools.
  • The brown buckets involve exchanges, ATMs, financial intermediaries, custodians and payment processors which have access to fiat (“early adopters” may also be on the sell side).
  • The green buckets represent fiat, this can be in the form of bank accounts or in the case of Localtrader, Localbitcoins.com, #bitcoin-otc (an IRC room) and “human” ATMs actual physical cash.
  • The champagne arrows involve the sale of BTC and block rewards.
  • The red arrows involve the purchase and buying of BTC.
  • The purple buckets and arrows involve illicit activity including darknet markets, scams, ransomeware, gambling, laundering and mixing of BTC.
  • The black arrows involve the sending of BTC to another hop or address.
  • And the blue buckets and arrows have no real commonality but are important in terms of the flow of funds.
  • Technically wallets do not exist at all, they are just a mental analogy to abstractly describe addresses as UTXO labels (not all wallets are “burner” as that would imply an increase in anonymity and requires knowledge of intent; they all can be effectively “temporary”).
  • In terms of mixing, certain altcoins are now a popular method for mixing.  For instance, litecoin (LTC) is one of the most liquid altcoins.  This typically looks like convert BTC at exchange A to LTC.   Then send LTC to exchange B and convert back to BTC.  Darkcoin (now called Dash) is another popular coin due to its specific “anonymity” features.  See also ring signatures from Monero.

[Note: I used Creately to prototype it and am releasing it as usual under a CC Attribution license]

The good with the bad

If a bitcoin is eventually deemed legally property, does this new flow chart imply that the current Bitcoin blockchain is a public, near-real-time record of contraband?  Maybe not.  Cryptocontraband would only really apply if you indeed were able to show the provenance of the property that you are talking about.2  For many of the use cases it is actually very difficult to show the provenance of individual currency units.   Perhaps this will change in the future, no one knows.

What is observable?  In addition to roughly 1 million bitcoins moving on a daily basis (more on that later), in the last four years we have seen several dozen high profile cases of individuals and companies whose bitcoins were lost, stolen or accidentally destroyed due to improper operational security.  By one account there are more than a million bitcoins that are no longer with their legal owner.345 Consequently, in terms of venture funding, the 2nd largest vertical that has received funds over the past 18 months is hosted wallet companies (“depository institutions”) such as Xapo and Coinbase which provide cold storage (“vaults”) and some type of insurance.

What has been the motivation to do so?  Because in practice, bearer assets are very hard to secure hence the reason for the emergence of banking intermediaries 500 years ago and again today in the era of virtual assets.

And this type of mercurial bearer ownership is not relegated to just the above-board economy.  For instance, about 16 months ago Sheep Marketplace, a darknet market, was “hacked” and 96,000 bitcoins were stolen (this was worth around $40 million at the time).  The purported owner of Sheep Marketplace was arrested last month.  A month ago, another darknet market, Evolution, lost at least 43,000 bitcoins (~$10 million) after two of the administrators stole them.

At a combined valuation of $50 million, this is roughly what BitPay processed in 2014 once mining and precious metals are removed from itemization.6

What about the “ransomware” subheading, what is “ransomware”?  It is a type of software, or malware precisely, that prevents users from using their computer unless the user pays the malware creator some kind of “ransom.”  In this case, bitcoins.

malware secureworks

“SecureWorks’ chart showing the correlation between Bitcoin’s price increases and the creation of new Bitcoin-targeting malware.” Source: Forbes

As noted in Chapter 12, while this type of malware has existed for several years, CryptoLocker itself stole nearly 42,000 bitcoins in the fall of 2013, thus signaling to market participants that this successful method of attack could be copied.  And as shown by the chart above, there were as of February 2014, 146 different families of “Bitcoin-stealing malware.”   According to Dell, during a six month time frame last year, “CryptoWall infected more than 625,000 computers worldwide, including 250,000 in the United States. During that time, the gang that operated CryptoWall raked in about $1 million in ransom payments.”

Currently hackers are targeting smaller and more marginal actors.  For instance, last month the network for Swedesboro-Woolwich School District in New Jersey was held hostage for a 500 bitcoin ransom.  And earlier this month, the Tewksbury Police Department system in Massachusetts became just one of many public organizations that has paid similar ransoms in bitcoin.

The case of the unknown volume

We know from public reports above of some on-chain activity, but not all.

Current total output volume is around 1 million bitcoins per day.  That is to say that on any given day (over the past year), approximately 1 million bitcoins have moved somewhere on the blockchain.  Knowing this and taking the categorization from Slicing Data, let us make a low, conservative assumption that 80% of the remaining volume is “change” being swept into change addresses, faucet outputs (a potential candidate for “long-chains”) and mining payouts.

And as established last week, we know that about $1,000,000 a day is from payment processing and above-board merchant activity, this amounts to less than 5,000 bitcoins per day.

Where is the rest of the volume coming from?

For instance, has the volume of Counterparty transactions increased?

counterparty transaction history

Source: Blockscan

As illustrated in the chart above, transaction volume for Counterparty has stayed roughly the same over the past 9 months or so.  A typical transaction requires about 0.0001 BTC (as a watermark) and about 0.0001 fee to miners.  Thus on any given day the total amount of bitcoins used by Counterparty is a handful, maybe even just 3 or 4 bitcoins.

What about P2SH?

weekly volume p2sh

Source: P2SH.info

As of this writing, about 8.63% of all bitcoins are stored using P2SH.  And while the last several months have each seen more than 1 million bitcoins move into P2SH, this still does not tell the whole story because that is per month and not per day, which we are observing (e.g., roughly 100,000 or so bitcoins per day move into P2SH).

What else comprises this gap?

If actual transactions represent 20% of the total output volume, or 200,000 bitcoins, what else could fit the bill?  Payment processors collectively would account for 2.5%, P2SH would account for 50% (although technically P2SH is not commercial activity), Counterparty less than 1%, gift cards less than 1%.

What about crowdsales?  The largest one right occurring right now is Factom.  Over the past three weeks approximately 2,180 transactions containing 1,955 bitcoins have been sent to the fundraising address; or about 104 transactions per day.

Now lets assume the international payments and remittance market is at least the same size as the merchant economy (it may be lower, based on anecdotally having talked to about 10 different exchanges overseas the past couple of months); so that is about another 5,000 bitcoins per day or 2.5%.

That means that we are still missing around 80,000 bitcoins per day if not more.  And based on address clusters at WalletExplorer, a large portion appears to come from movement in between exchanges and hosted wallets, as well as gambling services and darknet markets.

Recall that at its height in the spring and summer of 2012, nearly half of all transaction volume on the Bitcoin network were related to SatoshiDice.7 Once it blocked US-based IP addresses, its popularity waned.

Over the past two years, since May 13, 2013, there have been 946,261 bitcoins worth of wagers at Primedice, or roughly 1,350 bitcoins per day.

prime dice betting

Source: Dicesites

The chart above visualizes the activity on Primedice since January 1, 2015 – April 18, 2015.  Based on this cluser, there is is roughly as much transactional volume passing through Primedice as BitPay does each day.

A few other notable publicly known dice sites tracked by Dicesites:

  • Pocket Rocket Casino has about 440 bitcoins / day in wagers
  • BitDice has about 240 bitcoins / day in wagers
  • Dicenow has about 70 bitcoins / day in wagers

For perspective, prior to emptying its wallet (the first time), on its then-summer 2012 height, Silk Road’s public address contained 5% of all mined bitcoins at that point.8  In early November 2014, Operation Onymous — an international law enforcement action targeting darknet markets, closed down 414 sites.  Left unaffected were several of the larger DNMs, including Agora, Evolution and Andromeda, each of which actively sell illicit wares denominated in bitcoin.  Evolution, as noted above, suffered a large theft which will be looked at below.

Evolution DNM

Last week we looked at some charts from Coinalytics in relation to BitPay.  Coinalytics specializes in building data intelligence tools to analyze activities on the blockchain.  Using labels from WalletExplorer.com (which identifies reused addresses of a number of different services), the team was able to create visual aides covering Evolution.

Two things to keep in mind:

1) as a Swiss-based bot recently discovered, not everything sold on a DNM like Evolution are necessarily illegal (though a lot probably is)

2) we cannot have 100% confidence on the data since it may be missing some address clusters.  For instance, last week, the 500,000 BitPay transactions identified by WalletExplorer were 10% less than what BitPay officially reported during the same time frame (2014).  Thus, there may be a similar margin of error for the following data.

Evolution was officially launched on January 14, 2014 and its administrators pulled an “exit scam” with a large portion of the funds on March 18, 2015, effectively shutting down its operations.

Evolution Market Number of TransactionsThe chart above visualizes the time period between January 16, 2014 – March 18, 2015.  The average number of transactions per day was 1,004 and average bitcoins per day was 562.  However, as shown in the chart above it was not until the fall of 2014 that Evolution hit its stride.

For the six months between September 18, 2014 – March 18, 2015 saw traction.  During this time frame they processed 2,025 transactions and 1,260 bitcoins per day.

Evolution Market v Bitpay BtcAnother way of looking at that same trend is the comparison above: a log scale measuring the amount of bitcoins that both BitPay (in green) and Evolution (in red) received starting January 16, 2014.  The drop off at the end in March 2015 is related to the exit scam that Evolution underwent (and the drop off for BitPay is related to a limitation in WalletExplorer’s data).

evolution market volume log scaleThe log chart above measures the value of incoming market volume between BTC and USD.

In terms of USD, the average value sent to Evolution between March 18 2014 – March 18 2015 was $190,179 per day.  As it achieved traction, between September 18 2014 – March 18, 2015 the average value sent was $353,669 per day.

For comparison recall that based on the stats released last week by BitPay, on average BitPay processed 1,544 transactions worth $435,068 per day in 2014.

USD Evolution MarketThe final chart above may be of interest to those wondering what the “exit scam” looked like in USD denominated value.  The time frame above is between January 16, 2014 – March 18, 2015.  As shown at the end, in March, the administrators “exited” with a large portion of coins valued at a range between $10-12 million USD (the full amount varies based on media outlet and is not fully captured in the chart above).

A question of ownership

Throughout this post the word “owner” has been used a few times.  Why is this important when looking at economic activity and flows of funds?

In an exchange with Amor Sexton, an Australian attorney that represents cryptocurrency companies, she noted that:

It seems like the preferred legal approach in many jurisdictions is that bitcoin is a form of digital property, and not money. This means that bitcoin would lack the negotiability of money. It is an important distinction in light of the concerns about the volume of fraud and theft.

If the statistics are correct, a significant amount of people may not have good title to the bitcoin that they hold. Of course, this is all theoretical, as it is arguably nearly impossible to prove title to bitcoin and satisfy the nemo dat principle.

However, you can’t merely ignore the issue. The law doesn’t cease to exist because you ignore it. For example, as Pamela Morgan points out, when you build a website, you get a default font without needing to specify any font. If you want to change the font, you need to write code to change it. The law has default positions that are implied into every situation. To change the default position, you have to actively create a new position that takes precedence over the default position.

The default position for property (and bitcoin if it is deemed property) is that the nemo dat rule applies. Ignoring the problem doesn’t fix it. The only thing that can fix it is by creating a new default position – either by law (declaring bitcoin to have the same negotiability as fiat currency) or by private agreement.

Nemo dat (short for nemo dat quod non habet) boils down to clean titles.  If you buy property from someone who does not have ownership right of the property, then the new purchaser does not have a legitimate title to this property (e.g., you cannot sell what is not yours).

Sexton is not the only practicing attorney with this view.

I spoke with Ryan Straus, an attorney at Riddell Williams in Seattle.  According to him:

I think there is a great deal of confusion around the property/currency distinction.  This confusion was magnified by FinCEN’s classification of Bitcoin as “virtual currency” for the purposes of the Bank Secrecy Act.  Shortly after FinCEN’s March 2013 interpretive guidance, people started to use the term “digital currency” rather than “virtual currency.”9

Bitcoin is not currency in digital or virtual form.  Rather, Bitcoin is virtually, or almost, currency.  Why is this important?  Currency can be thought of as property imbued, by the sovereign, with a special power.  Specifically, the legal tender status of currency allows it to be transferred free and clear of, rather than subject to, all claims and defenses.

In other words, currency is the only unconditional exception to nemo dat quod non habet, or the general rule that one can never transfer a better interest than one has.  There are other conditional exceptions to nemo dat that apply to certain types of property (goods, negotiable instruments and security entitlements) if certain conditions are met (property is transferred “for value” and in “good faith”).  If Bitcoin is not currency and does not fit within one of the statutory exceptions to nemo dat, nemo dat applies.  At this point in the conversation, the issue of fungibility inevitably comes up. However, fungibility isn’t a solution; it is merely an evidentiary issue.

The Financial Times, recently covered similar legal analysis by George Fogg, an attorney at Perkins Coie.  According to Fogg, “under the United States’ UCC code (uniform commercial code) as long as bitcoins are treated as general intangibles, no high value investor can be sure that an angry Tony Soprano won’t show up one day to claim that the bitcoins they thought they received in a completely unencumbered manner are actually his.”

Based on this insight the Times noted that:

Indeed, given the high volume of fraud and default in the bitcoin network, chances are most bitcoins have competing claims over them by now. Put another way, there are probably more people with legitimate claims over bitcoins than there are bitcoins. And if they can prove the trail, they can make a legal case for reclamation.

This contrasts considerably with government cash. In the eyes of the UCC code, cash doesn’t take its claim history with it upon transfer. To the contrary, anyone who acquires cash starts off with a clean slate as far as previous claims are concerned. It is assumed, basically, that previous claims on cash are untraceable throughout the system. Though, liens it must be stressed can still be exercised over bank accounts or people.

According to Fogg there is currently only one way to mitigate this sort of outstanding bitcoin claim risk in the eyes of US law. Rather than treating cryptocurrency as a general intangible, Fogg argues, investors could transform bitcoins into financial assets in line with Article 8 of the UCC. By doing this bitcoins would be absolved from their cumbersome claim history.

The catch: the only way to do that is to deposit the bitcoin in a formal (a.k.a licensed) custodial or broker-dealer agent account.

Whether or not a court will agree with this view depends on the jurisdiction that future defendants/plaintiffs are located.  US law seems pretty clear when it comes to property.

And as it is encoded today, there is no technical means for the Bitcoin network to enforce  off-chain asset rights based on terms-of-service (smart contract or otherwise); although there may be technical methods for integrating a terms-of-service into contracts transacted on the network.  However that is a topic for a different post.

Conclusions

As the Bitcoinland flow chart above showed, over the past six-and-nearly-a-half years, a visible division can now been seen between a KYC economy and non-KYC economy.  And while readers will likely find different parts of interest, to me a few of the takeaways are:

  1. In terms of activity, it is still difficult to tell what each category consumes specific amounts of transaction volume (e.g., “change” addresses, above-board merchant volume, gambling and so forth)
  2. Where the fiat leakage is occurring, where people take bitcoins out of circulation and purchase them with dollars or euros; how will this change in the coming months?
  3. The fact that value is actually being transferred: for all its warts some people still use it to transfer value often without intermediaries involved

Bitcoin and most other cryptocurrencies today, were intentionally designed not to interface with the current financial infrastructure.  Satoshi Nakamoto purposefully designed the network so that on-chain activity would route around trusted third parties and this came at a capital intensive cost (e.g., proof-of-work).  The decentralized, pseudonymous nature of these networks are a dual-edged sword: it provides advantages that can and will be used by both good and bad actors alike.  It will be interesting to look again at how this flow chart evolves over the coming years.

energy consumption bitcoin

Bitcoin network power usage from O’Dwyer and Malone

Future researchers may also be interested in breaking down the energy costs for maintaining each segment or bucket in the flows above.

For instance, last year O’Dwyer and Malone found that Bitcoin mining consumes roughly the same amount of energy as Ireland does annually.  It is likely that their estimate was too high and based on Dave Hudson’s calculations closer to 10% of Ireland’s energy consumption.1011
Furthermore, it has likely declined since their study because, as previously explored in Appendix B, this scales in proportion with the value of the token which has declined over the past year.

The previous post looked at bitcoin payments processed by BitPay and found that as an aggregate the above-board activity on the Bitcoin network was likely around $350 million a year.  Ireland’s nominal GDP is expected to reach around $252 billion this year.  Thus, once Hudson’s estimates are integrated into it, above-board commercial bitcoin activity appears to be about two orders of magnitude less than what Ireland produces for the same amount of energy.

If this is the case, is there a way to determine how much energy is being consumed to transfer and secure: the KYC activities as well as the non-KYC’ed activities?  One constraint to consider too for this research is that if it somehow becomes cheaper to secure the network, it is also cheaper to attack the network — and this can impact both currency and non-currency applications of the network.

[Thanks to Fabio Federici, Andrew Geyl (Organ of Corti), Dave Hudson, Jonathan Levin, Amor Sexton and Ryan Straus for their feedback and insights.]

  1. For one explanation why, see Bitcoin: New Plumbing for Financial Services by Jonathan Levin []
  2. The first person I am aware of that used the term “cryptocontraband” is Robert Sams. []
  3. Tabulating publicly reported bitcoins that were lost, stolen, seized, scammed and accidentally destroyed between August 2010 and March 2014 amounts to 966,531 bitcoins. See p. 196 in The Anatomy of a Money-like Informational Commodity by Tim Swanson. See also: Bitcoin Self-Defense, Part I: Wallet Protection by Vitalik Buterin []
  4. The inability to enforce a contract and retrieve losses in the event of fraud is not just a challenge for Bitcoin, but other cryptocurrency systems such as Dogecoin. For instance, Dogeparty asset “DOGEDIGGERS” was used by someone mid-November 2014 to sell shares in their “mining operation.” The individual(s) behind it managed to extract a few million dogecoin before people caught on and started asking questions, identifying it as a scam and put an end to it — the social media sites that the scammers were using to make the scam look legitimate were taken down. Restitution, if there is any, will take place off-chain where contract enforcement actually exists. See also Meet Moolah, the company that has Dogecoin by the collar from The Daily Dot []
  5. While the verdict is still out on Mt. Gox, new data analysis suggests that hundreds of thousands of bitcoins were systematically stolen from Mt. Gox over a period of two years, many of which were sold on other exchanges including Mt. Gox.  See The missing MtGox bitcoins from Wizsec []
  6. Some other examples include: Neo & Bee, Bitcoin Trader, Moolah from Alex Green/Ryan Kennedy, GAW/PayCoin from Josh Garza, BFL, MyCoin and at least 192 others, more likely hundreds more.  A number of the buckets probably deserve their own flow chart, especially since stolen bitcoins can be observed being split apart, onion style (e.g., the criminal peel off UTXOs little by little). See: Investigating the allinvain heist by GraphLab and An Analysis of Anonymity in the Bitcoin System by Fergal Reid and Martin Harrigan []
  7. On May 4, 2012 Stephen Gornick calculated that of the 42,152 total transaction on the blockchain, 21,076 transactions were wagers related to Satoshi Dice. This volume doubled within four days, as Gornick posted an update that 94,706 total transactions on the blockchain, 47,353 were wagers.  In September 2013, Rick Falkvinge made the following analogy: “Money in gambling – at least instant gambling – is not in a lockdown cycle and does not contribute to the minimum size of the money supply. This becomes important as we look at the different economies making up bitcoin today. There are about 11.7 million bitcoin in circulation today. Out of these, a staggering 2 million bitcoin are gambled every year on the SatoshiDice site alone, and another, PrimeDice, 1.5 million. To put these numbers in perspective, if translated to the global economy, it would mean that people bet the entire production of the USA at one single betting site, and the entire production of Europe on another. But as we have seen, these numbers do not contribute to the money supply pool in any meaningful way in a functioning economy.” See Bitcoin’s Vast Overvaluation Appears Partially Caused By (Usually) Illegal Price-Fixing by Rick Falkvinge []
  8. See A Fistful of Bitcoins: Characterizing Payments Among Men with No Names by Meiklejohn et al. []
  9. FinCEN Issues Guidance on Virtual Currencies and Regulatory Responsibilities from FinCEN []
  10. See also Megawatts Of Mining by Dave Hudson []
  11. Additional calculations from Dave Hudson:
    – Current Bitcoin network capacity: approximately 320 PH/s (320 x 10^15)
    – Best case power efficiency (shipping today): approximately 0.5 J/GH (0.5 x 10^-9 J/H)
    Likely power efficiency: approximately 1.0 J/GH (1 x 10^-9 J/H) = 2 x best case
    – Best case power usage (sustained): 320 x 10^15 x 0.5 x 10^-9 = 160 x 10^6 W = 160 MW
    Likely power efficiency: 160 x 2 = 320 MW
    – Best case power usage per day: 160 x 24 = 3840 MWh = 3.84 GWh
    Likely power usage per day: 320 x 24 = 7680 MWh = 7.68 GWh
    – Best case power usage per year: 3.84 x 365 = 1401.6 GWh = 1.4 TWh
    Likely power usage per year: 7.68 x 365 = 2803.2 GWh = 2.8 TWh
    The best case example would represent the entire Bitcoin network using the best possible hardware and doesn’t account for any cooling or any other computers used in the Bitcoin network. As such it represents an impossible best version of a network of this size. The likely example is probably closer as there is older hardware still in use and most data centers need cooling of some sort.
    The US Energy Information Administration estimated the US power generation capacity for 2012 at 1051 GW so the 320 MW number would represent 0.03% of the total electricity supply for the US. Assuming that we take the 320 MW figure then that would put Bitcoin at about 10% of Ireland’s electricity supply. []

A gift card economy: breaking down BitPay’s numbers

Two days ago BitPay, the largest payment processor in the cryptocurrency space, published a new infographic filled with a number of new stats.

BitPay claims that in 2014:

  • $158,800,000 total value processed (an increase from $107 million in 2013)
  • 563,568 total number of transactions (an increase from 209,420 in 2013)
  • $281 average order value (a decline from $513 in 2013)

They also state that there is a reason for the decline in average order value:

This number is dropping as adoption increases and Bitcoin moves from an investment commodity to a payment method.

At best that is just a guess.  While it is neat that BitPay is one of a very few companies in this space willing to publicly release some numbers, we cannot determine what the actual cause for this trend with the available information.  Correlation (drop in prices or average order value) does not mean the real cause is payment adoption.

correlation

Source: XKCD

According to Jonathan Levin, head of business development at Chainalysis:

The fall in the average order value seems likely to be attributed to the increase in difficulty and the fall in the number of home miners.

Unless they publish weekly or monthly bar charts (which they used to), or what merchants are their largest by volume each week, it is unclear what could be skewing that number (e.g., large block sales from miners in 2013 and 2014?).

For instance, in December 2013, the chart below was published on the official BitPay blog (it has since been removed):

bitpay 2013The spike in transactions during November 2013 is probably related to two things:

  1. the Bitcoin Black Friday marketing event
  2. simultaneous run-up in prices during the contemporary bubble that early adopters / miners were likely able to capitalize off of by exiting positions

Are there any other numbers?

bitpay 2014Above is the last known public chart of BitPay transaction volume.  The dates on the chart corresponds with April 2013 – March 2014 and the image comes from the Cryptolina conference held in August 2014.

Although the quality is a little fuzzy, transaction volume appears to have reached around 70,000 in March 2014.  Token prices during March ranged from approximately $450 – $650 which they likely weighted and multiplied by the total amount of bitcoins received each day to come up with a figure of $1 million processed each day (note: at the end of May 2014, BitPay announced it was processing $1 million in bitcoins a day).

Yet as we shall see, in terms of fiat transaction equivalent, there is less than half as much today as there was last year.

bitpay chartThe chart above is part of the original BitPay infographic released on Wednesday.

In terms of transaction volume, bitcoin mining alone accounts for the next 4 largest segments combined.  For those who believe this will change in the future, recall that if mining somehow becomes cheaper then it is also cheaper to attack the network.  So as long as there are rents to be extracted, miners will continue to fight for and bid up the slivers of seigniorage up to where the marginal cost eventually reaches the marginal value of the token; and that translates into continuous streams of mining revenue (not necessarily economic profit) that are converted into fiat to pay for land, labor, taxes and electricity.

Furthemore, because bitcoin mining is not on the top 5 list of in terms of number of transactions this likely means that the miners that do use BitPay likely sell large blocks and are therefore large manufacturers or farms or both (and of those miners, most probably come from large entities such as BFL and KnC paying their utility bills).

The second chart to the right states that gift cards as a class represent the lion share for number of transactions processed.  This is actually kind of humorous and unhumorous.  What this means is that the majority of BitPay users (and probably bitcoin users in general) are not doing economic calculation in BTC (the unit of account) but instead some kind of fiat.  And to do so, they are going through a Rube Goldberg-like process to convert bitcoins into fiat-based utility.

This is mostly borne out through a roundabout process such as bitcoins sent to Gyft -> Gamestop -> ShellCard (the gas company).  Or Gyft->Amazon->Purse.io.

What are other motivations?  Some users, based on social media posts, claim to do this in order to reduce identification (KYC) paper trails so taxes will not have to be declared and sometimes to take part in illicit trade (e.g., sell these gift cards at a discount for actual cash for illicit wares).

Based on their chart, roughly $345,000 of merchant activity is processed on a daily basis.  Of that, $277,000 comes from precious metals and bitcoin mining.  The remaining  $68,000 is for unidentified e-commerce, IT services and travel.  Or in other words, nearly 80% of bitcoins processed by BitPay in 2014 went to paying for security (mining) and buying (or selling) gold and silver.

As I have written about previously, that for roughly every $1 spent on security (via mining), there was roughly $1 spent on actual retail commerce which translates into a quantitatively (not qualitatively) oversecured network.1 But based on this new data: more capital is probably being spent securing the network than retail commerce by a factor of at least 2x.2

Recall that bitcoin mining represents just under half of all transaction volume processed by BitPay, and BitPay itself has about 1/3 to 1/2 of the global market share for payment processing, so it is probably a good sample size of world wide non-darkmarket “activity.”

What about others?

The second largest payment processor is Coinbase.  And based on their self-reported transaction volume (below), the “off-chain” trend over the past year is similar to what BitPay processed:

coinbase chartAs described in Wallet Growth, approximately six months ago, in October 2014, Brian Armstrong and Fred Ehrsam, co-founders of Coinbase, did a reddit AMA.  At the 31:56 minute mark (video), Ehrsam discussed merchant flows:

One other thing I’ve had some people ask me IRL and I’ve seen on reddit occasionally too, is this concept of more merchants coming on board in bitcoin and that causing selling pressure, or the price to go down. [Coinbase is] one of the largest merchant processors, I really don’t think that is true.  Well one, the volumes that merchants are processing aren’t negligible but they’re not super high especially when compared to people who are kind of buying and selling bitcoin.  Like the trend is going in the right direction there but in absolute terms that’s still true.  So I think that is largely a myth.

Perhaps those volumes will change, but according to the chart above, that does not appear to be the case.

And as discussed in Slicing Data, the noticeable pattern of higher activity on weekdays versus the weekend is apparent irrespective of holidays with Coinbase too. Consequently, on most days these self-reported numbers comprise between 3-5% of the total transactions on the Bitcoin blockchain.  However, as Jonathan Levin, has pointed out, it is not clear from these numbers alone are or what they refer to: Coinbase user to user, user to merchant, and possible user wallet to user vault?

What does this mean for BitPay?

BitPay has three tiers of customer pricing.  The first plan is free, the second charges $300 for the first month and the third is for enterprise clients.  They claim that there are no transaction fees at all.

While they probably do sign up customers on their 2nd and 3rd tier, it is unclear how much.  Speculatively it may not be very much due to the low transaction volumes overall (e.g., why would Microsoft pay more in customer service than they generate in actual revenue?).  Thus their margins may be razor thin at ~1% which translates to roughly $1.5 million in annual revenue (it has to be below 2-3% otherwise merchants would not perceive an advantage for using their service).  BitPay also charges (collects) a spread through a process called the BitPay Best Bid (BBB) rate.

Based on the current head count of between 70-100 people (9 were probably laid off after the “Bitbowl“), it may be the case that the revenue generated annually covers the labor costs for just one or two months.  Perhaps this will change if prices rebound and/or if volume increases (recall that payment processors sometimes have to put coins on their books if they cannot find a counterparty to sell to in the time frame so in the likely event that BitPay holds coins on their books, they can gain or lose through forex movements).

bitpay twitterOn this point, four months ago I was involved in a mini-twitter debate with Jeff Garzik (a developer with BitPay) and Antonis Polemitis (an investor with Ledra Capital).  It partially centered around some of the findings that Jorge Stolfi (a computer science professor in Brazil) posted the previous month regarding BitPay’s transaction volume.

As discussed on Twitter, their burn rate on labor — as in almost all startups — is most certainly higher than the revenue they generate.  This should not be seen as “picking on BitPay” (because virtually every US-based VC-backed Bitcoin-related startup is in the same boat, see Buttercoin and probably ChangeTip) but they probably are not generating much additional revenue from “monthly SaaS subscriptions and payroll API customers.”

How do we know this?  Again, why would Demandware pay more for a SaaS subscription than they generate via revenue?  Altruism?  Perhaps a few do (like NewEgg or TigerDirect) but even if 1,000 customers paid $300 a month, that is still just $300,000 a month far less than the $1 million (speculatively) needed to cover labor alone.

Clustering

I contacted Fabio Federici, co-founder of Coinalytics which specializes in building data intelligence tools to analyze activities on the blockchain.  Using data from WalletExplorer.com (which identifies reused addresses of payment processors, pools, gambling services and such), his team was able to create visual aides covering BitPay.

It bears mentioning that there is a ~10% discrepancy between the WalletExplorer numbers and BitPay and this is likely a result of the clustering heuristic (by WalletExplorer) which will not give 100% coverage and is not dishonesty from BitPay (e.g., WalletExplorer data set identifies just over 600,000 transactions last year whereas BitPay cites roughly 650,000 transactions).

bitpay daily number of transactionsThe time frame for the chart above takes place between July 2, 2011 and April 13, 2015.  The chart visualizes the Daily Number of Transactions.  The green line is the important line as it represents the incoming transaction amount that BitPay receives each day.  It shows that aside from a brief outlier in the winter of 2014, volume has remained relatively flat at around 1,200 – 1,500 transactions per day for the past 15 months.Daily Volume Btc (2013-2015) [Log] xThe time frame for the log chart above is slightly shorter, between January 1, 2013 and February 28, 2015 (there is a strange drop starting in March that is likely a problem with the clustering heuristic, so it was removed).  The chart visualizes the Daily Volume of bitcoin that BitPay receives.  The green line is the important line as it represents the aggregate of how many bitcoins BitPay received each day.  While there are some days where the total reaches to 8,000 or even 9,000 bitcoins, these are outliers.  Conversely some slower days reach around 500 bitcoins per day.  On average, between January 1, 2013 and February 28, 2015, the daily amount is 1,138 bitcoins.

Other specific ranges:

  • Average February 2013 – February 2015 = 1,209 bitcoins daily
  • Average February 2014 – February 2015 = 850 bitcoins daily

One explanation for the discrepancy is that there is a large incoming transaction of 28,790 bitcoins on March 25, 2013 which skews the average in the first date range.  It the same day that the Cyprus international bailout was announced.  While this coincides with the ‘bull run’ in the spring of 2013, it is unclear from public data what this one sale may have been.  Looking at some other charts, at around that date roughly 52,694,515 bitcoin days were destroyed (BDD) and total output volume (TOV) was around 4 million (which is about 4x higher than today).  During this time frame fees to miners were also about 3x-4x higher than they are today.  And on this specific day, 159 bitcoins in fees were sent to miners, the fifth highest total ever.  While speculative it could have been an “early adopter” or even a company overseas cashing out (market price was around $73.60 per bitcoin on March 25, 2013).

Daily Number of Transactions (2013-2015) [Log] xThe log chart above visualizes the daily number of transactions for BitPay between January 1, 2013 and February 28, 2015.  The interesting phenomenon is the flip that occurred in the fall of 2014.  Whereas previously the number of outgoing transactions exceeded the internally held coins, in late September this appears to have changed.  It is unclear what the reason(s) for this is.  Perhaps more merchants decided to keep coins instead of exchanging for fiat.  Or perhaps due to the continued price decline, BitPay had to hold more coins on their balance sheet due to the inability to liquidate merchant requests fast enough (e.g., between August 1 – November 1, market prices declined from around $558 to $336 per bitcoin).

Other noticeable phenomenon on the green line above include a rapid run-up during the collapse of Mt. Gox in February 2014 and then later Bitcoin Black Friday followed by Cyber Monday in November 2014.

Why are there recognizable patterns for the green line in all of the charts?  Again, since the bulk of payments are related to mining, it is likely that miners sell blocks on a regular basis.  Denominated in USD, when paired up with bitcoin volume between February 2013 and February 2015, the plot would likely look like a left-modal bell curve.

Perspectives and conclusions

On average BitPay processed 1,544 transactions worth $435,068 per day in 2014.  Once mining and precious metals are removed, the BitPay “economy” involves $57.5 million per year.  Even if the full amount, $158 million, were classified as actual economic activity, it is less money than what Harvard Business School generates from selling case studies each year (~$200 million) or roughly the same amount that the University of Texas athletic department generates each year.

If Coinbase and the rest of the bitcoin-to-fiat merchant economy sees similar patterns of activity, that would mean that above-board economic “activity” may currently hover around $350 million a year.  This is just slightly more than venture capital was invested in the Bitcoin space last year (~$315 million) and roughly equivalent to the fund that Lux Capital raised last month for funding science-related startups.  For comparison, Guatemalan’s working abroad remitted more than $500 million back to their families in one month alone last year.

In terms of payments the competitive landscape for Bitcoinland is not just other cryptocurrencies but also incumbent payment providers and tech companies such as Google, Apple, Facebook and Microsoft (the latter has been collecting money transmitter licenses), each of which has launched or is planning to launch an integrated payments system.  Startups such as Venmo and Square, both of which were launched the same year as Bitcoin, have seen some actual traction.  For instance, in the forth quarter of 2014 Venmo payment volume came in just over $900 million, up from $700 million processed in the third quarter (Square Cash claims to have an annualized volume run rate of $1 billion).

And although it is not a completely fair comparison, Second Life from Linden Lab is still around “with 900,000 active users a month, who get payouts of $60 million in real-world money every year” (note: there is some debate over specific user numbers).

When mining payments are removed, Bitcoin, as an above-board economy, appears to generate less in return than the venture capital funds have gone into it (so far).  Perhaps this will change as more of the capital is deployed but it may be the case that Bitcoinland cannot securely grow exponentially (as the bullish narrative envisions) while maintaining a fixed amount of outputs.

In his recent conversation with International Business Times, Wouter Vonk, BitPay’s European marketing manager, described the trends from the infographic, stating:

As bitcoin becomes a more established technology, we expect to see more consumers using it. The investors are usually the first ones to hop on new technology, but as bitcoin circulates more, and as the amount of transactions increases, we should see bitcoin being used by more and more average consumers. We see bitcoin being used in emerging markets as a supplement to the current banking and monetary systems.  Bitcoin breaks down the barriers to financial tools that many people in emerging countries are facing.

Empirically, regarding “more consumer using it,” this does not seem to be true.  Nor is there evidence that bitcoin is circulating “more” — in fact, based on age of last use, more than 70% of coins have not moved in more than 6 months (slightly older figure).  And while cryptocurrencies may play a role in developing countries, so far there is little evidence this is actually occurring beyond talk at conferences.  Again, perhaps this will change as new data could reinforce Vonk’s narrative, but so far that is not the case.

For perspective I contacted Dave Hudson, proprietor of HashingIt, a leading network analysis site.  According to him:

One thing that I did notice is that their earlier “incoming” graphs all look highly correlated to the transaction volume in the Bitcoin network after long chains are removed.  This gets back to the usual Bitcoin transaction volume question of what’s really in a transaction and what’s change?  It seems their transaction volumes have really only crept up in the last 12 months, much slower than the rate of growth in transactions (or non-long-chain transactions) on the main network (increased competition?).

What does this look like?  The chart below measures Number of Transactions Excluding Chains Longer Than 10 between April 2013 – April 2015.

blockchain long chainsWhat are long chains again?  Rather than rehashing the entire paper, recall that in Slicing Data, it was observed that a significant fraction of total transaction volume on any given day was likely inflated through a variety of sources such as faucets, coin mixing and gambling.

As we can see above, while there is indeed an upward trend line over the past two years, it is clearly not growing exponentially but rather linearly, and particularly in spurts around “macro” events (e.g., bubble in late 2013 and collapse of Mt. Gox).

Based on the public data from address clustering, consumer adoption is empirically not growing near the same level as merchant adoption.  In fact, consumer adoption in terms of actual non-mining, retail-usage, has basically plateaued over the past year.  We know this is the case since merchants accepting bitcoin for payments has roughly quintupled over the same time frame (20,000 to 100,000) and includes several large marquis (such as Microsoft) yet without any surge in usage by bitcoin owners in aggregate.

Other companies that have actively promoted bitcoin for payments have likely also been impacted by sluggish sales.

For instance, in February 2015, Overstock.com (which has been using Coinbase as a payment processor for over a year) tried to obfuscate weak traction by using a strange method: measuring orders per 1 million residents.

overstock bitcoin

The top 3 were:

  • New Hampshire has a population of 1,326,813 and according to the chart above Overstock received 131 bitcoin orders per million residents.  This comes out to roughly 175 orders in 2014.
  • Utah has a population of 2,949,902 and according to the chart, Overstock received 89 bitcoin orders per million residents.  This comes out to roughly 270 orders in 2014.
  • Washington D.C. has a population of 658,893 and according tot he chart above Overstock received 85 bitcoin orders per million residents.  This comes out to roughly 56 orders in 2014 (although if the greater D.C. metro population was used, the order number would be about 9x larger).
  • Fighting for last place: Puerto Rico trounced Mississippi, which came in dead last.  Puerto Rico has a population of 3,667,084 and according to the report, Overstock received 12 bitcoin orders per million residents.  This comes out to about 44 orders in 2014.   In comparison, Mississippi, with a population of 2,994,079 had 8 order per million residents.  This comes to about 24 orders.

According to Overstock, in 2014 approximately 11,100 customers paid with bitcoin at both its US and international websites.  Altogether this represented roughly $3 million in sales which when coupled with low margin products (based on the top 10 list of things sold on Overstock) is an initiative that Stone Street Advisors labeled “distracting” (see slides 21, 32, 33, 37, 58).

In addition, since gift cards represent about 16% of all transactions processed by BitPay, they can be added to the list of non-negligible reasons for fluctuation in blockchain transaction volume.  That is to say, on any given day there are roughly 242 gift card related transactions through BitPay which should appears on the blockchain.  This is about the same amount of Counterparty transactions that may take place on a slow day.

Thus, as discussed in Slicing Data, the daily components of blockchain transactions are likely: faucet outputs (which may be “long chains”), mining rewards, some retail activity, coin mixing, gambling, watermarked assets (e.g., Counterparty, Mastercoin), P2SH, movement to ‘change’ addresses, wallet shuffling and now gift cards.

While their new infographic does not come to any direct conclusions as to macro growth of Bitcoinland it is likely that there are still only a few profitable businesses and projects in the ecosystem and most are unrelated to Bitcoin itself:

  • Fabrication plants such as TSMC and designers like Alchip
  • Utility companies (hydroelectric dams in Washington, coal power plants in Inner Mongolia)
  • Large mining farms with access to the newest ASIC batches reducing overall operating costs relative to marginal players (Bitfury in the Republic of Georgia)
  • Some mining pools (Organ sometimes has a break down of block makers)
  • Law firms (such as Perkins Coie)
  • Conference organizers such as Inside Bitcoins (but not The Bitcoin Foundation)
  • A handful of bitcoin-to-fiat exchanges (BTC-e, Bitfinex and a few others)
  • Scams (Moolah from Alex Green/Ryan Kennedy, GAW/PayCoin from Josh Garza, BFL, MyCoin and at least 42 others, more likely hundreds)
  • Botnet operators (botnet mining still exists, externalizing operating costs with “other people’s electricity”)
  • Ransomeware (CryptoLocker, KEYHolder, CryptoWall and a few dozen others)
  • Darknet Markets (Evolution “exit,” Sheep Marketplace “hack“; some low-hanging fruit exists for academics studying operators and providers that transitioned from Liberty Reserve to other DNMs, after it was shut down 2 years ago)

Perhaps all of this will change and this snapshot is “too early” as the bullish narrative claims.  Trends may change, no one has a crystal ball.

[Special thanks to CukeKing, Fabio Federici, Dave Hudson, Jonathan Levin and Pete Rizzo for their feedback and info]

  1. See Are there changes in the volume of retail transactions through Bitpay this past year?, Will colored coin extensibility throw a wrench into the automated information security costs of Bitcoin? and A brief history of Bitcoin “wallet” growth []
  2. In Chapter 14 in The Anatomy: “If the labor force of bitcoin is spending $10 million on protecting the network yet real commerce is only $30 million, this would be equivalent to a mall issuing 1 out of 3 customers a personal security detail to go shopping.  Or in other words it is, arguably, quantitatively oversecure (it is not qualitatively trustless as shown by the trifecta of DeepBit, BTC Guild and GHash.io).” []

Interview with deBitcoin

Earlier today I was interviewed by Paul Buitink and Jop Hartog, co-hosts of a weekly show at deBitcoin, based in the Netherlands.  The other two guests were Roeland Creve and Andreas Wauters, co-founders of Gent Bitcoincity, based in Belgium.

All views are my own and they do not necessarily represent the views of the companies and organizations I am affiliated with.

Understanding value transfers to and from China

A couple days ago, on Monday, I was on a panel hosted at Stanford University as part of the “Blockchain Global Impact” conference.  The panel covered remittances, unbanked residents and financial inclusion.

Below is a presentation I put together based on research for Melotic, for SKBI in Singapore and in preparation for the panel.

What is the “real” price of bitcoin?

Even before Bitcoin was part of the zeitgeist for the digerati, people have been guessing what the price of a bitcoin should and should not be.

For instance, a couple days after version 0.1 was announced on the Metzdowd mailing list (back in January 2009), Hal Finney posted a possible scenario:

As an amusing thought experiment, imagine that Bitcoin is successful and becomes the dominant payment system in use throughout the world. Then the total value of the currency should be equal to the total value of all the wealth in the world. Current estimates of total worldwide household wealth that I have found range from $100 trillion to $300 trillion. With 20 million coins, that gives each coin a value of about $10 million.

So the possibility of generating coins today with a few cents of compute time may be quite a good bet, with a payoff of something like 100 million to 1! Even if the odds of Bitcoin succeeding to this degree are slim, are they really 100 million to one against? Something to think about…

Hal Finney, brilliant engineer and the world’s first Bitcoin price divinator.

Over the subsequent weeks, months and years there has been no shortage of guesstimates and “technical modeling” that gauge what the price will be.

For instance, a year ago (in February 2014), Founders Grid asked 50 Bitcoin “experts” what their bitcoin price predictions were over the next year.

The end result — all but a couple were completely, very wrong (see this spreadsheet for a line-by-line itemization).

Later, in May 2014, CoinTelegraph asked (video above) more than 30 Bitcoin “experts” as to what their bitcoin predictions were for the end of 2014.  Once again, all but a couple were completely, very wrong.

How could passionate enthusiasts who pay attention to Bitcoin-related news be so wildly off on what some consider a “sure-bet” moon shot?

The short answer: just because you are domain expert in one area does not mean you are a price modeling expert.  (Disclosure: I try not to give price predictions because I know I am not a price modeling expert)

Let’s look at a few examples.

Is there a “fair” price?

A couple days ago CoinDesk interviewed Denis Hertz, a project manager at ALFAquotes who has created the “Fair Bitcoin Price indicator.”  And that according to its calculations, the current fair price is $518.

How has he calculated it?

First, it calculates the changes in the cost of mining equipment and its performance. Next, it attempts to assess the change in difficulty of production, factoring in the electricity costs faced by miners on the network.

In particular, Hertz indicated that the fair value tool should be embraced by miners, as the price today is lower than the fair price – a factor he attributes to the recent string of bankruptcies and closures in the sector.

There are a few mid-to-late 19th century German economists that would be happy to see — what is effectively — the Labor Theory of Value as back en vogue.  But it is disingenuous to attribute value based on inputs because it wholly ignores the subjective valuation of the demand side of the equation.

It is not a valid way to measure value of a widget (or virtual commodity in this instance) for the same reason that the value of a Renoir or Matisse painting is not based on the value of the inputs (oil paint, canvas, brush, frame, etc.).

Speaking of art: David Andolfatto, a marbleized personification of Marcus Aurelius, also disagreed:david andolfatto bitcoin price

Reservation Demand

It is unclear where this theory first started in relation to bitcoin, perhaps it was from Curtis Yarvin, who writes at Unqualified Offerings as Mencius Moldbug (he briefly discussed this idea four years ago).

The main thrust of this idea is that because some market participants buy and perma-hold an asset, it removes supply from the market, thereby ceteris paribus — assuming the same quantity demanded — it should eventually push market prices higher because less supply is available.  Or in short, if people hoard bitcoins, their price will somehow rise.

Their are multiple problems with this theory.

First

Financial history is littered with corpses of people, organizations and countries that try to corner supply to artificially boost an asset price.  And in bitcoin, the hoarders are collectively trying to do what the Hunt brothers tried to do with silver, what Malaysia tried to do with tin and what China tries to do with rare earth elements.  It doesn’t work because cornering supply has never guaranteed long-term price rises and if everyone hoarded, it would make bitcoin have zero economic value because there would be no circular flow of income (see also the coordination problem below in #4).

I spoke with George Samman, co-founder of BTC.sx and frequent writer on Bitcoin-related topics.  In his view:

Hoarding does not help the bitcoin economy at all, in fact it stifles its growth as its clamoring for traction and mass acceptance. It locks up bitcoin in a place where its not being cycled back and forth making it scarce and therefore making it economically unviable as a currency and as a means of transaction. Hoarding in no way makes bitcoin a viable solution in the medium to long term. Not to mention if hoarding is done to manipulate price, it may work short-term, but cornering supply has never been a great wealth strategy especially as people and/or governments sniff out manipulation and “change the rules of the game.” Its more of a going bust strategy.

Second

It does not account for and seems to ignore both transactional demand and speculative demand.  Because price discovery currently takes place in relation to national currencies on exchanges, it is the liquidity at exchanges and the changing demand of this liquidity which directly impacts prices.  Perma-holding (“hodling”) likely makes it more difficult to get into and out of positions (due to slippage).1

And what impacts the demand on exchanges?

The volatility in demand (changes in demand) likely comes from the fact that the “fair value” of bitcoin is constantly fluctuating.  For instance, every time a new “big adopter” rumor is posted on reddit, a professional exchange opens, an exchange gets robbed, a new central bank paper is released, or a regulator gives a speech — the expected future value of bitcoin changes.

For instance, last February, when the market learned up to 850,000 bitcoins may have been permanently removed from circulation (simply did not exist), knowledge that became public due to the bankruptcy of Mt. Gox, prices rose but then fell a couple weeks later when it was announced that perhaps 200,000 coins may have been located in a disused wallet.  The market was incorporating changes in supply relative to existing speculative demand.

Robert Sams, co-founder of Clearmatics and a former interest rate trader, has a good explanation (pdf) of this phenomenon:

If a cryptocurrency system aims to be a general medium-of-exchange, deterministic coin supply is a bug rather than a feature. This is because changes in coin demand get translated into changes in coin price, making price volatility proportional to demand volatility. But that is only a first order e ffect, for expectations of future levels of coin demand give rise to speculation. If the expectations of the long-term rate of coin adoption are signi cantly greater than the rate of coin supply growth, people will buy and hold coin in anticipation of future adoption, driving up the current price of coin.

It is the nature of markets to push expectations about the future into current prices. Deterministic money supply combined with uncertain future money demand conspire to make the market price of a coin a sort of prediction market on its own future adoption. Since rates of future adoption are highly uncertain, high volatility is inevitable, as expectations wax and wane with coin-related news, and the coin market rationalises high expected returns with high volatility (no free lunch).

Or in another example: if Satoshi’s alleged 1 million coins started moving around, it would also likely drive down the price as this supply has largely been considered removed from circulation, specifically at exchanges.2

nyc tokenThird

While bitcoin’s creation rate is fixed, perma-holding is equivalent to buying a fleet of airplanes and then locking them in warehouses with the belief that merely removing them from the supply chain, that it will increase the overall value of the airplane and/or airline industry. Sure those planes may one day appreciate in value to become highly assessed museum pieces, but this ignores the utility of flying entirely.

This is a similar problem with most tokens in the “Bitcoin 2.0” world which purportedly give you access to networks (e.g., pre-paid gift cards).  In this case it would be akin to going to the New York subway in the 1980s, removing a handful of subway tokens and storing them in a lock box with the belief that their value will rapidly appreciate.

They may eventually become a valuable collectible or antique, but all that happens in the latter situation is that the subway token minter will just create more to replace those removed from circulation; the intended utility is riding the subway, not perma-storing value in the token itself (in December 2014, residents of St. Petersburg “hoarded” subway tokens for a different reason).

Fourth

It likely runs into a coordination problem.

Each individual has different time preferences and horizons for how and when they will sell their assets at (in this case, bitcoins).  Empirically we have seen this story before with OPEC, in which participants “cheat” and do not follow their internal “Honors Program” — producing more oil than their quotas.  And as a consequence, it increases downside pressure on the price.

Organizing individuals and jawboning them into selling or holding as frequently occurs on social media with relation to bitcoin and other altcoins.  This is what Josh Garza has tried to do with Paycoin, who has promised a variety of price floors (notably $20).  Yet because the market is decentralized, he has ended up resorting to tactics such as an ad hoc “Honors Program” in which he (and his employees) try to convince other holders/traders not to all sell at once because this drives down the price below the promised price floor (due to a lack of additional demand).  In fact, despite these hopes and dreams, as of this writing Paycoin is roughly at an all-time low hovering around $0.60 per coin.  Maybe that will change, but then again, that could be wishful thinking (note: Garza’s GAW mining is likely some type of fraud).

In order for bitcoin to reach and maintain a stratospheric price level (greater than $2,000 a coin) in the face of similar coordinated and uncoordinated sell-side pressure, at least an equal amount of speculative (and/or transactional) demand would need to be brought on board to absorb a similar sell off of bitcoins.3

What happens if such demand does not materialize to absorb it?  Prices drop.

For example, last September I provided some comments to CoinDesk about why prices fluctuate which touch on the demand side on exchanges and OTC facilitators:

And in other cases, an OTC buyer can affect exchange via “buy pressure.”  If he begins buying directly from an OTC provider, avoiding an exchange, the exchange loses its buy wall thus affecting price.  The sell pressure forces the price down and once a large buyer goes “off-market,” he is weakening the buy pressure.  If all the buyers and sellers are “off-market,” we can say that exchange price and price discovery is distorted.  As my friend Raffael Danielli recently said, “Information is never off-chain and ultimately information makes the price.”  Consequently today information spreads very quickly and if a broker can make money because he facilitates “off-chain” transaction and knows “better” what the real price is then game theory dictates he should take advantage off this (investment banks do the same with OTC).

So in addition to partnership agreements, they probably also sell somewhere else to mitigate exposure to this volatility.  In addition, many miners have to finance their operations and at current prices of $410, roughly $1.6 million is created every day via block rewards and it has to go somewhere.  Fewer people buying?  Down we go.

Merchant acceptance

On almost a daily basis there is a discussion on reddit or Twitter about merchant acceptance and how the increase in adoption of bitcoins for payments by merchants should eventually be reflected in higher market prices of bitcoin itself.  This reasoning is problematic for a variety of reasons but most importantly: empirically it has not happened because it doesn’t account for any changes in consumer demand for the token.

Why haven’t consumers increased their demand of cryptocurrencies for retail transactions?

In August last year, Wedbush, an equity research firm, made the claim that:

Volatility in the price of bitcoin should not impede retailer acceptance of bitcoin, in our opinion, as merchants and payment processors are entirely shielded, and we expect consumers will be shielded in the future.

This is a bit of wishful thinking.  While there are an increasing amount of products and services that can hedge against volatility (such as Hedgy or Tera Exchange), in each instance, this costs a customer both time and money — which the average consumer probably is not interested in becoming experts at (e.g., airline fuel hedging strategies).  Consumers want stable currencies, not friction-full hobbies they have to fiddle around and hedge against every day.4

Why does this matter?

In its February 2015 analysis (pdf), the European Banking Commission looked at a variety of opportunities and challenges of “virtual currency schemes.”  One area that it looked at was:

Is Bitcoin establishing itself as a successful payment method?

In general, a buyer and a seller can agree on anything to be used as money (both regulated and unregulated payment methods) in a specific transaction. Consequently, virtual currencies may also be used as a payment method if both sides agree. The basic problem for every two-sided market is, however, that it needs “critical mass” on both sides for it to function. For payment cards and other payment instruments, reaching critical mass requires having enough merchants who accept the payment instrument and enough users who want to use the payment instrument so that it becomes attractive for other merchants and other users to join, thereby accelerating the network effects.

There are now over 100,000 merchants that now accept bitcoin for payments, up from ~20k last January.  At this rate, by the end of next year, there will probably be more merchants that accept bitcoins than actual on-chain users of bitcoin.

While any number of reasons are stated for why merchants could and should continue supporting bitcoin, unless consumers use it on a regular basis, continuing to train employees on how to accept it at point-of-sale consumes is an opportunity cost for merchants as those resources could be used for other purposes (there have been several recent threads on reddit from Wholly Hemp on this issue).

Why is that?

Recall that there has likely been no change in aggregate retail usage by consumers this past year.  That is to say, while nominal on-chain transaction volume may have increased, the aggregate, the total amount of bitcoins used altogether for retail commerce has stayed roughly the same (the rest is apparently superfluous activity).  If you are a merchant, why should you continue to support a foreign currency that costs more to support than you save by accepting it?  Again, maybe this will change in the future and more merchant adoption does, for some reason, spur consumer usage.

Percent of precious metals and transaction volumes

The basic idea of this argument, from among many organizations such as Pantera Capital (a fund dedicated to Bitcoin-related investments), is that if bitcoin is the digital equivalent to gold or silver — or is even in fact superior to gold and silver — then should it not follow that its market cap should absorb some percentage of these metals?

For instance, last October, Pantera provided an assessment (pdf) related to the price per bitcoin relative to the market capitalization of a variety of assets (including gold, remittances, payments and global money supply (as measured by M2) itself:

pantera bitcoin prices

From Pantera Capital

While some of their 2014 predictions haven’t panned out (recall “interest” versus “adoption”), perhaps future events will swing their way and change with the advent of new investment vehicles like GBTC or ETFs.

Again, that chart above states that if bitcoin absorbed the market cap of gold, each bitcoin would be worth as much as $550,954.  And what would happen if bitcoin somehow absorbed the market cap of the world money supply (and payments, remittances, gold, etc.)?  It would purportedly reach as high as $4,291,060 a piece.

However, under such a scenario, not only does this run into the logistical exergetic issues of the “Million Dollar Bitcoin” (pdf) but variations of this argument also involve supplanting some percentage of a payment rail.  For instance, if the Bitcoin network captured X% of the daily transaction volume of Visa or ACH then it should create additional demand for bitcoin, bidding up the market value to new highs.  But this could be a non sequitur.  Just because supporters find value in this “virtual currency scheme” does not mean the rest of the market will.  Perhaps they will, but in this circumstance, this tech is not being built in a vacuum so maybe not.

For example, currently listed on AngelList:

While many of these startups will burn out of capital and fail to gain traction, there may be a handful that do find significant consumer adoption — and it may or may not involve a cryptocurrency.5

One additional challenge with the X%-of-incumbents market share argument (and this occurs in every industry) is that it assumes that market participants (Alice and Cathy) are willing to go through the frictions to use Bitcoin, the network instead of existing rails or products like Apple Pay.  Or that Alice and Cathy perceive bitcoin, the asset, the same way as some backers do.  It could happen but is conceivable that it may not as well (to be even handed, there are any number of investors and entrepreneurs that have bullish views, Pantera was just used as an example).

For balance I spoke with Raffael Danielli, a quantitative analyst at ING Investment Management and proprietor of Matlab Trading, and in his view:

In terms of pricing bitcoin, equity models do not work (no dividends, no predictable cash flows) and forex models also don’t work.  At this moment I would value Bitcoin somehow like gold, meaning lots of speculative value and little intrinsic value. When people make those comparisons with precious metals they usually assume that “what if Bitcoin became as big as the market cap of xyz”. More realistically would be to assume “what if Bitcoin became x% as big as the market cap of xyz” with x being (a lot) smaller than 100 because both are competing for the same market share (not entirely true but to some degree).

This also touches on the binary outcome argument: that bitcoin will either go to the moon or fall to zero.  This is a false dichotomy.  Just as it would be fallacious to assume that a new car marquis will absorb all of the market share from the rest of the industry (or none at all), or that a new computer company will similarly displace all incumbents (or none at all), so to is it incorrect to assume that a cryptocurrency only has two directions to go: vaulting into geosynchronous orbit or crashing on the launch pad.

What happened to something in the middle; remain-a-viable niche?

Technical analysis

dilbert technical analysis

To cut to the chase, all bitcoin technical analysis has about as much scientific predictive power as phrenology does.  Not only is the market illiquid and manipulable (see Willy Bot) but there is (probably) still no real fundamental value beyond the transactional demand floor set most likely by the demand generated through the trade of illicit goods and services.  Perhaps that will change in the future, but maybe not.

For instance, Ryan Selkis (“Two Bit Idiot”) recently performed a back-of-the-envelope calculation to create an estimate for “transactional demand” — dialing down to a figure of $0.25 per bitcoin.

A year and a half ago, when the market price of a bitcoin was $143, Rick Falkvinge put together perhaps the only analysis of transactional demand generated by illicit trade (e.g., online gambling, dark markets, Silk Road, etc.).  Based on his own break down of the velocity of coins it amounted to roughly $1.12.  Everything on top of that is based on speculative demand.

In his words, “[…] the current value of one bitcoin, as backed by exchange of products and services in its role as a transactional currency, is roughly one US dollar and twelve US cents. And that’s still a generous estimate.”

Interestingly enough, Falkvinge reached out to Automattic, parent company of WordPress (a CMS developer and web host) to find out what kind of payment volume they had observed (they originally announced support for bitcoin payments in November 2012).  According to Falkvinge:

What about normal products and services? To get a ballpark understanding, I contacted Automattic (the parent company of WordPress) and asked politely if they could share how much revenue they have received in bitcoin, being one of the highest-visibility brands ever to accept bitcoin. The answer came quickly – “a couple of hundred dollars worth, so far”. If the highest-visibility brand accepting bitcoin has had less than two bitcoin in revenue in total, then for all intents and purposes, there is currently no measurable bitcoin economy outside of drugs and gambling.

Last July I also reached out to Automattic to find out if the volume had changed.  In an exchange with Chris L., from customer service (ticket #1886104), he stated:

We will not disclose that type of information since we keep our financial information private, as well as any information as it relates to our users.  If you have any follow up questions, or concerns, please do not hesitate to reply back.

Fast forward to last week, Matt Mullenweg, co-founder of WordPress explained that bitcoin was recently dropped as a payments option (it may be added again later).  Why?

The volume has been dropping since launch, in 2014 it was only used about twice a week, which is vanishingly small compared to other methods of payment we offer.

Conclusions

The takeaway should not be seen as “bitcoin does not have value” or that “bitcoin will not increase in value” or that even “bitcoin will not displace gold as a store of value.”  It clearly does have some kind of value to thousands, perhaps enormous value and utility to hundreds of thousands of traders, merchants and consumers of all stripes.

But in almost every case above, as well as many more often stated on forums, the argument is typically from a supply-sided viewpoint and not the demand (see Steve Waldman’s comments from the Cryptoecon event).  Historically most of the speculative demand seems to originate from a variety of investors with high risk tolerance and low time preference, with the expectation that prices will eventually go up (for a variety of reasons).

While it could change, empirically, we see that in general most participants are still holding coins and not using it for trade or commerce.6  And without any additional actual use-cases that generate transactional demand or additional aggregate demand from outside investors, it is likely that the bitcoin price will largely stay within the range it has seen this past year.  After all, why would it increase just because a large whale has moved a significant quantity to a cold wallet?

How then, can the market value of bitcoin — with a marketcap (or money supply) similar to that of the M1 of the Bolivian boliviano (according to the same ECB report above) — change in the future?7

Every bitcoin holder benefits from any kind of “good” news.  So there is an incentive to pump and manufacture as much good news as possible (e.g., astroturfing).  This seems to have culminated in an effort announced last week by the Bitcoin Foundation:

The Bitcoin Foundation announced today a partnership with Bitcoin companies BitFury, BitGo, Tally Capital, ChangeTip, and Bitcoin Foundation lifetime member Bruce Fenton to engage theAudience – one of the world’s largest multi-channel publishers of social and digital content. theAudience’s team of digital storytellers will work closely with these groups to launch a multi-faceted social and traditional media campaign to educate businesses, consumers, and society at large about Bitcoin.

Is this the same type of payola that “Tom Butterfield” investigated last summer?  The downside of this “educational” push is now any time there is “good” news, we may have to consider the source to find out if it is organic or just a sponsored puff piece.

Though in the end, it probably doesn’t really matter what we think or publish, what matters is — like all markets — is what the actual traders on markets think.  And as an aggregate of their demand relative to the available supply on exchanges, the value is around $270 today.

Perhaps future expectations of utility and value will dramatically change once the BitLicense is fully resolved and professional exchanges such as Gemini and LedgerX come online.
future-crystal-ball1Future research

Is there a way to model prices?

Future research could look at breaking down a cryptocurrency into consumption segments/tranches just as gold is typically done: (e.g., jewelry, investments, industry, etc.).

One reviewer suggested another way to model the future price of bitcoin in this lengthy footnote.8

Researchers may also be able to build a short-term sentiment index of large traders and market makers.

For instance, “accelerating merchant adoption” is typically mentioned as a bullish catalyst.  Maybe that’s true in the long-run but in the short-run it probably isn’t (as described above).  In a first step someone could create a simple regression model to measure the coefficient of “one unit of market adoption” on the market price. Then in a second step make some assumptions about market adoption for all of 2015 and use the estimated coefficient to derive (one small part) of the future price.

If someone does it like this for the most important market actors and factors, you might be able to derive a future price that is more than just a gut feeling.

See also: Eric Tymoigne: “The fair price of bitcoins as measured by the discounted value of future cash flows is zero.”

Endnotes

  1. As we have also seen with so-called altcoins it could also reduce liquidity on exchanges amplifying volatility.  One reviewer suggested that with traditional equities, in such a scenario the impact is likely on liquidity and not on value since traditional calculations always take all outstanding shares into account when calculating value, not just the ones traded on an exchange. []
  2. See also: Too Many Bitcoins: Making Sense of Exaggerated Inventory Claims []
  3. See How do Bitcoin payment processors work? []
  4. In one respect, a similar problem faced Linux F/OSS adoption 20 years ago: end-users wanted a desktop OS, not a full-time hobby. []
  5. See Is the adoption of blockchains and consensus ledgers a foregone conclusion? []
  6. It is arguably rational to hold with the expectation of price appreciation; spending may actually be irrational []
  7. See also Why Bitcoin does not have a market cap []
  8. Let v(t) denote the purchasing power of bitcoin (or USD) at date t.

    Let R(t+1) = v(t+1)/v(t) denote the (gross) rate of return on (zero interest) money.

    Since money (BTC included) is an asset, it must earn an expected rate of return E[R(t+1)] that competes with other forms of wealth. We might make adjustments based on liquidity premia etc, but to a first approximation, let’s just say that the expected rate of return from holding BTC must be about the same as holding any other asset. This is basically the EMH. And it is a compelling argument (just do the counterfactual).

    So, for those people expecting huge capital gains from holding BTC… they may turn out to be correct ex post but, if they are, they would just be lucky. The same holds true for any other asset.

    Moreover, the EMH tells us that the value of BTC v(t) must follow a random walk with drift — the best forecast for tomorrow’s BTC price is today’s BTC price (plus a modest drift term).

    The EMH above only pins down the expected rate of return on an asset — it does not have anything to say about the *level* v(t), only its rate of change.

    It is unclear what, if anything, pins down v(t) for BTC, or any fiat object. There are some theories, but in general, I think that v(t) may be indeterminate (i.e., the equilibrium v(t) could be a self-fulfilling prophecy).

    If this conjecture is correct, then one could imagine discrete jumps in v(t) that happen for no good reason at all (pure psychology), without altering the expected return properties of the asset.

    So, for example, the BTC price could suddenly drop from $300 to $100 and at the same time be a very good investment because if you buy it at $100, it is still expected to generate a competitive return. But this does not mean that the price might not jump down again to $50, or, indeed, up to $150.

    One limitation to this approach is that EMH probably more appropriately applies in a normal, more highly liquid market with professional traders that are better informed and have equal access to information (there are currently a number of information asymmetries) and in which financial controls are the norm and not the exception — recall that there is no “neutral” exchange in the cryptocurrency world, all “exchanges” are effectively broker-dealers.

    So the approach above assumes that insiders and operators of large exchanges are segregated from financial information of their customers, which they are not (e.g., because of a lack of financial controls, some exchange operators can currently front-run and ‘naked short sell’ their own customers which then distorts price discovery and the overall market). []

Eric Tymoigne: “The fair price of bitcoins as measured by the discounted value of future cash flows is zero.”

Earlier today The Wall Street Journal posted two responses to the question: “Do Cryptocurrencies Such as Bitcoin Have a Future?”

The ‘Yes’ answer was penned by Campbell R. Harvey, a professor at Duke University.

The ‘No’ answer was penned by Eric Tymoigne an assistant professor at Lewis & Clark College.

I don’t fully agree with all of Tymoigne’s points, but I think the areas regarding speculative demand are empirically valid — he also has a couple other good, concise points that tie in with what Robert Sams has previously discussed (see Seigniorage Shares).

Below is Tymoigne’s full response:

“NO: As a Currency, Bitcoin Violates All the Rules of Finance”

By Eric Tymoigne

Bitcoins are an odd sort of commodity. They are not financial instruments. The value fluctuates widely, in line with changing views regarding the overall usefulness of the bitcoin payment system and the speculative manias surrounding such views. There is no financial logic behind bitcoins’ face value.

In other words, if you like to gamble, this is a perfect asset. If you are looking for an alternative monetary instrument, look elsewhere.

The bitcoin system has two components: the means of payment themselves, and an online ledger, called the block chain, which is a record of all bitcoins that have been created and who holds them. The ledger is the main innovation. It provides an open, decentralized, fast, cheap and supposedly secure means of completing transactions.

Volatile and Illiquid

But as an alleged alternative currency, bitcoin is unacceptable. Its volatility and lack of liquidity pose risks far beyond most traditional currencies.

To understand why, take a quick look at how real money works. Monetary instruments are securities. As such, they have a term to maturity (instantaneous) and an issuer—often a central bank or private banks—that promises to pay the bearer the full face value. Gold coins are a collateralized form of such security. Paper, cheap metal, and electronic entries are the forms such securities take today. The characteristics of these securities allow them to circulate at a stable nominal value (par) in the right financial infrastructure and as long as the creditworthiness of the issuer is strong. This provides a reliable means to complete transactions and, more important, service debts.

Bitcoins, meanwhile, violate all of the rules of finance. There is no central issuer guaranteeing payment at face value to the bearer; in fact, there is no underlying face value, and subsequently no imputed value at maturity, which means they are completely impractical for use in servicing of debt. The fair price of bitcoins as measured by the discounted value of future cash flows is zero.

Bitcoins pose a huge liquidity risk. Ultimately, anyone with bitcoins has to convert them into a national unit of account—dollars, say, or euros—to pay taxes or personal debts and to make other transactions. Their extreme volatility makes them a bad bet if one plans to buy a house in a few years, is saving for college, or has regular payments on, say, a mortgage or car. If bitcoins were a large asset in a portfolio, the investor’s solvency would be at risk. This certainly would be the case if bitcoins were promoted for poorer individuals who don’t have access to banking today.

Logic and Illogic

For an economy to work well, money needs to be created (for example, through bank credits or government spending) and withdrawn (through debt servicing and tax payments) following economic logic. We have all seen recently, in the global financial collapse of 2008-09, how irresponsible behavior on the part of big banks with regard to their lending and debt-servicing practices can set off widespread financial panic followed by years of economic stagnation.

The mechanics of creating and withdrawing money need to operate not only with sound economic logic. They also should be simple, to accommodate quickly the needs of a flexible economy. Today, money is created and destroyed in seconds through digital entries.

Bitcoins, by contrast, are created using a purely mathematical logic that lacks financial or economic underpinnings (currently 25 new bitcoins every 10 minutes); and they can’t be retired as needed to maintain their scarcity. Given the lack of economic logic behind the net injection of bitcoins, there is increased risk of financial and price instability.

The block chain is useful as an authentication tool and is the main innovation. But it’s too soon to tell whether it can have other applications. For now, unfortunately, it’s a potential step forward accompanied by an actual step backward.

A brief history of Bitcoin “wallet” growth

There has been a lot of investment and press coverage of the overall Bitcoin ecosystem.  So what kind of growth have some of the larger companies historically had?

Even though it is not an accurate measure of growth or adoption (see Measuring Interest and Not User Adoption), a lot of discussion on social media typically uses self-reported “wallet” numbers as a valid metric for traction.  Ignoring the fact that there is nothing in the network that can be described as a “wallet” (there are no real “payment buckets,” since addresses are essentially just UTXO labels), for simplification purposes, we will talk about what are typically referred to as wallets.1

A brief history

As mentioned in a working paper last spring, Coinbase began 2013 with ~13,000 wallets and on February 27, 2014 announced it had reached 1 million.

Similarly, Blockchain.info had roughly ~13,000 wallets in August 2012 and reached 1 million in January 2014.  On April 14, 2014, Blockchain.info reached 1.5 million wallets.

Yet it is unclear how many are active or actually have any bitcoins in them (similar uncertainties surround Coinbase wallets).  More on that later.

Fast forward to the present day, Blockchain.info recently announced that it had 3 million wallets and Coinbase now has 2.5 million (note: the about section on Coinbase also states there are 2 million “users” though that is unclear if they are active, KYC’ed users with an actual balance or just a registered empty account).

Altogether, Coinbase purportedly added 1.5 million new wallets over the past year and Blockchain.info supposedly doubled its own wallets.

Sounds like real consumer traction?

Or, maybe not.

Why?  Because there is no cost to open or create a wallet.  In fact, for “best practices” users are supposed to use only one address per transaction due to privacy and security concerns.  Thus, consequently the growth in wallet creation could be a skewed metric.

Internal usage

According to media reports, merchants accepting bitcoin for payments globally increased from ~21,000 in January 2014 to now over 100,000 as of February 2015.  Of that total, Coinbase states it has 38,000 merchants and BitPay claims 53,738 merchants accept bitcoin payments through them.

What does this “growth” actually look like?

coinbase offchain transactions

Above is a chart covering the past year from Coinbase which illustrates the daily off-chain transaction volume, the transactions that take place within the Coinbase database.

While it is unclear if all of this activity represents merchant processing, vault movements, etc., the trend over the year is actually relatively flat.  Perhaps that will change in the future.

Can we be sure that this flatness is missing actual merchant activity?

Four-and-a-half months ago, in October 2014, Brian Armstrong and Fred Ehrsam, co-founders of Coinbase, did a reddit AMA.  At the 31:56 minute mark (video), Fred discussed merchant flows:

One other thing I’ve had some people ask me IRL and I’ve seen on reddit occasionally too, is this concept of more merchants coming on board in bitcoin and that causing selling pressure, or the price to go down. [Coinbase is] one of the largest merchant processors, I really don’t think that is true.  Well one, the volumes that merchants are processing aren’t negligible but they’re not super high especially when compared to people who are kind of buying and selling bitcoin.  Like the trend is going in the right direction there but in absolute terms that’s still true.  So I think that is largely a myth.

What about Blockchain.info?

blockchain my wallet transaction volume

Above is a chart measuring the internal transaction volume over the past year of the “My Wallet” feature (the product name of the user wallet) from Blockchain.info.

Earlier this week, Blockchain.info claimed that “over $270 million in bitcoin transactions occurred via its wallets over the past seven days.”

But this is probably not accurate.  Organ of Corti pointed out that the 7 day average was indeed ~720,000 bitcoins in total output volume (thus making) the weekly volume would be about “5e06 btc for the network.”

Is it valid to multiply the total output volume by USD (or euros or yen)?  No.

Why not?  Because most of this activity is probably a combination of wallet shuffling, laundering and mixing of coins (e.g., use of SharedSend and burner wallets) or any number of superfluous activity.  It was not $270 million of economic trade.

Blockchain.info’s press release seems to be implying that economic trade is taking place, in which all transactions are (probably) transactions to new individuals when in reality it could simply be a lot of “change” address movement.  And more to the point, the actual internal volume looks roughly the same as has been the past few months (why issue a press release now?).

Is there another way to look at this?

blockchain my wallet number of transaction per day

Above is a chart from Blockchain.info that visualizes “My Wallet” transaction volume over the past year.

While Blockchain.info has seen transactions per day roughly double over the past year (from 25,000 to 50,000), without doxxing where those bitcoins go, it cannot be said that a doubling of economic activity, or that bonafide consumer traction has taken place.

Has there been any “exponential” growth, adoption or traction?  Probably not.  Again, perhaps that will change, but consumer usage could simply continue to grow at a linear fashion or maybe even less as well.

There may be a number of reasons, perhaps the average consumer is still someone who buys and holds bitcoin as a speculative investment and has no need to actually spend it with the available merchants.  But this is a topic for another post (see also Zombie activity).

ChangeTip

ChangeTip was founded on December 17, 2013.  It is not generally seen as a wallet, like the services above, in fact it currently bills itself as a micropayment service (e.g., “tipping”).  However, users need a ChangeTip wallet — which is provided for free through its platform — in order to perform their tipping services.

While their “Offsite storage wallet” (cold storage) is publicly accessible, below are three charts culled from Changetip real-time usage stats which has been broken the last couple of weeks (or the API they were collecting data from is broken; or both).  The time period is from between December 6, 2014 and February 17, 2015, covering ~73 days including Christmas and BitPay’s “Bitcoin St. Petersburg Bowl.”

changetip total number of tips sent

The chart above visualizes the total number of tips sent on the ChangeTip platform .  In just over 2 months it increased from: 119,740 tips to 187,071 tips.  During this 73 day period, approximately 67,331 tips were sent which is roughly 922 per day.

changetip total usd tipped to date

The chart above visualizes the total USD tipped to date (at current exchange rate).  During this time frame it increased from: $54,767 to $111,963.  Thus $57,196 was sent in tips during 73 days, roughly $783 per day.

changetip total numbers of users

The chart above visualizes the total number of ChangeTip users during the same time frame.  It increased from 45,851 users to 67,469 users.  According to this data, 21,618 users joined ChangeTip during 73 days, which is approximately 296 new users per day.

Altogether this comes to a grand total as of February 17, 2015 — 67,469 users have sent 187,071 tips totaling $111,963.  The average user has sent 2.7 tips altogether, with each tip worth about $0.60 (just under 60 cents to be precise).

Perhaps this trend will change — in addition to its usage on Twitter and Reddit they have added support to Slack and Youtube.

But then again, maybe tipping is not a really accurate, useful or desirable signaling mechanism (recall that micropayments is not a new idea).  And while speculative, a lack of traction could be one of the reasons why — after 3 months since Coinbase first launched their own — it recently dropped their own tipping feature (e.g., the engineering resources consumed more than the service generated).

Future research and conclusions

What about Android Bitcoin wallets?  Last October a github user put together a short comparison of the top 10 Bitcoin wallets by number of downloads.  What we saw then was a power law distribution: growth in downloads among the top 3 but a relative plateau for others.  More striking was that there was linear growth, not exponential.  Future research should also take into account the corresponding amount of deleted wallets and inactive wallets.  Note: last May at the Dutch Nationaal Bitcoin Congres, Mike Hearn described this comparison of downloaded vs deleted wallets at length, see his presentation (video) starting at 11:30m.

Bitreserve, which incidentally also launched in October 2014, provides a public transparency stats page which could serve as the beginning of a “best practices” for the industry.

Why is this important?

We have previously looked at BitPay data (which was flat).  Circle and Xapo have not publicly released much data at this time (incidentally, breadwallet is actually ranked higher at #4 in the Apple Store than both Coinbase and Xapo).  Yet from the data above it is increasingly clear that actual user numbers should not be conflated with wallet creation numbers.

Aside from movement into P2SH addresses, it is hard to really say where large, sustained organic growth is occurring.  Perhaps it is only a matter of time, maybe it is “early days” as some say.  Or maybe it is a reflection of other economic development constraints.

Update:

I received an email from Andreas Schildbach, creator of the Android Bitcoin wallet, and a portion of it is posted below (with his permission):

Install count is at 700k. Perhaps an interesting metric is that on GitHub, it’s forked 384 times (and starred 371 times). A lot of these forks made it to the Play Store.

Update 2:

I received an email from Wendell Davis, creator of the Hive Wallet.  According to him, all the Hive Wallet stats are open and accessible.  He also pointed to a similar, smaller discussion on reddit last fall.

Update 3:

BitcoinPulse has been tracking the total amount of downloads for the Satoshi bitcoind client (the reference client); over the past year there has been a linear increase in downloads.  Arianna Simpson pointed out that MultiBit, as of March 2014, had at least 1.5 million downloads.

  1. I would like to, again, thank Andrew Poelstra for crystalizing this point for me. []